

Chaire de Physique Mésoscopique Michel Devoret Année 2012, 15 mai - 19 juin

RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE

NANOMECHANICAL RESONATORS IN QUANTUM REGIME

Quatrième leçon / Fourth lecture

This College de France document is for consultation only. Reproduction rights are reserved.

PROGRAM OF THIS YEAR'S LECTURES

Lecture I: Introduction to nanomechanical systems

Lecture II: How do we model the coupling between electromagnetic modes and mechanical motion?

Lecture III: Is zero-point motion of the detector variables a limitation in the measurement of the position of a mechanical oscillator?

Lecture IV: In the active cooling of a nanomechanical resonator, is measurement-based feedback equivalent to autonomous feedback?

Lecture V: How close to the ground state can we bring a nanoresonator?

Lecture VI: What oscillator characteristics must we choose to convert quantum information from the microwave domain to the optical domain?

CALENDAR OF 2012 SEMINARS

May 15: Rob Schoelkopf (Yale University, USA)

Quantum optics and quantum computation with superconducting circuits.

May 22: Konrad Lehnert (JILA, Boulder, USA)

Micro-electromechanics: a new quantum technology.

May 29: Olivier Arcizet (Institut Néel, Grenoble)

A single NV defect coupled to a nanomechanical oscillator: hybrid nanomechanics.

June 5: Ivan Favero (MPQ, Université Paris Diderot)

From micro to nano-optomechanical systems: photons interacting with mechanical resonators.

June 12: A. Douglas Stone (Yale University, USA)

Lasers and anti-lasers: a mesoscopic physicist's perspective on scattering from active and passive media.

June 19: Tobias J. Kippenberg (EPFL, Lausanne, Suisse) Cavity optomechanics: exploring the coupling of light and micro- and nanomechanical oscillators.

LECTURE IV : RESPONSE FUNCTIONS OF COUPLED ELECTROMAGNETIC/MECHANICAL RESONATORS

OUTLINE

- 1. Simplified model: discrete circuit elements, sources and meters
- 2. Open and closed loop susceptibilities
- 3. Cooling from the point of view of feedback control

Acknowledgements: "Micromechanics and superconducting circuits", K. Lehnert, Les Houches Summer School on Quantum Machines (2011).

GENERIC MODEL FOR COUPLED ELECTRO-MAGNETIC AND MECHANICAL OSCILLATORS

limit analysis to

- 1 elec. mode
- 1 mech. mode

discrete elements

Elec. side: Impose ac voltages, measure ac charge or current

Mech. side: Impose forces, measure displacement or velocity

$$\omega_{e} = \sqrt{\frac{1}{LC}} \qquad Z_{e} = \sqrt{\frac{L}{C}} \qquad \mathcal{Q}_{e} = \frac{Z_{e}}{R} \qquad \kappa = \frac{\omega_{e}}{\mathcal{Q}_{e}}$$
$$\omega_{m} = \sqrt{\frac{K}{M}} \qquad Z_{m} = \sqrt{KM} \qquad \mathcal{Q}_{m} = \frac{Z_{m}}{\eta} \qquad \gamma = \frac{\omega_{m}}{\mathcal{Q}_{m}}$$

EQUATIONS OF MOTION OF GENERIC MODEL

SYSTEM RESPONSE

OPEN LOOP

SYSTEM RESPONSE WITH "NAIVE" FEEDBACK

SYSTEM RESPONSE WITH RADIATION PRESSURE FEEDBACK

External feedback 1st experiment: Cohadon, Heidmann & Pinard, PRL83, 3174, (1999) External feedback limits analysis: Courty, Heidmann & Pinard, Eur. Phys. J D17, 399 (2001)

12-IV-9

AUTONOMOUS FEEDBACK

EXTERNAL FEEDBACK COMPONENTS MAY HAVE THEIR EQUIVALENT INSIDE THE ELECTROMECHANICAL SYSTEM, IN APPROPRIATE CONDITIONS

WILL EXAMINE IN THIS LECTURE HOW THIS CASE IS REALIZED

LINEARIZATION OF EQUATIONS OF MOTION

$$\begin{cases} L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = \frac{1}{C\ell_0}XQ + V_d(t) + V_s(t) + V_N(t) \\ M\ddot{X} + \eta\dot{X} + KX = \frac{1}{2C\ell_0}Q^2 + F_s(t) + F_N(t) \end{cases}$$

Expand around steady state value:

$$Q(t) = Q_d(t) + \delta Q(t) \qquad \qquad Q_d(t) = \operatorname{Re}\left[Q_d e^{i\Omega t}\right]$$
$$X(t) = X_d + \delta X(t) \qquad \qquad X_d = \frac{1}{2C\ell_0}Q_{d,rms}^2$$

static displacement due to radiation pr.

We arrive at, neglecting second order contributions:

parametrically driven coupled oscillators

$$L\delta\ddot{Q} + R\delta\dot{Q} + \frac{1}{C}\delta Q = \frac{Q_d(t)}{C\ell_0}\delta X + V_s(t) + V_N(t)$$
$$M\delta\ddot{X} + \eta\delta\dot{X} + K\delta X = \frac{Q_d(t)}{C\ell_0}\delta Q + F_s(t) + F_N(t)$$

QUADRATURE VARIABLES

dimensionless variables whose max. amplitude is (nb of quanta)^{1/2}

quanta: photons or phonons

QUADRATURE VARIABLES

dimensionless variables whose max. amplitude is (nb of quanta)^{1/2}

After this rescaling:

$$\ddot{q} + \kappa \dot{q} + \omega_e^2 q = \omega_e g \left(e^{i\Omega t} + e^{-i\Omega t} \right) x + \omega_e v(t) \qquad \omega_e v(t) = \frac{V_s(t) + V_N(t)}{2LQ_{ZPF}}$$
$$\ddot{x} + \gamma \dot{x} + \omega_m^2 x = \omega_m g \left(e^{i\Omega t} + e^{-i\Omega t} \right) q + \omega_m f(t) \qquad \omega_m f(t) = \frac{F_s(t) + F_N(t)}{2MX_{ZPF}}$$

$$g = \sqrt{\overline{N}} g_3$$
$$g_3 \equiv \frac{\partial \omega_e}{\partial X} X_{ZPF} = \omega_e \frac{X_{ZPF}}{\ell_0}$$

* To simplify equations, we can always choose the input θ yielding this expression for the driven charge oscillations.

EQUATIONS IN FOURIER DOMAIN

Start from: $\begin{cases} \ddot{q} + \kappa \dot{q} + \omega_e^2 q = \omega_e g \left(e^{i\Omega t} + e^{-i\Omega t} \right) x + \omega_e v(t) \\ \ddot{r} + u \dot{r} + \omega^2 r - \omega_e g \left(e^{i\Omega t} + e^{-i\Omega t} \right) a + \omega_e f(t) \end{cases}$

$$\ddot{x} + \gamma \dot{x} + \omega_m^2 x = \omega_m g \left(e^{i\Omega t} + e^{-i\Omega t} \right) q + \omega_m f(t)$$

introduce: $\begin{cases} q[\omega_1] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} q(t) e^{+i\omega_1 t} dt \\ x[\omega_2] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x(t) e^{+i\omega_2 t} dt \end{cases}$

generic elec. and mech. frequencies

arrive at:

$$\left(-\omega_{1}^{2}+i\kappa\omega_{1}+\omega_{e}^{2}\right)q\left[\omega_{1}\right] = \omega_{e}g\left(x\left[\omega_{1}+\Omega\right]+x\left[\omega_{1}-\Omega\right]\right)+\omega_{e}v\left[\omega_{1}\right]$$
$$\left(-\omega_{2}^{2}+i\kappa\omega_{2}+\omega_{e}^{2}\right)x\left[\omega_{2}\right] = \omega_{m}g\left(q\left[\omega_{2}+\Omega\right]+q\left[\omega_{2}-\Omega\right]\right)+\omega_{m}f\left[\omega_{2}\right]$$

FREQUENCY LANDSCAPE

FREQUENCY LANDSCAPE

resonant sidebands: $\Delta = \pm \omega_0$

FREQUENCY LANDSCAPE $x[\omega]$'s $q[\omega]$'s Δ Ω Ω Ω Ω **←**K - Y $-\omega_m$ $-\omega_0$ $-\omega_e$ $-\Omega$ Ω ω_m $\dot{\omega}_{e}$ ω 0 $-\omega_{+}$ ω_0 ω_{-} \mathcal{O}_{+} $-\omega_{-}$ $\omega_{\pm} = \Omega \pm \omega_0$

non-linear coupling

detuning $\Delta = \omega_e - \Omega$

FREQUENCY LANDSCAPE

3 equations to consider simultaneously:

detuning $\Delta = \omega_e - \Omega$

$$\begin{cases} \left(-\omega_{+}^{2}+i\kappa\omega_{+}+\omega_{e}^{2}\right)q\left[\omega_{+}\right]=\omega_{e}g \ x\left[\omega_{0}\right]+\omega_{e}v\left[\omega_{+}\right]\\ \left(-\omega_{-}^{2}-i\kappa\omega_{-}+\omega_{e}^{2}\right)q\left[-\omega_{-}\right]=\omega_{e}g \ x\left[\omega_{0}\right]+\omega_{e}v\left[-\omega_{-}\right]\\ \left(-\omega_{0}^{2}+i\kappa\omega_{0}+\omega_{e}^{2}\right)x\left[\omega_{0}\right]=\omega_{m}g \left(q\left[\omega_{+}\right]+q\left[-\omega_{-}\right]\right)+\omega_{m}f\left[\omega_{0}\right]\end{cases}$$

$$BARE SUSCEPTIBILITIES$$

$$\left\{\begin{array}{c} \left(-\omega_{+}^{2}+i\kappa\omega_{+}+\omega_{e}^{2}\right)q\left[\omega_{+}\right]=\omega_{e}g \ x\left[\omega_{0}\right]+\omega_{e}v\left[\omega_{+}\right]\\ \left(-\omega_{0}^{2}+i\kappa\omega_{0}+\omega_{e}^{2}\right)x\left[\omega_{0}\right]=\omega_{m}g \left(q\left[\omega_{+}\right]+q\left[-\omega_{-}\right]\right)+\omega_{m}f\left[\omega_{0}\right]\\ \left(-\omega_{-}^{2}-i\kappa\omega_{-}+\omega_{e}^{2}\right)q\left[-\omega_{-}\right]=\omega_{e}g \ x\left[\omega_{0}\right]+\omega_{e}v\left[-\omega_{-}\right]\end{array}\right\}$$

Circuit representation:

DRESSED SUSCEPTIBILITIES

DRESSED SUSCEPTIBILITIES

$$\begin{bmatrix} q[\omega_{+}] \\ x[\omega_{0}] \\ q[-\omega_{-}] \end{bmatrix} = \begin{bmatrix} \chi_{qq}^{++} & \chi_{qx}^{+} & \chi_{qq}^{+-} \\ \chi_{xq}^{-} & \chi_{xx}^{-} & \chi_{qq}^{--} \end{bmatrix} \begin{bmatrix} v[\omega_{+}] \\ f[\omega_{0}] \\ v[-\omega_{-}] \end{bmatrix}$$

$$\chi_{xx} = \frac{\chi_{xx}^{\text{bare}}}{1 - g^{2}\chi_{xx}^{\text{bare}} (\chi_{qq}^{\text{bare}} [\omega_{+}] + \chi_{qq}^{\text{bare}} [-\omega_{-}])}$$

$$v[\omega_{+}] \longrightarrow \begin{pmatrix} \chi_{qq}^{\text{bare}} & q[\omega_{+}] \\ \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} \\ \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} \\ \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} \\ \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{bare}} \\ \chi_{qq}^{\text{bare}} & \chi_{qq}^{\text{ba$$

ROTATING WAVE APPROXIMATION

$$\begin{bmatrix} q[\omega_{+}] \\ x[\omega_{0}] \\ q[-\omega_{-}] \end{bmatrix} = \begin{bmatrix} \chi_{qq}^{++} & \chi_{qx}^{+} & \chi_{qq}^{+-} \\ \chi_{xq}^{+} & \chi_{xx} & \chi_{xq}^{-} \\ \chi_{qq}^{-+} & \chi_{qx}^{-} & \chi_{qq}^{--} \end{bmatrix} \begin{bmatrix} v[\omega_{+}] \\ f[\omega_{0}] \\ v[-\omega_{-}] \end{bmatrix} \quad \chi_{xx} = \frac{\chi_{xx}^{\text{bare}}}{1 - g^{2} \chi_{xx}^{\text{bare}} \left(\chi_{qq}^{\text{bare}} \left[\omega_{+} \right] + \chi_{qq}^{\text{bare}} \left[-\omega_{-} \right] \right)}$$

Can simplify greatly expressions of susceptibilities, taking advantage of high Q's $\pm \omega_{\pm} = \omega \pm \Omega = \omega \pm \omega_e \pm \Delta$ $|\omega_{+} - \omega_{e}| = |\omega + \Delta| \ll \omega_e$ $|\omega_{-} - \omega_{e}| = |-\omega + \Delta| \ll \omega_e$

$$\chi_{qq}^{\text{pare}} \left[\omega\right] = \frac{\omega_{e}}{-\omega^{2} + i\kappa\omega + \omega_{e}^{2}}$$

$$\chi_{qq}^{\text{bare}} \left[\omega_{+}\right] = \frac{\omega_{e}}{-\omega_{+}^{2} + i\kappa\omega_{+} + \omega_{e}^{2}} \approx \frac{1}{2\left(\omega_{e} - \omega_{+}\right) + i\kappa} = \frac{1/2}{-\omega - \Delta + i\kappa/2}$$

$$\chi_{qq}^{\text{bare}} \left[-\omega_{-}\right] = \frac{\omega_{e}}{-\omega_{-}^{2} - i\kappa\omega_{-} + \omega_{e}^{2}} \approx \frac{1}{2\left(\omega_{e} - \omega_{-}\right) - i\kappa} = \frac{1/2}{+\omega - \Delta - i\kappa/2}$$
Finally:
$$\chi_{xx} \left[\omega\right] = \frac{1/2}{\omega_{m} + i\gamma/2 - \frac{g^{2}}{2}\left(\frac{1/2}{-\omega - \Delta + i\kappa/2} + \frac{1/2}{+\omega - \Delta - i\kappa/2}\right) - \omega}$$
12-IV-18

CHANGING THE FREQUENCY AND DAMPING OF THE MECHANICAL OSCILLATOR

$$\chi_{xx} \left[\omega \right] = \frac{1/2}{\omega_m + i\gamma/2 - \frac{g^2}{4} \left(\frac{1}{-\omega - \Delta + i\kappa/2} + \frac{1}{+\omega - \Delta - i\kappa/2} \right) - \omega} \right]$$

$$\left(\frac{-(\omega + \Delta) - i\kappa/2}{(\omega + \Delta)^2 + \kappa^2/4} + \frac{(\omega - \Delta) + i\kappa/2}{(\omega - \Delta)^2 + \kappa^2/4} \right) = \chi_s \left(\omega \right)$$

Solve equation for the poles of χ perturbatively

 $\left[\chi_{s}(\omega) = \chi_{s}(\omega_{m})\right]$

$$\delta\omega_{m} = \frac{g^{2}}{4} \left(\frac{\Delta + \omega_{m}}{\left(\Delta + \omega_{m}\right)^{2} + \kappa^{2}/4} + \frac{\Delta - \omega_{m}}{\left(\Delta - \omega_{m}\right)^{2} + \kappa^{2}/4} \right)$$
$$\delta\gamma/2 = \frac{g^{2}}{4} \left(\frac{i\kappa/2}{\left(\Delta + \omega_{m}\right)^{2} + \kappa^{2}/4} + \frac{-i\kappa/2}{\left(\Delta - \omega_{m}\right)^{2} + \kappa^{2}/4} \right)$$

"OPTICAL SPRING" AND "OPTICAL DAMPING" OF MECHANICAL OSCILLATOR

Vertical axis is in units of:

INCREASING DAMPING BY INCREASING ELECTRICAL DRIVE COOLS THE MECHANICAL OSCILLATOR

NEXT LECTURE: ANALYSIS OF COLD DAMPING IN QUANTUM REGIME...

END OF LECTURE