

Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS

INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

Deuxième leçon / Second Lecture

This College de France document is for consultation only. Reproduction rights are reserved.

What do "electron" and "photon" mean in mesoscopic physics?

Purpose: provide groundwork for Landauer's approach of transport phenomena and quantum circuit theory

THE MESOSCOPIC RESISTOR

The Landauer reservoir is to Fermi waves what a black-body is to Bose waves.

Mesoscopic wire: a collection of independent channels

Mesoscopic wire: a collection of independent channels

Mesoscopic wire: a collection of independent channels

THE LANDAUER-BÜTTIKER FORMULA FOR THE AVERAGE CURRENT

$$I = I_{+} - I_{-}$$
$$I_{\pm} = \frac{e}{h} \sum_{m} \int_{-\infty}^{+\infty} f_{\pm} \left(E \right) \left| t_{m} \left(E \right) \right|^{2} \mathrm{d} E$$

$$f_{\pm}(E) = \frac{1}{1 + \exp \frac{E - \mu_{\pm}}{k_{B}T}} \qquad \mu_{+} - \mu_{-} = eV$$

Electrons interact with the voltage source but not between themselves

THE USUAL ELECTRON OF ATOMIC AND HIGH ENERGY PHYSICS

Last Name: Electron First name: Bare Address: Vacuum Genre: Fermion Occupation: Wave packet Lifetime: infinite Average energy: $\hbar\omega$ Average momentum: $\hbar k$ Velocity: v=d ω /dk Mass: \hbar dk/dv=m_e Charge: -e Spin: 1/2 Magnetic moment: μ_B An example of a Feynman diagram involving the usual electron and photon of atomic physics propagating in vacuum

THE "ELECTRON" OF MESOSCOPICS

PARTICLE IDENTIFICATION CARD

Last Name: Electron Address: Metal Occupation: Wave packet Average energy: $\hbar\omega$ Velocity: v=d ω /dk Transverse charge: -e Spin: 1/2

First name: Quasi Genre: Fermion Lifetime: finite, except @ k_F Average momentum: $\hbar k$ Mass: $\hbar dk/dv=m_{eff}(k)$ Longitudinal charge: 0 (q \rightarrow 0) Magnetic moment: g μ_B Definition of the longitudinal and transverse part of a field:

$$\vec{F} = \vec{F}_l + \vec{F}_t$$
$$\vec{\nabla} \cdot \vec{F}_t = 0$$
$$\vec{\nabla} \times \vec{F}_l = 0$$

The longitudinal and transverse charges are the sources of the longitudinal and transverse parts of the electrical field, respectively.

A METAL AT LOW ENERGY: FERMI QUASIPARTICLES + BOSONIC PLASMONS

cannot solve the full many body problem, but....

low-lying excitations of strongly interacting bare electrons

 nearly free quasielectrons and holes
 bosonic plasma modes
 photons

PLASMA PHYSICS APPLIED TO METALS

Quantum Mechanics enter in internal pressure

FERMI PRESSURE

 $v_F = \frac{\hbar}{m_e} k_F = v_g \Big|_{E_F}$

$$c_0 = \sqrt{\frac{\partial \left(\frac{\partial E}{\partial V}\right)_N}{m \partial n}} = \frac{1}{3} v_F$$

07-II-11

ARRIVE AT LINEARIZED EQUATIONS FOR FIELDS AND ELECTRON FLUID

$$\begin{split} \omega_{P} &= \sqrt{\frac{e^{2}n_{0}}{m\varepsilon_{0}}} & \text{plasma frequency} \\ v_{s} &= \sqrt{\frac{1}{mn_{0}}} \left(\frac{\partial P}{\partial n}\right)_{0}} & \text{sound} \\ velocity \\ \vec{E} &= \vec{E}_{l} + \vec{E}_{t} \\ \vec{j} &= \vec{j}_{l} + \vec{j}_{t} \\ \left\{\vec{E}_{l}; \vec{j}_{l}; \vec{\rho}\right\} & \text{longitudinal part} \\ \left\{\vec{E}_{t}; \vec{j}_{t}; \vec{B}\right\} & \text{transverse part} \end{split}$$

BOUNDARY CONDITIONS: WIRE ABOVE A GROUND PLANE

BOUNDARY CONDITIONS: WIRE ABOVE A GROUND PLANE

Field lines from wire end on ground plane

 $h << \lambda$

LONGITUDINAL MODE CURRENTS

TRANSVERSE MODE CURRENTS

λ

07-II-14

LONGITUDINAL MODE CHARGES

TRANSVERSE MODE CHARGES

DISPERSION RELATION OF ELECTRODYNAMIC MODES OF WIRE

RESPONSE : SCREENING

plane wave dispersion relation: $\omega^2 = \omega_P^2 + v_s^2 k^2$

dielectric response function:
$$\varepsilon_r(k,\omega) = 1 + \frac{1}{\ell_s^2 k^2 - \frac{\omega^2}{\omega_p^2}}$$

screened
potential! $V_{eff}(r,\omega \to 0) = \frac{e}{\varepsilon_0} \frac{e^{-\frac{r}{\ell_s}}}{r}$

NEUTRAL METALLIC SPHERE

CHARGED METALLIC SPHERE

SELF-CONSISTENT PICTURE OF ELECTRON STATES

WHAT IS μ ?

Χ

BOSONIC EXCITATIONS " PHOTONS"

07-II-21

ELECTROSTATIC EXCITATION

Example: torus in parallel plate capacitor

OTHER QUASI-STATIC MACROSCOPIC EXCITATION OF ELECTRONS IN TORUS: ELECTRICAL CURRENT

Electrons move bodily with respect to ions. No surface charge.

Example: flux through torus increases linearly with time

In other words, just heat!

QUASIPARTICLE EXCITATIONS

											 		 				-	
											 		 				-	
				-						-	 		 				-	
				-							 -	-	 	-			-	
				-							 -	-	 	Ξ	_ :		-	-
				-			-			-	 -	_	 	_			-	_
							-			-	 -	-	 	_		_		Ξ
				-			-			-								-
				-		: -	-					-	 	-			-	
				-						-	 	-	 	-			-	-
				-			-			-	 -	-	 	-			-	-
		==					-			-	 -	-	 	-			-	-
	= =						-			-	 -	-	 	-			-	-
				-			-			-	 -	-	 	-			-	-
:		_		-			-			-	 -	-	 	-			-	-
						• -	-		• -	-	 	-	 	-			-	-
							-			-	 	-	 	-			-	-
						• -	-		• -	-	 	-	 	-			-	-
							-			-	 	-	 	-			-	-
						_		_										_
						_		_	_									_
					_													
		_			_	_			_									_
						_			_									_
																		-
_		_	_		_	_		_	_									_
_		_	_		_	_		_	_									_
_		_	_		_	_		_	_									_
_		_	_		_	_			_									_
_		_	_		_	_			_									_

Ε

GROUND STATE

ONE "ELECTRON"

ONE "HOLE"

FINITE LIFETIME OF QUASIPARTICLES

†Ε

F	
L	
L	
L	
L	
+	
L	
_	
+	
L	
	1
+	
· · · · · · · · · · · · · · · · · · ·	

L
[
L
r
+
<u>├</u>
h
L

ONE "ELECTRON"

TWO "ELECTRONS" + ONE "HOLE"

DISPERSION RELATION OF ELEMENTARY EXCITATIONS IN A METAL

DISSIPATION CORRESPONDS TO CREATION OF ELECTRON-HOLE PAIRS FROM ELECTRODYNAMIC EXCITATIONS

REVERSE PROCESS CORRESPONDS TO JOHNSON NOISE

07-II-28bis

JOHNSON NOISE IS EQUIVALENT TO BLACK-BODY RADIATION

T R T R P(*v*,*T*) = $\frac{2hv}{e^{\frac{hv}{k_BT}} - 1}$

1-D version of Planck's radiation law $I(v,T) = \frac{2hv^3/c^2}{e^{\frac{hv}{k_BT}}-1}$

emission of "photons" by excited quasielectron-hole pairs analogous to emission of photons by black-body atoms

DISPERSION RELATION OF ELEMENTARY EXCITATIONS IN A <u>SUPERCONDUCTING</u> METAL

(caveat: S-wave, with gap)

CONCLUSIONS

"Electrons" and "photons" in mesoscopic physics are "dressed" particles with properties which can greatly differ from their counterparts in free space.

> These properties can be designed. We can construct a quantum Lego set, explore its various combinations and "invent" new quantum effects.

COMPARISON BETWEEN QUANTUM OPTICS AND QUANTUM TRANSPORT EXP^{MENTS}

COMPARISON BETWEEN QUANTUM OPTICS AND <u>RF</u> QUANTUM TRANSPORT EXP^{MENTS}

07-II-31bis

QUANTUM OPTICS

QUANTUM CRYOLECTRONICS

atoms, molecules

light beams, fibers

mirrors, beam splitters, etc

light sources : lasers

photodetectors, photomultipliers

 $T_{background} = 300K$

cavity

weak atom-field coupling

photon loss and dispersion

tunnel devices, semic. dots

coax. transmission lines

filters, couplers, circulators

microwave generators

cryogenic amplifiers

T_{background} = 30mK

resonator, oscillator

strong artificial atom – field coupling

resistance and reactance

SOME KEY IDEAS

Rolf Landauer

David Thouless

Joe Imry

Tony Leggett

"think conductance, not conductivity!"

 $E_{Thouless} = \frac{\hbar D}{L^2}$

"(for quasi-electrons) what is important is loss of quantum information: decoherence" dissipative non-linear circuits: to what extent do they obey quantum mechanics?

07-II-33

NEXT YEAR: "QUANTUM CIRCUITS AND SIGNALS"

How do we treat a macroscopic circuit quantum-mechanically?

How do we describe non-linear elements like tunnel junctions, both normal and superconducting?

What are the properties of quantum noise? How does it limit the processing of signals?

LE COURS DE L'AN PROCHAIN: "CIRCUITS ET SIGNAUX QUANTIQUES"

Début: 13 mai 2008

Comment traiter quantiquement un circuit électronique macroscopique?

Comment décrire les composants non-linéaires comme les jonctions tunnel?

Quels sont les propriétés du buit quantique? Quel est son influence sur le traitement du signal?

Acknowledgements : D. Esteve, H. Pothier, D. Stone and C. Urbina

