A single quantum emitter on a nanomechanical oscillator

Hybrid nanomechanics

Arnaud Gloppe Sven Rohr Eva. Dupont-Ferrier Signe Seidelin Olivier Arcizet @Néel Vincent Jacques J.F. Roch

Alessandro Siria Philippe Poncharal Pascal Vincent

@LPQM

Context - Ultracold Mechanical Oscillators

Context - Ultracold Mechanical Oscillators

(LKB experiments, A. Heidmann)

Quantum regime of the optomechanical interaction

QND measurement of laser intensity

Beating the standard quantum limit

Increased force sensitivity

Hybrid mechanical systems

Objectives

beyond groundstate cooling : Generate and Observe non-classical states of motion of a macroscopic oscillator

$$H_{\rm int} = \hbar \lambda_i (\hat{a} + \hat{a}^{\dagger}) \hat{\sigma}_i$$

Generate

- Coupling to an external quantum system
- Quantum state transfer

Hybrid mechanical systems

Observe

Monitoring both hybrid components

Motivations

- Quantum signatures with macroscopic oscillators
- Quantum information processing
- Ultrasensitive force sensing

- CQED with phonons and spins
- Physics at low phonon number

Other hybrid mechanical systems

Hybrid spin-nanomechanics

Nanomechanical oscillators

NV defect in diamond

Ultrasensitive force sensors (aN) Large zero point fluctuations (pm) High oscillation frequencies (MHz) Single photon source @ 300 K Ultralong spin coherence (2 ms) Readout and manipulation with optical and μ-wave fields

$$H_{\rm int} = \hbar \lambda_i (\hat{a} + \hat{a}^{\dagger}) \hat{\sigma}_i$$

Magnetic or Strain coupling

Rabl et al. PRB 2009

Outline

Magnetic coupling between a NV electronic spin and a nanomechanical oscillator

Optical readout of nanomechanical oscillators

Strain coupling

Observing NV defects

SiC nanomechanical oscillators

A. Siria, P. Poncharal, P. Vincent LPMCN, Lyon

Ultralow mass (10 fg) High frequency (10 kHz-20 MHz) Large oscillating amplitudes (μm) Good mechanical Q factors (>10 000)

 $10\,\mu m$ x $100\,nm$

Silicon Carbide: -low light absorption -high stiffness (Young modulus: 450 GPa) -large aspect ratio

Functionalization

Piezo controlled immersion in a solution of diamond nanocrystals

Efficiency increased under laser illumination (larger agitation and optical trapping)

Works with SiC nanowires, C and BN nanotubes

Functionalization and preparation

SEM Fluorescence

FIB cut of the nanowires J.F. Motte @Nanofab

Optical and mechanical optimisations

A single NV center on a nano-mechanical oscillator

A NV center with a mechanical degree of freedom

Optical forces acting on the nanoresonator

Oscillating signatures in the autocorrelation trace

Electronic spin resonances (ESR)

The electronic spin state can be read out by pure optical means (photon counting)

Manipulation with microwave fields (2.88 GHz)

Spin polarization through optical pumping

Optically detected electron spin resonance (ESR).

Magnetic sensitivity (Zeeman effect). (28 MHz/mT)

Nanosized magnetic field sensors (µT dc-sensitivity with 50 nm nanocrystals)

ESR - A suspended magnetic field sensor

NV orientation determined with a calibrated NdFeB magnet

 $H_{\rm spin} = DS_Z^2 + E(S_X^2 - S_Y^2) + g\mu_B \mathbf{B} \cdot \mathbf{S}$

Slope: 28 MHz/mT Linewidth: MHz range

NV spin magnetically coupled to the nanomotion

Spin-position coupling achieved in a strong magnetic field gradient

 $H_{\text{int}} = g\mu_B \hat{\sigma} \cdot \mathbf{B}(\hat{\mathbf{r}}) \qquad \hat{\mathbf{r}} = \mathbf{r_0} + \hat{x} \mathbf{u}$

 $H_{\text{int}} = g\mu_B \hat{\sigma} \cdot \mathbf{B}(\mathbf{r_0}) + g\mu_B \hat{x} \,\hat{\sigma} \cdot (\mathbf{u} \cdot \nabla) \mathbf{B}$

NdFeB on Silicon

N. Dempsey, F. Dumas-Bouchiat, O. Fruchart, D. Givord,...

up to 10^6 T/m=1 T/µm

A single-spin-based nanomotion transducer

Experimental simulation of the RSB regime $\Omega_m > \Gamma_{spin}$

A RF field simulates the oscillating magnetic field seen by the NV defect

Sven Rohr PhD Thesis & Eva Dupont Ferrier

+Matthieu Dartiailh

RF @25 MHz

Spin dynamics in the RSB regime (dispersive coupling)

Population difference (arb)

Rabi oscillations for varying MW detuning

Phonon number estimation through sideband thermometry (asymetry appearing close to the ground state)

S. Rohr et al, in preparation

Next step: Spin dependent forces

Magnitude @10⁶ T/m $\delta x_{\rm spin} = 80 \, {\rm fm}$ 20 aN Force sensitivity (300K) = $9 \text{ aN/Hz}^{1/2}$ Spin state encoding 25 s @300K on the oscillator dynamics (Stern - Gerlach effect) Mechanical QND readout of spin state Observing spin quantum jumps with ultracold oscillators Other directions

Spin cooling of the resonator

Strong & Ultrastrong coupling regimes

Future: Spin cooling of mechanical motion

PHYSICAL REVIEW B 82, 165320 (2010)

Cooling of mechanical motion with a two-level system: The high-temperature regime

P. Rabl

Resolved sideband regime and active cooling protocols

 $\Omega_{\rm m} \gg \Gamma_{\rm spin}$

Resolved motionnal sidebands

New cooling protocols

Rabl & Lukin PRB 2009, PRB 2010

Optical readout of the nanomotion

Brownian motion of SiC nanoresonators

Shot-noise limited detection sensitivity (approx1 fm/Hz^{1/2} for 10 mW)

Approaching the standard quantum limit in a cavity-free experiment.

Ultrasensitive force sensors: aN/Hz^{1/2} at room temperature

Probing both polarisations of vibration : vectorial force sensor

 $1 \, \mu m$

Towards ultrasensitive force sensitivity

Optical forces: radiation pressure and gradient force

Measured on the Brownian motion

Optical resonances of the nanowires

FEM Simulation (G. Bachelier)

Wave fronts at the optical waist

Brownian motion of carbon nanotubes

Frequency (MHz)

In collaboration with A. Reserbat, V. Bouchiat, L. Marty, N. Bendiab

Strain coupling in diamond nanoresonators

a 2 Gpa strain increase induces a 10 meV shift of the 1.945 eV ZPL

$$H_{\rm int} = \frac{Y}{L} \frac{dE}{dP} S_Z z \qquad H_{\rm int} = g\mu_{\rm B} \nabla B S_Z z$$

4 orders of magnitude larger than the magnetic coupling

Development of diamond nanoresonators Cryogenic operation

SCGG and CQ groups and P. Olivero (Turin) NV implantation : J. Meier (Bochum)

Monocrystaline resonators

Strain coupling to QD in photonic microwires

Integrated hybrid structures

Larger coupling strength QD localization

PhD Inah Yeo, PL de AssisJ.P. Poizat, M. Richard, A. Auffeves.G. Noguesfab.@ CEA: J. Claudon J.M. Gerrard

Strain coupling with QD in GaAs photonic microwires

Dynamical strain measurement with Raman spectroscopy

A. Reserbat-Plantey et al, Nature Nanotechnology, 2012

Conclusion

Magnetic coupling between a NV electronic spin and a nanomechanical oscillator

Optical readout of nanomechanical oscillators

Strain coupling

