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Questions, comments and corrections are welcome!
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CONTENT OF THIS YEAR'S LECTURES

QUANTUM COMPUTATION FROM THE PERSPECTIVE OF
MESOSCOPIC CIRCUITS

1. Introduction, c-bits versus g-bits

2. The Pauli matrices and quantum computation primitives

3. Stabilizer formalism for state representation
4. Clifford calculus
5. Algorithms

6. Error correction
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CALENDAR OF SEMINARS

May 11: Cristian Urbina, (Quantronics group, SPEC-CEA Saclay)
Josephson effect in atomic contacts and carbon nanotubes

May 18: Benoit Doucot (LPTHE / Université Pierre et Marie Curie)
Towards the physical realization of topologically protected qubits

June 1: Takis Kontos (LPA / Ecole Normale Supérieure)
Points quantiques et ferromagnétisme

June 8: Cristiano Ciuti (MPQ, Université Paris - Diderot)
Ultrastrong coupling circuit QED : vacuum degeneracy and quantum phase
transitions

June 15: Leo DiCarlo (Yale)
Preparation and measurement of tri-partite entanglement in a superconducting
quantum circuit

June 22: Vladimir Manucharian (Yale)
The fluxonium circuit: an electrical dual of the Cooper-pair box?

NOTE THAT THERE IS NO LECTURE AND NO SEMINAR NEXT WEEK, ON MAY 25!
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LECTURE Il : THE PAULI MATRICES AND
QUANTUM COMPUTATION PRIMITIVES

1. Brief summary of last lecture
. Bloch sphere and Pauli matrices
. Two ways of doing NOT

. The Quaternion group

a A~ WO DN

. Multiqubit registers
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OUTLINE

1. Brief summary of last lecture

. Bloch sphere and Pauli matrices
. Two ways of doing NOT

. The Quaternion group

a ~ WO DN

. Multi-qubit registers
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REGISTER = SET OF ACTIVE BITS

REGISTER WITH N=10 BITS: Ibgogb,babgb oo by

olofolololololofola] )
ololojojojolofojo]
ololojojojofolof /o]

> 2N = 1024 POSSIBLE CONFIGURATIONS
FOR THE REGISTER

Each of these configurations
’1 |1|1 |1|1 |1|1 |1|1 |O‘ must be thought of as a basis
vector...

APkl )

... which can represents one number between 0 et 1023
or any other data with same information content.
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CLASSICAL BIT = DAMPED BISTABLE SYSTEM

0 1
Energy \/‘B\JIKTMe |
Coordinate

<< B

Bit state is either O or 1: 1) strong dissipation and 2) kT

noise
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FROM CLASSICAL BIT TO QUANTUM BIT

\ |
DISCRETE
ENERGY
U LEVELS
o /\ 1
DISSIPATION
N/ \—/
N4 N~
0
| X
X X
H H
\ /
H—N > N—H
/ \
H H

QUBIT STATES ARE DYNAMICAL STATES

QUANTUM BIT: 2 LEVELS
FORMING EFFECTIVE SPIN 1/2
MOLECULE, ATOM, PARTICLE...
ENERGY . ‘O> spin up Bloch sphere
. ‘4 . w7 representation
— [3) - a|0)+B|1)
— [2)
‘1> }/ a:cos—e%w
—_— _sin%e?
‘0> ‘l> spin down prenge

Qubit state can be 0 and 1: 1) no dissipation and 2) KT, ;<< hwy,
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BOOLEAN CALCULUS

Boolean field B = O’l (Do
{3

2 binary digits

3 o multiplication
=2 numbers ;d:d'ﬂ?gz (modulo 2)
b b
b,@b, [~ byeb, =
0o 010
b, b,

QUANTUM COMPUTATION EXTENDS THIS CALCULUS

10-11-10
REVERSIBLE LOGICAL CIRCUITS
Musical score representation
X, X;
/
X X
X, X,
!/
XN—l XN -1
T T time
register information preserving function, a.k.a. reversible computation
Example of affine function: NOT /
Xo @ &:%@1
X I X=X
X, b X, =X, DX,
CNOT
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NON-LINEAR REVERSIBLE FUNCTIONS

TOFFOLI GATE (REVERSIBLE AND GATE)

X

X

X,

FREDKIN GATE
X0

X

X,

X, =X,
/
E X=X
e Xé =X, DX X,
CCNOT
f X(; =X

CSWAP
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LOGICAL CIRCUIT FOR 3-BIT INTEGER ADDITION

X, ° S X,
X T L I X
D O 1 O R
a o Y,

Yo = XX, DX,
Y1 = XX DX XoDX,Xg
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LOGICAL CIRCUIT FOR 3-BIT INTEGER ADDITION
1 X0 ® ® ® X0 1
0o X . e o X 0
1 X2 I ® ® X2 1
0 ao & & y0 0
0 a1 % % yl 1
Xo— 1

X,®x; — can follow

the state

X,@X; ®X,— 0 of the

XoXy—— 0 system

_ by Bool
KB 0 calculus!

XX @X; X DX, X
10-11-13d
OUTLINE

1. Brief summary of last lecture

2. Bloch sphere and Pauli matrices

3. Two ways of doing NOT
4. The Quaternion group

5. Multi-qubit registers
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MORE ON BLOCH SPHERE REPRESENTATION OF
SPIN Y2 STATE VECTORS

Consider a spin % state vector:

no loss of generality

/
| W) =al|t)+ 8| 1) =cos(0/2)e *"*|1)+sin(6/2)e"*"?||)

Its density matrix is:

lof  ap
o~ |6f

0<0<m0<p<2r

o= W) (W[ =|af [1){1|+ a8 [1){(1]+ B [1) (1] + 8P [1)(1]

1

2

14cosh sinpe”
sinfe ™ 1—cosh

Let us decompose the density matrix on the basis of the Pauli matrices:

1
’0:§<| +5,0,+5,0,+5,0,)

:%(I +§~3)

§ =sin(6)cos(¢)%

+sin(#)sin(¢) ¥
+cos(6)2
S« p= ‘\I/> <\If
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PAULI SPIN MATRI
1 0
0

Ty = = | (identity)

0 1‘
=X
0

THESE MATRICES ENTER

IN OPERATORS REPRESENTING
THE HAMILTONIAN AND THE

MEASUREMENTS, THE CLASS OF

HERMITIAN OPERATORS.(H' =H)

CES AND ROTATIONS

X]=-io=®
¥ =-io, =} 5|~
2] =—io, = || ?ARZ(W)

THESE MATRICES ENTE
IN OPERATORS REPRESENTING
THE LOGIC GATE OPERATIONS
THE CLASS OF
UNITARY OPERATORS. (U =U")
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REVIEW OF QUANTUM OPERATORS

Density Matrix (State operator) p= | \Ir> <\11 | Hermitian
Hamiltonian H (t) Hermitian
Evolution operator U(t,t,) Unitary
Link between H and U Utt,)=T EXP[—i f;z H (t)dt]

State evolution p(t)=U(t,0)p(0)U (t,0)"
Observable O Hermitian
Measurement result (o), = tr[ou (t,0)p(0)U (t, 0)*} Real

= tr|U (t,0) *0U (1,0)(0) e

"CARDINAL POINTS" OF THE BLOCH SPHERE

7z PRNNG

N y

)+ N\

V2 1)
0)+i[1)

J2
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"CARDINAL POINTS" OF THE BLOCH SPHERE

o |- | st | @)W
§ ?\/E 00 |+1] 0|0
N lalolo
---------- v (190+1)2" o0 | +1| o
: (j0)-[1)2*1 0 | -1 | ©
2
0)+i|1)

(10)+i[1))2™ 0 | 0 | +1

V2 |(9-i[1)2"] o | o | -1
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"CARDINAL POINTS" OF THE BLOCH SPHERE (bis)

‘O> ‘ 0> _ ‘ 1> Example of a rotation
SR
! —i 0|1 |-
lo i '1 Bl i]
L gy loe s jo-fy
NPR N
2
[9)+i]3)
V2

10-11-17b
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OUTLINE

1. Brief summary of last lecture

2. Bloch sphere and Pauli matrices

3. Two ways of doing NOT

4. The Quaternion group

5. Multi-qubit registers

QUANTUM LOGICAL CIRCUIT OF NOT
time
i 10) X -l
z
@y @
X g ;
precession of state
vector around X,
with field on for a time corresponding
to angle of 180 degrees
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QUANTUM LOGICAL CIRCUIT OF NOT (VARIATION)

time

JEE—

1l 10) V] B

& G &

precession of state
vector around vy,
with field on for a time corresponding
to angle of 180 degrees
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WHAT IS [Z]?

time
A 7] ~19+[Y)
2 el V2
z
y
X
precession of state
vector around z,
with field on for a time corresponding

to angle of 180 degrees

10-11-20
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MULTIPLICATION TABLE OF QUBIT Tt ROTATIONS

/ O g,
and relations
obtained by circular

permutations

[X]=[YT =-1=[Z][X][Y]

—
N
[E—
)
I
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MULTIPLICATION TABLE OF QUBIT 1t ROTATIONS

/ O g,
and relations
obtained by circular

permutations

(2] =[XT =[Y] =1 =[Z][X][¥]

@Z{I,—I,[X],[—XHYH_YHZH_ZH Quaternion

group
8 elements

More on this group later in this lecture.

10-11-21a
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PAULI GROUP

ZX =1Y and relations obtained by circular permutations

Z*=X?=Y?=1

P={+l,=£il, £X,£iX,£Y,£iY,+Z,+iZ}

16 elements, not 8!

Will study this group next lecture.
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APPLYING AN ARBITRARY TIME-DEPENDENT FIELD

In lab frame:

% = [Qol +u, (t)]az er\L (t)cos |yt +X ¢(t)]o,

- amplitude of phase of
variation of t field
Larmor freq. ransverse osc. ie

field

Do "rotating wave approximation" (neglect fast oscillating terms)

In frame rotating
at Larmor freq. Q,:

I_'I\rot
niz2

B. = —[ o COSP)X+(w, sing)Vy + 2‘] (microwave signals
eff ( = ¢) ( L ¢) yro applied to qubit)
10-11-23

w (t)o, +w, (t)cos|p(t)|o, +w, (t)sin[(t)]a,

15



RF PULSE

Field
w, (t ) Frequency Q,

R
M

duration T

. tice: a f smooth envelope:
(in practice: a few ns) limitation of spectral
content of pulse
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PHASE OF RF PULSE DETERMINES ROTATION AXIS

i o

(I

O A
I

| |
L |l
Ll ‘\H\

(]|

INIRIBIRIRIRANIRIRIEIE |
I
U L HIH T
RIRIRIAL U MM\H\\ IRIAIR
S

an ARRARARRAR

T
\ [l | | ‘
A
AR AR A AR RN
thin: carrier
thick: pulse

1]
|
|
|

FARRN AN ek 0]
L A (W LD
‘H“\“\H“‘H“\\\‘\H‘HU‘\‘H‘\H‘\\\\ LI
|

AT |
MEFARERY im‘\HH1“\“1\1\1”\\\\“‘\1\\‘ A
TR T
T
L R TR R
L T LT |
AR l [

quadrature: Y

10-11-25
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CALIBRATION OF DURATION OF PULSES
WITH RABI OSCILLATIONS

pulse duration t

10-11-26

CALIBRATION OF DURATION OF PULSES
WITH RABI OSCILLATIONS

pulse duration t

10-11-262|
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/2 ROTATIONS

2 l—io, 1 1-1 0 R (o
2 ==z ﬁlo 1+J Re(m2)
X[ = | ?/I;X = jz{_ll ?]ﬁ R, (m/2)

12 I—iay_ 111 -1
Y] = 7 _\/El-l—l J—>Ry(7r/2)

OUTLINE

1. Brief summary of last lecture
2. Bloch sphere and Pauli matrices

3. Two ways of doing NOT

4. The Quaternion group

5. Multi-qubit registers

10-11-5d
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QUATERNIONS ARE
GENERALIZATION TO 3D ROTATIONS OF WHAT
COMPLEX NUMBERS ARE TO 2D ROTATIONS

i - complex number representing
€ = CO0S 9 + ISIn 9 a 2D rotation around the origin
of the complex plane, with angle
0

o 0, .. 0.
e 12 _ s 2| —isin=f-o “hyper’complex number
2 2 representing a 3D rotation
around the origin of space
— Rﬁ (9) with angle g and axis
direction N

e—iHX/Z N RX (9> e—iGY/Z N Ry ((9) e—i@Z/Z N RZ <9>
[X]- Y] (2]
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THE QUATERNION GROUP
(Hamilton, 1843)

Subgroup of the full permutation group of 8 objects
Smallest non-commutative group whose subgroups
are all normal (invariant by conjugation).

This property is crucial for quantum mechanics
10-11-29
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3D VIEW OF THE QUATERNION PERMUTATIONS

two tetrahedra,
one inside the other,
themselves seen as
parts of cubes
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TOPOLOGICAL INTERPRETATION OF Z=x2=1A4=1

+

_T>y

1%

The elements 2, X" and ¥/ correspond to 7 rotations along the principal axes
of a cube connected by elastic strings to the vertices of a larger cube.

Only after a 4r rotation can the small cube return to its original state.
10-11-31
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OUTLINE

1. Brief summary of last lecture
2. Bloch sphere and Pauli matrices
3. Two ways of doing NOT

4. The Quaternion group

5. Multi-qubit registers
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SIMPLIFIED MAP OF QUBIT STATES

1QUBIT
119 110

X X

[2) o

6 "CARDINAL" OR "CLIFFORD" STATES

10-11-32

21



SIMPLIFIED MAP OF QUBIT STATES (CTN'D)

1 QUBIT
‘110)
y
X
D
graph
is a n/2 rotation
2 QUBITS:
60 CLIFFORD
STATES

22



2 QUBITS:
60 CLIFFORD
STATES

3 QUBITS:
1080 CLIFFORD
STATES!!

"QUANTUM INFORMATION" INCREASES LIKE N2
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GENERALIZATIONS OF PAULI MATRICES
TO MULTI-QUBIT REGISTERS

Examples: o) )1<O' f f = XXX
00,0, = XYZ
o, = XII
o =11Z
o,0, =YIX

/

qubit 1 | qubit 3

Positional syst
ositional system qubit 2

base 4 + sign

10-11-35
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GENERALIZED PAULI GROUP DEFINITION
1 qubit

P,={£l,£il,£X,£iX,£Y,+iY,+Z,+iZ }

N qubits

B, ={+1-1+i,—i}{1,Z,x,Y}"

Example of Pauli group element for 6 qubits: —ZIXXIY
Will see that we can use these symbols as kind of new numbers
0 100
The matrix corresponding to 1 element of ZX = 1000
the 2-qubit Pauli group: 0 00 -1
0 01 0
10-11-36

END OF LECTURE
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