

PROGRAM OF THIS YEAR'S LECTURES	
Lecture I: Introduction to quantum-limited amplification and feedback	
Lecture II: How do we model open, out-of-equilibrium, non- linear quantum systems?	
Lecture III: Can we maintain the noise at the quantum limit while increasing gain, bandwidth and dyn ^{amic} range) ?
Lecture IV: What are the minimal requirements for an active circuit to be fully directional and noiseless?	
Lecture V: Can a continuous quantum measurement be viewed as a form of Brownian motion?	
Lecture VI: How can we maintain a dynamic quantum state alive?	
11	-VI-2

CALENDAR OF SEMINARS
May 10: Fabien Portier, SPEC-CEA Saclay The Bright Side of Coulomb Blockade
May 17, 2011: Jan van Ruitenbeek (Leiden University, The Netherlands) Quantum Transport in Single-molecule Systems
May 31, 2011: Irfan Siddiqi (UC Berkeley, USA) Quantum Jumps of a Superconducting Artificial Atom
June 7, 2011: David DiVicenzo (IQI Aachen, Germany) Quantum Error Correction and the Future of Solid State Qubits
June 14, 2011: Andrew Cleland (UC Santa Barbara, USA) Images of Quantum Light
June 21, 2011: Benjamin Huard (LPA - ENS Paris) Building a Quantum Limited Amplifier from Josephson Junctions and Resonators
June 21, 2011 (3pm): Andrew Cleland (UC Santa Barbara, USA) How to Be in Two Places at the Same Time ?
11-VI-5

LECTURE VI : QUANTUM FEEDBACK CONTROL AND PERSISTENT RABI OSCILLATIONS

OUTLINE

- 1. Classical and quantum feedback; persistent Rabi oscillations
- 2. Stochastic differential equations for quantum trajectories
- 3. Fidelity of quantum feedback control

11-VI-4

CONCLUSIONS

A quantum system driven out-of-equilibrium and in contact with several reservoirs can be seen from a scattering point of view emphasizing the notion of information channels.

Increasing the bit rate of monitored information channels over that of un-monitored ones is a necessary condition for increasing fidelity of quantum feedback control.

The key bi-directionality property of information channels manifests itself in powerful relations linking dissipation/amplification and noise, on one hand, as well as measurement precision/speed and the corresponding inevitable back-action, on the other hand.

11-VI-24

