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PROGRAM OF THIS YEAR'S LECTURES
Lecture I: Introduction to quantum-limited amplification and

feedback                 

Lecture II: How do we model open, out-of-equilibrium, non-
linear quantum systems? 

Lecture III: Can we maintain the noise at the quantum limit   
while increasing gain, bandwidth and dynamic range?

Lecture IV: What are the minimal requirements for  an active 
circuit to be fully directional and noiseless? 

Lecture V:  Can a continuous quantum measurement be 
viewed as a form of Brownian motion?

Lecture VI: How can we maintain a dynamic quantum state 
alive?  
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May 10: Fabien Portier, SPEC-CEA Saclay
The Bright Side of Coulomb Blockade

May 17, 2011: Jan van Ruitenbeek (Leiden University, The Netherlands)
Quantum Transport in Single-molecule Systems

May 31, 2011: Irfan Siddiqi (UC Berkeley, USA)
Quantum Jumps of a Superconducting Artificial Atom

June 7, 2011: David DiVicenzo (IQI Aachen, Germany)
Quantum Error Correction and the Future of Solid State Qubits

June 14, 2011: Andrew Cleland (UC Santa Barbara, USA)
Images of Quantum Light

June 21, 2011: Benjamin Huard (LPA - ENS Paris)
Building a Quantum Limited Amplifier from Josephson Junctions and Resonators

June 21, 2011 (3pm): Andrew Cleland (UC Santa Barbara, USA)
How to Be in Two Places at the Same Time ?

CALENDAR OF SEMINARS
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LECTURE VI : QUANTUM FEEDBACK CONTROL
AND PERSISTENT RABI OSCILLATIONS

OUTLINE 

1. Classical and quantum feedback; persistent Rabi oscillations 

2. Stochastic differential equations for quantum trajectories

3. Fidelity of quantum feedback control
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WHY FEEDBACK?

distance

Excursions away from perturbation-less trajectory must be bounded!

height

10.0km

7.5km

5.0km

2.5km

fixed evolution parameters, no noise 

fixed evolution parameters, with noise !
altitude of ground

11-VI-5

WHY FEEDBACK?

distance

height

10.0km

7.5km

5.0km

2.5km

autopilot set-point

Feedback establishes effective potential and damping, limiting excursions
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PERSISTENT RABI OSCILLATIONS: MOTIVATIONS

- Simplest and non-trivial quantum feedback demonstration for qubits
- Metrological application: RF amplitude-to-frequency converter

( )1 1 1
1 1 2 1

/ 2 2MHz

2 20 s; 2 2 8 s
R

T T φ

π

πγ μ π γ γ μ− − −

Ω =

= = = + =

Courtesy of M. Mirrahimi

Ruskov &
Korotkov
(2002)

THY:

Typical transmon parameters:
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OPTIMAL FEEDBACK CONTROL

SYSTEM

ENVIRONMENT
UNCONTROLLED

DEGREES OF FREEDOM

TRANSLATOR DETECTOR( )Z t
( )r tζ

noise 1

CONTROLLER

ACTUATOR ESTIMATOR

( )U t ( ),rw z t

SET-POINT

noise 2
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dynamical 
variable number

(image of Z)

probability density

transformation
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OPTIMAL FEEDBACK CONTROL

SYSTEM

ENVIRONMENT
UNCONTROLLED

DEGREES OF FREEDOM

TRANSLATOR DETECTOR( )Z t
( )r tζ

noise 1

CONTROLLER

ACTUATOR ESTIMATOR

( )U t ( ),rw z t

SET-POINT

noise 2

Quantum-mechanically, at T=0, for η=1, noise1 = noise2!
The detector then has all the info. on what the system does!
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QUANTUM FEEDBACK IS CURRENTLY 
USED TO MAINTAIN A FOCK STATE IN A 

RESONATOR
[see S. HAROCHE's 2010-2011 lectures

and Dotsenko et al. Phys. Rev. A80, 013805 
(2009)]

HERE WE ARE DISCUSSING QUANTUM FEEDBACK
APPLIED TO THE  PRESERVATION OF 

A QUBIT DYNAMICAL STATE
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CHIP

DISPERSIVE CQED QUBIT MEASUREMENT
qbit

(artificial
atom) 

ADC

μwave gentor for 
readout frequency

fr = ωr/2π

amplifiers

mixer

circulator

resonator 

phase shift of
signal reflected
off resonator

f

0

‐2π
fr

g

width determined by resonator quality factor

θs
e

~

~

directional
coupler

μwave gentor for state prep.

11-V-9bis

rω
κ

egθ
transmon
cavity pull:

2

2

2 cE gχ ≅
Δ

χ

† †
g re

H a a a aσ σ σ σ ωω χ+ +− −= + +

12 taneg
χθ
κ

−=

CONTINUOUS MEASUREMENT OF QUBIT
qbit

ADC

resonator 

~

~

e

g

X

Z

Y

S

0t = mt T=

( )inA t

( ) ( )cosout
r sA t t tω θ≅ +⎡ ⎤⎣ ⎦steady state inside

outgoing pulse:
( ) ( ) ( )

0
sinmT out

m rQ T dt t A tω≅ ∫

qubit
Bloch 
vector

What the signals would be w/o noise
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MEASUREMENT RECORD

time0t = mt T=

( ) ( )r
dQt d f t
dt τ

ζ τ τ= −∫

( ) ( )
0

mT

r m rQ T dt tζ≅ ∫

( ) ( ) ( )1

m
r rdQ t dt d tZ Wt

γη
= + ( )

( ) 2

0dW t

dW t

E

dt

=⎡ ⎤⎣ ⎦

=⎡ ⎤⎣ ⎦
( ) ( )r

rdQE Z t E
d

Z t
t

⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

Wiener increment:

Idealized white noise

Instantaneous growth rate of quadrature signal: 

filter function

Steady-state
relation
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OUTLINE 

1. Classical and quantum feedback; persistent Rabi oscillations 

2. Stochastic differential equations for quantum trajectories

3. Fidelity of quantum feedback control
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( ) ( )1,
2

1
2qbit z

mi H φσ σρ ρ ρ γ ρ γ ργ− ⎡ ⎤⎡ ⎤= = − + + +⎣ ⎦ ⎢ ⎥⎣ ⎦
L D D

MASTER EQUATION OF THE QUBIT UNDER
MEASUREMENT

where ( ) † † †/ 2 / 2A A A A A A Aρ ρ ρ ρ= − −D

measurement rate:

Identical to the Bloch equations, but with one additional term:

( ) ( )

( ) ( ) ( )

1

1

1

2

2
1

2

2

R

R

m

m

X t Z t X

Y Y

Z t X t Z

φ

φ

γ γ γ

γ γ

γ

γ

⎛ ⎞= Ω − + +⎜ ⎟
⎝ ⎠

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

= −Ω − −

Rotating 
frame at

ωeg

measurement-induced
dephasing

- Markov
- RWA
- T=0

relaxation rate: 

dephasing rate: 
φγ

1γ
( )2

2 2

4
m r

d SNR
n

dt
γ χ

χ κ
= =

+

( )R tΩ : Rabi drive
along Y,

in freq. units
11-VI-11

DISPERSIVE QUBIT READOUT WITH FEEDBACK 

qbit
ADC

μwave gentor

for readout

amplifiers

mixer

circulator

resonator 

10 or
~

~

μwave gentor
computer

What should be the feedback law? How much delay is tolerable?
How pure is the state of the qubit with feedback? 

Zhang, Ruskov and Korotkov (2005)
Jordan and Büttiker (2005)
Mirrahimi, Huard and Devoret, in preparation

( )r tζ

( ) ( ) ( )
t

rU t d F tτζ τ τ
−∞

= −∫

( )U t

Filter

Filter has delay 

11-VI-12
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EQUATIONS OF QUANTUM TRAJECTORIES
Introduce

This leads to the stochastic Bloch equations:

( ) ( )m zr rrr rd t dZQ tdd σρ ρ ργη= + −L M

[ ]rEρ ρ=

( ) ( ) ( )† †1
2

A A A A Aρ ρ ρ⎡ ⎤= − + −⎣ ⎦M

rρ , the qubit density matrix conditioned
by the string of measurement results
and represents all the information the 
observer has accumulated on the qubit.

It obeys:

an update equation, where
Ito

( )

( ) ( ) ( )

1

1

2
1

2

1 1

2

2

2

m
r r r r

r r r

m

m

R r

m

m

r

r

r

r

r r rR r

t dt

dt

dX dZ X X Z W

Y Y Z

dZ X

d

W

d

Z

W

dZ

Y

t

φ

φ

γ γ

γ

γ γ η

γγ γ η

γ ηγ

⎛ ⎞= Ω − + + −⎜ ⎟
⎝ ⎠

⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

= −Ω − − + −

is the usual qubit
density matrix

The point ( ) ( ) ( ), ,r r rX t Y t Z t⎡ ⎤⎣ ⎦ is in general inside the Bloch sphere. Its time 
evolution is the quantum trajectory of the system. 

For simplicity
we take here 

κ = χ 
No AC stark

shift
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A SIMPLER MODEL CAN ANSWER THESE
QUESTIONS SEMI-QUANTITATIVELY.

IN QUANTUM REGIME,
HOW MANY BITS OF INFORMATION

DOES THE MEASUREMENT ACQUIRE
PER UNIT OF TIME?

WHAT IS THE CORRESPONDING
BACK-ACTION ON THE QUBIT?

THE QUANTUM TRAJECTORIES EQUATIONS
ANSWER THE FOLLOWING 

QUESTIONS QUANTITATIVELY:

11-VI-14
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0 Z Zα β= +Ψ + −

Z+

Z−

spin up

spin down

Y

Z

X

θ

φ 2

2

2

2

cos e

sin e

i

i

φ

φ

θ

θ

α

β

−

+

=

=

Bloch sphere
representation

of qubit
under measurement

SPIN MODEL OF CONTINUOUS MEASURMENT

2 2
0 0 0Z Zα βΨ Ψ = − =

11-VI-15

θ

φ

Bloch sphere
representation

of qubit
under measurement

Y1

Z1

X1

Bloch sphere
representation
of ancilla qubit

for partialpartial measurement

An ancilla is prepared along 
X and moved towards qubit

SPIN MODEL OF CONTINUOUS MEASURMENT

Y

Z

X

11-VI-15a
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θ

φ

Bloch sphere
representation

of qubit
under measurement

Bloch sphere
representation
of ancilla qubit

for partial measurement

ancilla and qubit
interact during τ

1
int

1
2 cH Z Zω= ⋅

SPIN MODEL OF CONTINUOUS MEASURMENT

Y

Z

X
Y1

Z1

X1

11-VI-15b

θ

φ

Bloch sphere
representation

of qubit
under measurement

Bloch sphere
representation
of ancilla qubit

for partial measurement

ancilla and qubit
interact during τ

SPIN MODEL OF CONTINUOUS MEASURMENT

INTERACTION
IS QND IF QUBIT1

ONLY SEES A FIELD
ALONG Z

Y

Z

X
Y1

Z1

X1

1
int

1
2 cH Z Zω= ⋅

11-VI-15c
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ancilla and qubit
separate. 

1

2e
i Z Z

U
ε

− ⋅
=

cε ω τ=
interaction strength:

SPIN MODEL OF CONTINUOUS MEASURMENT

ancilla and qubit
have become

partially entangled (partial measurement).
Bloch vectors are insufficient!

Interaction has produced:

full QND
projective

measurement
if ε = π/2

Y

Z

X
Y1

Z1

X1

11-VI-15d

Next, ancilla is measured
projectively along Y.

SPIN MODEL OF CONTINUOUS MEASURMENT

1 1ζ =+measurement record:

ONE GETS FOR INSTANCE, 
AFTER MEASUREMENT OF ANCILLA:

Y

Z

X
Y1

Z1

X1

11-VI-15e
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ancilla is measured
projectively along Y

SPIN MODEL OF CONTINUOUS MEASURMENT

measurement record:

OTHER ALTERNATIVE:

Y

Z

X
Y1

Z1

X1

1 1ζ =−
11-VI-15f

1kθ −

φ
Yk

Zk

Xk

k-th ancilla is prepared along 
X and moved towards qubit

etc,etc,...

SPIN MODEL OF CONTINUOUS MEASURMENT

REPEAT N TIMES, TOTAL TIME = TM

Y

Z

X

( )1 2, ,.., Nζ ζ ζThis generates measurement record 

11-VI-15g
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1kθ −

φ
Yk

Zk

Xk

SPIN MODEL OF CONTINUOUS MEASURMENT

MAKE N TEND TOWARD INFINITY WHILE ε TENDS TOWARD ZERO

Y

Z

X

( ) ( )1 2, ,.., N tζ ζ ζ ζ→

11-VI-15h

UPDATE FORMULA

1kθ −

φ

After k-1 partial measurement, qubit wavefunction is:

1 1 1k k k ZZα β− − −+Ψ + −=

1 2
1

1 2
1

2

2

cos e

sin e

i
k

k

i
k

k

φ

φ

θ

θ

α

β

−
−

−

+
−

−

=

=

φ is unchanged,

11 1cos kkk
Z Zθ −− −= =

sin qε=

state description:

interaction strength

append measurement record: 1kζ =± 11
2

k
k

qp Z± −± ⋅
=

1k kr
q Zζ −= ⋅

update qubit state conditioned
by measurement result:

qubit state is
pure!

( ) ( )1 2 1 1 2 1, ,.., , ,.., ,k k kζ ζ ζ ζ ζ ζ ζ− −→

1

11k
k

k

k

kZZ q
q Z

ζ
ζ

−

−

+
=

+

0 1q< ≤

Y

Z

X

stationary if 
1 1kZ − =±

11-VI-16
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m

Nq
T

γ =
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HEISENBERG-LIKE RELATION
Z

X

Brownian motion on circle
due to back-action.

length ≅ q

Average X component of Bloch
vector decreases like q2N/2

( ) 2

m
m

d SNR Nq
dt T

γ= =

Measurement back-action dephasing rate:
2

, 2 2ba
m

mq N
Tφγ γ

= =

Auxiliary spins measure at a rate:

Information on qubit goes out.... 

...information on 
envment (noise)

comes in.

,
1 1

2bam φγγ − =

Measurement
time

similar to 
2bm aPXΔ Δ⋅ =

11-VI-17

QUANTUM TRAJECTORY OF RABI OSCILLATIONS

( )r tζ
+1

-1

+1

-1

+1

-1

0

( )rZ t

( )Z t

time (step units)0 104

2 ; 1R mγ ηΩ = =
Filter time

constant = 102

(What a perfect
observer would

reconstruct)

Measurement
record:

Z component
of Bloch vector
conditioned by
measurement:

Z component
of Bloch vector
averaged over
all realizations
of trajectories

11-VI-18
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QUANTUM JUMPS
For                       trajectories turn into "telegraphic" noise 

( )r tζ

time (step units)

+1

-1

( )rQ t

( )rZ t

0 3×105

+1

-1

0.1R mγΩ =

m Rγ Ω Filter time
constant = 5×103

unfiltered

What a perfect
observer would

reconstruct
11-VI-19

OUTLINE 

1. Classical and quantum feedback; persistent Rabi oscillations 

2. Stochastic differential equations for quantum trajectories

3. Fidelity of quantum feedback control

11-VI-4
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KOROTKOV'S PROPORTIONAL CONTROLLER

ESTIMATED DEPHASING OF RABI OSCILLATIONS:

( ) ( )
( ) ( )( )1tan 1 sgn

2
r

r R
r

X t
t Z t t

Z t
πδθ − ⎛ ⎞

⎡ ⎤= + − − Ω⎜ ⎟ ⎣ ⎦⎜ ⎟
⎝ ⎠

( )tπ δθ π− < < +

FEEDBACK LAW:

( ) ( )R R FB Rt t G tδθΩ = Ω − Ω
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FIDELITY OF PROPORTIONAL CONTROL

Courtesy of M. Mirrahimi

1
2FBG =

Simulations for transmon qubit

1
2

η = 0.13rn = 8MHz2
κ

π = 1.2MHz2
χ

π =

11-VI-21
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IMPROVEMENT OF FEEDBACK SCHEME
USING STRONGER, PULSED MEASUREMENT

Courtesy of M. Mirrahimi

- Partial projection on the poles Z = ±1 (Quantum Zeno effect)
- Correction by a π-pulse around Y-axis if Z=-1 is detected

(similar to adding a day on a leap year).
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FIDELITY OF PULSED CONTROL

Courtesy of M. Mirrahimi

2rn = 20MHz2
κ

π = 4MHz2
χ

π = delay of 100ns !

11-VI-23
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CONCLUSIONS

A quantum system driven out-of-equilibrium and in contact
with several reservoirs can be seen from a scattering point
of view emphasizing the notion of information channels.

Increasing the bit rate of monitored information channels
over that of un-monitored ones  is a necessary condition for 
increasing fidelity of quantum feedback control.

The key bi-directionality property of information channels
manifests itself in powerful  relations linking dissipation/ampli-
fication and noise, on one hand, as well as measurement
precision/speed and the corresponding inevitable back-action,
on the other hand.
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END OF 2011 COURSE ON QUANTUM
AMPLIFICATION AND FEEDBACK
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NEXT YEAR: NANOMECHANICAL RESONATORS
IN QUANTUM REGIME 
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