Quantum-Coherent Coupling of a Mechanical Oscillator to an Optical Cavity Mode

Ewold Verhagen, Samuel Deleglise, Albert Schliesser, Stefan Weis, Vivishek Sudhir, Tobias J. Kippenberg

> Laboratory of Photonics and Quantum Measurements, EPFL Part time affiliation: Max Planck Institute of Quantum Optics

Collaborators EPFL-CMI K. Lister (EPFL) J. P. Kotthaus (LMU) W. Zwerger (TUM) I. Wilson-Rae (TUM) A. Marx (WMI) J. Raedler (LMU) R. Holtzwarth (MenloSystem) T. W. Haensch (MPQ)

19th June 2012

Mechanical oscillators as probe for nanoscale phenomena

Image: NIST

D. Rugar (Nature)

Quantum control in Atomic Physics

1970: Arthur Ashkin demonstrated radiation pressure trapping of dielectric particles

1975: Hänsch et Schawlow, Dehmelt et Wineland "Laser Cooling by Radiation Pressure"

1989: Ground state cooling of ions (Wineland)

Can quantum control be extended to NEMS / MEMS?

Parametric transducers – optomechanical coupling

Dam 5

V.B. Braginsky

. ...

Braginsky, Manukin, Tikhonov, JETP 1970

Braginsky, Manukin: Measurement of Weak Forces in Physics Experiments (1977)

INVESTIGATION OF DISSIPATIVE PONDEROMOTIVE EFFECTS OF ELECTROMAGNETIC RADIATION

1070

V. B. BRAGINSKIĬ, A. B. MANUKIN, and M. Yu. TIKHONOV Moscow State University

Submitted October 17, 1969

Parametric, optomechanical coupling

$$\omega = \omega_c + G x(t)$$
$$G = \frac{d\omega}{dx} = -\frac{\omega_0}{L}$$

Hamiltonian description (K.C. Law)

$$\widehat{H}_{int} = \hbar G \ \widehat{a}^{\dagger} \widehat{a} \cdot \widehat{x}$$

MAX-PLANCK-INSTITUT FUR QUANTENOPTIK GARCHING

Radiation pressure dynamical backaction

77)

 $\Delta \gamma < 0 \Rightarrow$ Amplification $\Delta \gamma > 0 \Rightarrow$ Cooling

Velocity dependent term Amplification: Blue detuning **Cooling:** Red Detuning

Radiation pressure effects on test masses

Parametric transducer – optomechanical coupling

Gravitational wave interferometric Photo credit: Hanford observatory

VB Predictions:

-Standard quantum limit for position detection - Amplification and Cooling of Mechanical Motion

Linearized optomechanical Hamiltonian

$$\begin{split} \widehat{H} &= \hbar \omega \widehat{a}^{\dagger} \ \widehat{a} + \hbar \Omega_m \widehat{b}^{\dagger} \ \widehat{b} + \hbar G \widehat{x} \ \widehat{a}^{\dagger} \widehat{a} \\ \overbrace{H_{int}}^{\text{Linearization around the driven cavity}} \end{split}$$

linearization:
$$\begin{cases} \hat{a} = \bar{a} + \delta \hat{a} \\ \hat{x} = \bar{x} + x_{zpm} (\delta b + \delta b^{\dagger}) \end{cases}$$

Quantum theory of optomechanical cooling and strong coupling: I. Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL **99**, 093901 (2007) J. Dobrindt, Wilson-Rae, Kippenberg, PRL, **101**, 263602 (2008)

F. Marquardt, Chen, Clerk, Girvin, PRL 99, 093902 (2007)

$$\begin{split} \widehat{H} &= \hbar \Delta \delta \widehat{a}^{\dagger} \, \delta \widehat{a} + \hbar \Omega_m \delta \widehat{b}^{\dagger} \, \delta \widehat{b} \\ &+ \hbar G x_{ZPF} \overline{a} (\delta \widehat{b} + \delta \widehat{b}^{\dagger}) (\delta \widehat{a} + \delta \widehat{a}^{\dagger}) \end{split}$$

Resolved sideband regime, $\Delta = -\Omega_m$:

$$\begin{aligned} \widehat{H}_{int} &= \hbar \Omega_c / 2 (\widehat{a}^{\dagger} \ \widehat{b} + \widehat{a} \widehat{b}^{\dagger} \) \\ \Omega_c / 2 &= G x_{ZPF} \overline{a} \end{aligned}$$

Corresponds to state swapping between optical and mechanical mode

Linearized optomechanical Hamiltonian

$$\widehat{H} = \hbar \omega \widehat{a}^{\dagger} \ \widehat{a} + \hbar \Omega_m \widehat{b}^{\dagger} \ \widehat{b} + \hbar G \widehat{x} \ \widehat{a}^{\dagger} \widehat{a}$$

$$\widehat{H}_{int}$$

Resolved sideband regime, $\Delta = -\Omega_m$:

$$\begin{aligned} \widehat{H}_{int} &= \hbar \Omega_c / 2 (\widehat{a}^{\dagger} \ \widehat{b} + \widehat{a} \widehat{b}^{\dagger} \) \\ \Omega_c / 2 &= G x_{ZPF} \overline{a} \end{aligned}$$

Corresponds to state swapping between optical and mechanical mode

Weak coupling: optomechanical cooling

$$\widehat{H}_{int} = \hbar \frac{\Omega_c}{2} \left(\delta \widehat{a}^{\dagger} \ \delta \widehat{b} + \delta \widehat{a} \delta \widehat{b}^{\dagger} \right) \qquad \Omega_m \gg \kappa$$
Mechanical oscillators
$$\Omega_c \qquad \textbf{Optical fields}$$

$$\widehat{\Omega}_c \qquad \textbf{Optical fields}$$

 $\Omega_c = 2g_0 \sqrt{\bar{n}_p}~~{\rm Coupling}$ rate between light and mechanical oscillator

Weak coupling $\Omega_c < \kappa$ Cooling occurs if $\kappa \gg \Gamma_m$

Quantum theory :

I. Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL 99, 093901 (2007)

F. Marquardt, Chen, Clerk, Girvin, PRL 99, 093902 (2007)

$$\Gamma_{eff} = \Omega_c^2 / \kappa$$

Dynamical backaction cooling

Quantum theory :

$$n_f = \kappa^2/16\Omega_m^2$$
 Only for:

 $\Omega_m \gg \kappa$

Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL **99**, 093901 (2007) Marquardt, Chen, Clerk, Girvin, PRL **99**, 093902 (2007)

Coupling mechanical motion to an optical field

$$\widehat{H}_{int} = \hbar \frac{\Omega_c}{2} \left(\delta \hat{a}^{\dagger} \ \delta \hat{b} + \delta \hat{a} \delta \hat{b}^{\dagger} \right)$$
Mechanical oscillators
$$\bigcap_{m \in m} (\bar{n}_m) \qquad \gamma = \Gamma_m (\bar{n}_m + 1) \qquad \rho_c \qquad \rho_$$

Outline

 Exploring cavity optomechanics with microresonators

 Optomechanically Induced Transparency

 Quantum-coherent coupling of mechanical and optical modes

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. *Nature* 421, 925-928 (2003).

Optomechanical coupling in optical microresonators

Insight: Mechanical vibrations also apply to the microscale* optical microresonators

-> Enabled a new class of cavity optomechanical devices

^{*}T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer and K.J. Vahala *Physical Review Letters* 95, Art. No. 033901 (2005)

T.J. Kippenberg, Rokhsari, Carmon, Scherer, K.J. Vahala, PRL 95, 033901(2005)

Examples of optomechanical devices

Cavity optomechanics in micro and nano-optical systems

Kippenberg, Vahala Science (2008) «Cavity Optomechanics»

Cavity optomechanical systems (2011)

Movable mirrors and membranes: Caltech, MIT, Paris, UCSB, Vienna, Yale

Berkeley, ETHZ, MIT

Reviews: Kippenberg, Vahala, Science 321, 1172 (2008) "Cavity Optomechanics" Marquardt, Girvin, Physics 2, 40 (2009)

Microwave systems: Caltech, JILA, NIST, UCSB

 $H_{int} = g_0 \hbar a^{\dagger} a (a_m^{\dagger} + a_m)$

Optomechanical coupling in 2 D photonic crystal cavities

Collaboration LPN (CNRS)/EPFL

E. Gavartin, Braive, T.J. Kippenberg, I. Robert (Physical Review Letters 2011)

Optomechanical coupling in a toroidal microcavity

$$G/2\pi = 10^9 GHz/nm$$

Critical coupling $\kappa_{ex} = \kappa_0$

Optomechanical coupling in a toroidal microcavity

$$G/2\pi = 10^9 GHz/nm$$

HNIQU

FÉDÉRALE DE LAUSANN

A. Schliesser et al. NJP 2009

MAX-PLANCK-INSTITUT FUR QUANTENOPTIK GARCHING

A. Schliesser et al. NJP 2009

Example: noise spectral density of a toroid microresonator

MAX-PLANCK-INSTITUT FUR QUANTENOPTIK GARCHING

A. Schliesser et al. NJP 2009

Observing Brownian motion of toroid microresonators

Displacement sensitivity below that at the SQL

• Vacuum coupling strength

$$\langle \delta \omega^2
angle = \int_{-\infty}^\infty S_{\omega \omega}(\Omega) rac{\mathrm{d}\Omega}{2\pi} = 2 \langle n
angle g_0^2$$

Peak displacement spectral density

$$S_{xx} = 2\bar{n}_m S_{xx}^{zpm}$$

spectral density of Zero Point Motion

$$S_{xx}^{zpm} = \frac{\hbar}{2m\Omega_m\Gamma_m}$$

$$\frac{S_{xx}^{th} [\Omega_m]}{S_{xx}^{zpm} [\Omega_m]} > \sqrt{2\bar{n}} \qquad \bar{n}_m \approx$$

Applied phase modulation signal

A. Schliesser et al. NJP (2008)

ML Gorodetsky, A. Schliesser, TJ Kippenberg (Optics Express 2010)

 $\hbar\Omega_m$

Displacement sensitivity below that at the SQL

Anetsberger et al. *Nature Physics* (2009) Collaboration: J.P. Kotthaus, E. Weig Outline

Optomechanically Induced
 Transparency

• Quantum-coherent coupling of mechanical and optical modes

Coherent probing: Optomechanically Induced Transparency for Four Polymeria

Two laser scheme is similar to atomic EIT

Harris, PRL

Coherent probing: Optomechanically Induced Transparency FOR PROVIDENTION

Two laser scheme is similar to atomic EIT

Harris, PRL

Optomechanically induced transparency

Optomechanically induced transparency

Optomechanically induced transparency

Optomechanically induced transparency (OMIT)

Optomechanically induced transparency (OMIT)

Transmission

$$T(\omega = \omega_0) = \frac{C}{C+1}$$

Optomechanical cooperativity

$$C = \frac{4 \, \bar{n}_p g_0^2}{\kappa \Gamma_m}$$

Zhang, Peng, Braunstein, PRA 68, 013808 (203) Schliesser, LMU PhD thesis (2009) Agarwal, Huang, PRA 81, 041803 (2010) Weis et al. *Science* (2010)

Application of optomechanically induced transparency

 Δ'/κ

Ν

 $a_R(z+d)$

 $o_i(z+d)$ active ontical cavity mechanical cavity

Weis, Rivière, Deléglise, Gavartin, Arcizet, Schliesser, Kippenberg, Science 330, 1520 (2010)

 Optomechanics with silica microtoroids

Optomechanically Induced
 Transparency

Reaching the quantum coherent coupling regime

$$\gamma = \Gamma_m \bar{n}_m = \frac{k_B T}{\hbar Q}$$

³He cryostat

- Allows thermalization
 through buffer gas
- Reduced intrinsic losses below 1K

$$\Omega_c = 2g_0\overline{a}$$

$$g_0 = \frac{\omega}{R} \sqrt{\frac{\hbar}{2m\Omega_m}}$$

• <u>Smaller structures:</u> $\frac{\omega}{R}$ increases, m is reduced but, increase of Ω_m , additional clamping losses <u>Optimized spokes design:</u>

Anetsberger et al. Nature Photonics 2009

Spoke supported microtoroid resonators

$$\frac{g_0}{2\pi}=3.4 \ kHz$$

3× improvement (Rivière et al., PRA 83, 063835 (2011)) G. Anetsberger et al. *Nat. Photon.* 2009

Characteristics Helium 3 Buffer gas cooling

 $\Omega_m \approx 50 - 75 \text{MHz } T = 600 \text{mK}$ $n = \frac{k_B T}{\hbar \Omega} \approx 175 - 250$

Dissipation due to two level systems (TLS)

Observation of a purely TLS dominated losses in silica toroidal resonators

Vacher, Courtens, Forêt, PRB 72 214205 (2005) Jäckle, Piché, Huncklinger, J. Non-Crys. Sol. 20 365 (1976) O. Arcizet, R. Riviere, A. Schliesser, TJ Kippenberg PRA 2009

Achieving a "Cold" photon bath: Laser phase noise

•Excess phase noise heats mechanical oscillator. The amount of tolerable phase noise for cooling to n=1

$$S_{\omega\omega}[\Omega_m] = \frac{g_0^2}{\Gamma_m \bar{n}_m}$$

Chosen solution: TiSa laser system

 10^{7}

New Focus *Diode Laser* frequency noise spectrum

Kippenberg, Gorodetsky, Schliesser et al. arXiv:1112.6277

- 1. Schliesser, et al. Nature Physics 4, 415 (2008) [SUPPLEMENTARY INFO]
- 2. Diosi, PRA 78, 021801 (2008)
- 3. Rabl, Genes, Hammerer, Aspelmeyer, PRA 80, 063819 (2009)

Achieving a "Cold" photon bath: Acoustic Modes of Fibers

 Factor of 1.3 corresponds to change in diameter from 125µm to 95µm

Shelby, Levenson, Bayer, Phys. Rev. B 1985

Experimental setup: coherent probing

- 1) Determination of all parameters (Ω_c, κ, Δ ...)
- 2) Only amplitude of noise spectrum is used to derive the thermal fluctuations

(E. Verhagen et al. *Nature* 2012)

Optomechanical cooling: incoherent response

Optomechanical cooling: incoherent response

Laser Cooling of a macroscopic mechanical oscillator to ~37 % ground state occupation. (E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, TJK *Nature* 2012)

Optomechanical cooling in the weak coupling regime

Quantum coherent coupling

- Optical domain: ٠ -70 -70 (ZHM) Δ (ZHM) D -80 -80 -90 -90 80 70 80 90 60 70 90 60 Ω (MHz) Ω (MHz)
- Mechanical domain: ٠

Verhagen, Deleglise, Weis, Schliesser et al. (Nature, 2012)

Quantum coherent coupling

Quantum Coherent coupling regime: $2g > \gamma, \kappa$

m = 5 GHz

Microwave piezomechanical oscillators

$$\bar{n}_m \ll 1$$

O'Connell, et al. Nature (2010)

 $_m = 10 MHz$ Dynamical backaction

microwave cooling

 $ar{n}_m pprox 0.34$ $2g > (\Gamma_m ar{n}_m, \kappa)$ Teufel et al. (*Nature* 2011)

2011

m = 75 MHzDynamical backaction *optical* laser cooling

 $\bar{n}_{m} = 1.7$

 $2g\gtrsim (\Gamma_m \bar{n}_m,\kappa)$ Verhagen, Schliesser, Deleglise, Weis et al. (*Nature* 2012)

Verhagen, Deleglise, Weis, Schliesser et al. Nature 2012

Energy exchange in time domain

Weak coupling Data

Energy exchange in time domain

Verhagen, Deleglise, Weis, Schliesser et al. Nature 2012

Summary

Sideband Cooling

Schliesser et al. Phys. Rev. Let. 2006 Wilson-Rae, Phys. Rev. Lett. 2007 Schliesser et al. Nat. Phys. (2008)

Low dissipation optomechanics

Anetsberger et al. Nat. Phot. 2, 627 (2008)

Quantum coherent coupling

Verhagen, Deleglise, Weis, Schliesser, TJK Nature (2012)

Transducers:

Future directions of optomechanics

- Quantum transducers between optical fields and other degrees of freedom
- Quantum measurements on a mechanical oscillator in the quantum regime
- Optomechanical transducers

Postdoc/ PhD position available at EPFL

He-3 Team: Ewold Verhagen, Vivishek Sudhir, Nicolas Piro

Former members: Samuel Deleglise, Olivier Arcizet, Albert Schliesser

ITN - PhD and Postdoc position available.