Chaire de Physique Mésoscopique Michel Devoret
Année 2012, 15 mai - 19 juin

RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE

NANOMECHANICAL RESONATORS IN QUANTUM REGIME

Troisième leçon / Third lecture

This College de France document is for consultation only. Reproduction rights are reserved.

PROGRAM OF THIS YEAR'S LECTURES

Lecture I: Introduction to nanomechanical systems
Lecture II: How do we model the coupling between electromagnetic modes and mechanical motion?

Lecture III: Is zero-point motion of the detector variables a limitation in the measurement of the position of a mechanical oscillator?

Lecture IV: In the active cooling of a nanomechanical resonator, is measurement-based feedback inferior to autonomous feedback?

Lecture V : How close to the ground state can we bring a nanoresonator?

Lecture VI: What oscillator characteristics must we choose to convert quantum information from the microwave domain to the optical domain?

CALENDAR OF 2012 SEMINARS

May 15: Rob Schoelkopf (Yale University, USA)

Quantum optics and quantum computation with superconducting circuits.

May 22: Konrad Lehnert (JILA, Boulder, USA)

Micro-electromechanics: a new quantum technology.

May 29: Olivier Arcizet (Institut Néel, Grenoble)

A single NV defect coupled to a nanomechanical oscillator: hybrid nanomechanics.

June 5: Ivan Favero (MPQ, Université Paris Diderot)

From micro to nano-optomechanical systems: photons interacting with mechanical resonators.

June 12: A. Douglas Stone (Yale University, USA)
Lasers and anti-lasers: a mesoscopic physicist's perspective on scattering from active and passive media.

June 19: Tobias J. Kippenberg (EPFL, Lausanne, Suisse)
Cavity optomechanics: exploring the coupling of light and micro- and nanomechanical oscillators.

LECTURE III : POSITION MEASUREMENT OF A MECHANICAL RESONATOR IN QUANTUM LIMIT

OUTLINE

1. Quadrature representation of harmonic oscillator
2. Imprecision of single shot interference measurement of position
3. Continuous monitoring of position and associated backaction

QUADRATURE REPRESENTATION OF A QUANTUM HARMONIC OSCILLATOR

Review:

$$
\begin{aligned}
& \hat{H}=\frac{\hat{P}^{2}}{2 M}+\frac{K}{2} \hat{X}^{2}=\hbar \omega_{m}\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right) ; \quad \omega_{m}=\sqrt{\frac{K}{M}} ; \quad\left[\hat{b}, \hat{b}^{\dagger}\right]=1 \\
& \hat{X}=X_{\text {ZPF }}\left(\hat{b}+\hat{b}^{\dagger}\right) ; \quad X_{\text {ZPF }}=\sqrt{\frac{\hbar}{2 Z_{m}}} ; \quad Z_{m}=\sqrt{K M} ; \quad P_{Z P F}=\frac{\hbar / 2}{X_{Z P F}}
\end{aligned}
$$

Define dimens ${ }^{\text {less }}$ hermitian operators*: $\quad \hat{I} \equiv \frac{\hat{X}}{2 X_{\text {ZPF }}}, \hat{Q} \equiv \frac{\hat{P}}{2 P_{\text {ZPF }}}$

$$
\begin{aligned}
& \hat{I} \equiv \frac{\hat{b}+\hat{b}^{\dagger}}{2} \\
& \text { a.k.a. } \mathfrak{R}(\hat{b}), X_{\phi=0} \\
& \hat{Q} \equiv \frac{\hat{b}-\hat{b}^{\dagger}}{2 i} \\
& \text { a.k.a. } \mathfrak{I}(\hat{b}), X_{\phi=\pi / 2} \\
& {[\hat{I}, \hat{Q}]=\frac{i}{2}} \\
& \Delta I=\sqrt{\left\langle\hat{I}^{2}\right\rangle-\langle\hat{I}\rangle^{2}} \\
& \Delta Q=\sqrt{\left\langle\hat{Q}^{2}\right\rangle-\langle\hat{Q}\rangle^{2}} \\
& \Delta I \cdot \Delta Q \geq \frac{1}{4}
\end{aligned}
$$

COHERENT STATE IN QUADRATURE REPRESENTATION

$$
\begin{aligned}
& |\beta\rangle=\mathrm{e}^{-\mid \beta \beta^{2} / 2} \sum_{n=0}^{\infty} \frac{\beta^{n}}{\sqrt{n}!}|n\rangle ; b|\beta\rangle=\beta|\beta\rangle ;|\beta(t)\rangle=\left|e^{-i \omega_{n} t} \beta(0)\right\rangle \\
& \hat{n}=b^{+} b ;\langle\beta| \hat{n}|\beta\rangle=\bar{n}=|\beta|^{2} ; \quad \Delta n=\sqrt{\langle\beta|(\hat{n}-\bar{n})^{2}|\beta\rangle}=\sqrt{\bar{n}} ; \quad \beta=\sqrt{\bar{n}} e^{i \theta}
\end{aligned}
$$

THE VACUUM STATE

$$
\begin{array}{cc}
|\beta=0\rangle=|n=0\rangle & Q_{m} \uparrow \\
\left\langle I_{m}\right\rangle=\left\langle Q_{m}\right\rangle=0 & \Delta Q_{m} \\
\Delta I_{m}=\Delta Q_{m}=\frac{1}{2} & \rightarrow \Delta I_{m}
\end{array}
$$

All coherent states can be thought of as a translated vacuum state in quadrature space.

Driving an harmonic oscillator with an arbitrary time-dependent force can only result in displacing the vacuum state.

FLYING OSCILLATOR

A wave-packet propagating in medium with constant phase velocity can be seen as as oscillator

Signal :
(electric field, voltage, etc...)

> Envelope (--.......) varies slowly compared with center frequency ω_{c}

$$
\hat{S}(t)=2 \operatorname{Env}\left(t-t_{d}\right) S_{Z P F}\left[\hat{I}_{S} \cos \omega_{c} t+\hat{Q}_{S} \sin \omega_{c} t\right]
$$

HOMODYNE MEASUREMENT

HOMODYNE MEASUREMENT

Measurement of a coherent state
density matrix at input of beams:
$\hat{\rho}_{i}=\left|\alpha_{L O}, \alpha_{S}\right\rangle\left\langle\alpha_{S}, \alpha_{L O}\right|$
reference a.k.a. "local oscillator" $@ \omega_{c}$

Ideal photodetector

$\hat{n}_{1}=\hat{a}_{1}^{\dagger} \hat{a}_{1}$
$\leftarrow \bar{n}_{1}=\operatorname{Tr}\left[\hat{\rho}_{i} \hat{n}_{1}\right]$
$=\frac{\left|\alpha_{L O}\right|^{2}+\left|\alpha_{S}\right|^{2}+\alpha_{L O} \alpha_{S}^{*}+\alpha_{L O}^{*} \alpha_{S}}{2}$
$\hat{D}=\hat{n}_{1}-\hat{n}_{2}$

Measurement of an arbitrary state:
Output is $\langle D\rangle=2\left|\alpha_{L O}\right|\left(\cos \theta_{L 0}\left\langle\hat{I}_{S}\right\rangle+\sin \theta_{L 0}\left\langle\hat{Q}_{S}\right\rangle\right)$

$$
\begin{aligned}
& \langle D\rangle=\alpha_{L O} \alpha_{S}^{*}+\alpha_{L O}^{*} \alpha_{S} \\
& =\alpha_{L O}^{\prime} \alpha_{S}^{\prime}+\alpha_{L O}^{\prime \prime} \alpha_{S}^{\prime \prime}
\end{aligned}
$$

Ideal homodyne setup measures a generalized quadrature

FLUCTUATIONS OF A HOMODYNE MEASUREMENT

The photoelectron difference number is $\quad \hat{D}=\hat{n}_{1}-\hat{n}_{2}$
We suppose that the efficiency of the detector is unity.

$$
\left.\begin{array}{rl}
\hat{D} & =\frac{1}{2}\left[\left(\hat{a}_{L O}^{\dagger}+\hat{a}_{S}^{\dagger}\right)\left(\hat{a}_{L O}+\hat{a}_{S}\right)-\left(\hat{a}_{L O}^{\dagger}-\hat{a}_{S}^{\dagger}\right)\left(\hat{a}_{L O}-\hat{a}_{S}\right)\right] \\
& =2\left(\hat{a}_{L O}^{\dagger} \hat{a}_{S}+\hat{a}_{L O} \hat{a}_{S}^{\dagger}\right) \\
& =2(\underbrace{\alpha_{L O}^{*} \hat{a}_{S}+\alpha_{L O} \hat{a}_{S}^{\dagger}}+\underbrace{\delta \hat{a}_{L O}=\alpha_{L O}+\delta \hat{a}_{L O} \hat{a}_{S}+\delta \hat{a}_{L O}} \hat{a}_{S}^{\dagger}
\end{array}\right)
$$

Fluctuations are Fluctuations are of order $\mathrm{N}^{1 / 2} \quad$ of order unity
We have thus, in the limit of large LO number of photons:

$$
\hat{D} \cong 2 \sqrt{\bar{N}_{L O}}\left(\hat{I}_{S} \cos \theta_{L 0}+\hat{Q}_{S} \sin \theta_{L 0}\right)
$$

FLUCTUATIONS OF A HOMODYNE MEASUREMENT

The photoelectron difference number is $\quad \hat{D}=\hat{n}_{1}-\hat{n}_{2}$
We suppose that the efficiency of the detector is unity.

$$
\begin{aligned}
\hat{D} & =\frac{1}{2}\left[\left(\hat{a}_{L O}^{\dagger}+\hat{a}_{S}^{\dagger}\right)\left(\hat{a}_{L O}+\hat{a}_{S}\right)-\left(\hat{a}_{L O}^{\dagger}-\hat{a}_{S}^{\dagger}\right)\left(\hat{a}_{L O}-\hat{a}_{S}\right)\right] \\
& =2\left(\hat{a}_{L O}^{\dagger} \hat{a}_{S}+\hat{a}_{L O} \hat{a}_{S}^{\dagger}\right) \quad \underbrace{\alpha_{L O}^{*} \hat{a}_{S}+\alpha_{L O} \hat{a}_{S}^{\dagger}}+\underbrace{\delta \hat{a}_{L O}^{\dagger} \hat{a}_{S}+\delta \hat{a}_{L O} \hat{a}_{S}^{\dagger}}) \\
& =2 \underbrace{2})
\end{aligned}
$$

Fluctuations are Fluctuations are of order $\mathrm{N}^{1 / 2} \quad$ of order unity
We have thus, in the limit of large LO number of photons:

$$
\hat{D} \cong 2 \sqrt{\bar{N}_{L O}}\left(\hat{I}_{S} \cos \theta_{L 0}+\hat{Q}_{S} \sin \theta_{L 0}\right)
$$

For a coherent state, =1

HOMODYNE MEASUREMENT PERFORMS A PROJECTION IN QUADRATURE PLANE

signal state

$$
P\left(x_{S}\right)=\operatorname{Tr}[\rho(\underbrace{\cos \theta_{L 0} \hat{I}_{S}+\sin \theta_{L 0} \hat{Q}_{S}}_{\hat{x}_{S}\left(\theta_{L O}\right)})]
$$

In the ideal case, homodyne measurement performs a noise-less measurement of an oscillator generalized quadrature.

INTERFEROMETRIC MEASUREMENT OF POSITION

mechanical and probe photon shot noise.

IS IT POSSIBLE TO MAKE PHOTON SHOT NOISE NEGLIGIBLE COMPARED TO POSITION FLUCTUATIONS?

IN OTHER WORDS, CAN WE HAVE $\quad \frac{1}{4 \sqrt{\bar{N}} k_{e} X_{\text {ZPF }}} \ll \delta I_{m}$

$$
\text { OR EVEN } \quad \frac{X_{\text {ZPF }}}{\lambda_{e}} \sqrt{\bar{N}} \gg 1
$$

$$
\text { DIFFICULT SINCE } \quad X_{\text {ZPF }} \sim 10^{-15} \mathrm{~m}
$$

LAMB-DICKE PARAMETER $k_{e} X_{\text {ZPF }}=\frac{2 \pi X_{\text {ZPF }}}{\lambda_{e}}$ ALWAYS SMALL!

TWO HELPFUL FACTORS:

- CAVITY (ELECTROMAGNETIC RESONATOR)
- MANY PHOTONS (LONG ACQUISITION TIME)

ENHANCEMENT OF INTERFEROMETRIC PHASE-SHIFT BY CAVITY

$$
\begin{aligned}
\delta \hat{\theta}_{X} & =8 \mathcal{F} \frac{\delta \hat{X}}{\lambda_{e}} \\
& =8 \mathcal{F} \frac{X_{\text {ZPF }}}{\lambda_{e}}\left(\hat{b}+\hat{b}^{\dagger}\right)
\end{aligned}
$$

Enhancement of Lamb-Dicke parameter by finesse of cavity

μ WAVE vs OPTICS

MIXERS AND PHASE-SENSITIVE AMPLIFIERS

Mixers have conversion gains less than unity.
Add at least 3dB of noise. Following amplifier adds also noise.

SPECTRAL DENSITY OF OSCILLATOR MOTION

$$
\text { Review: } \quad X(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} X[\omega] e^{-i \omega t} d \omega \quad X[\omega]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} X(t) e^{+i \omega t} d t
$$

$$
S_{X X}[\omega]=\underset{\substack{\text { \& } \\ \text { temporal and ensemble averaging }}}{\left.\int_{-\infty}^{+\infty}\langle\hat{X}(t) \hat{X}(0)\rangle e^{+i \omega t} d \omega \quad\left\langle\hat{X}[\omega] \hat{X}\left[\omega^{\prime}\right]\right\rangle=S_{X X}[\omega] \delta\left(\omega+\omega^{\prime}\right)\right) .}
$$

"Engineer" spectral density

$$
\mathcal{S}_{X X}\left(f=\frac{\omega}{2 \pi}\right)=S_{X X}[\omega]+S_{X X}[-\omega]
$$

$$
\langle X(t)\rangle=0
$$

Total area under curve ~ number of phonons in mechanical resonator

SPECTRAL DENSITY OF HOMODYNE SIGNAL

We now consider a continuous homodyne measurement.

MEASURED NOISE: IMPRECISION AND BACKACTION

Standard Quantum Limit (SQL): optimal compromise between imprecision and backaction noises

At SQL, the total noise energy in the resonator is equivalent to a full phonon.

IMPRECISION vs RESOLUTION

1) Measure fairness of coin by tossing it many times

2500 trials will determine fairness with 1% imprecision (@ 1 standard deviation)
2) Measure wavelength of incoming beam

width of slit determines resolution

END OF LECTURE

