

00 \/

08-1/1-2

Chaire de Physique Mésoscopique Michel Devoret Année 2008, 13 mai - 24 juin

CIRCUITS ET SIGNAUX QUANTIQUES

QUANTUM SIGNALS AND CIRCUITS

Sixième Leçon / Sixth Lecture

This College de France document is for consultation only. Reproduction rights are reserved.

VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS

http://www.college-de-france.fr

and follow links to:

http://www.physinfo.fr/lectures.html

PDF FILES OF ALL LECTURES WILL BE POSTED ON THIS WEBSITE

Questions, comments and corrections are welcome!

PROGRAM OF THIS YEAR'S LECTURES

Lecture I: Introduction and overview

Lecture II: Modes of a circuit and propagation of signals

Lecture III: The "atoms" of signal

Lecture IV: Quantum fluctuations in transmission lines

Lecture V: Introduction to non-linear active circuits

Lecture VI: Amplifying quantum signals with dispersive circuits

08-1/1-

LECTURE VI : AMPLIFYING QUANTUM SIGNALS WITH DISPERSIVE CIRCUITS

OUTLINE

- 1. Main ideas introduced in last lecture, purpose of this lecture
- 2. Minimal symplectic circuits are maximally efficient
- 3. Characteristics of amplifiers
- 4. Scattering matrix of minimal 1-port and 2-port active circuits

08-1/1

5. Ring modulator implementation of 2-port circuit

<u>OUTLINE</u>

- 1. Main ideas introduced in last lecture, purpose of this lecture
- 2. Minimal symplectic circuits are maximally efficient
- 3. Characteristics of amplifiers
- 4. Scattering matrix of minimal 1-port and 2-port active circuits

08-1/1-5

5. Ring modulator implementation of 2-port circuit

OUTLINE 1. Main ideas introduced in last lecture, purpose of this lecture 2. Minimal symplectic circuits are maximally efficient 3. Characteristics of amplifiers 4. Scattering matrix of minimal 1-port and 2-port active circuits 5. Ring modulator implementation of 2-port circuit

CRYOELECTRONIC AMPLIFIERS APPROACHING THE QUANTUM LIMIT				
type	kT _N /(ħω/2)	<u>power</u> gain	out-of-band back-action noise	<u>ease</u> <u>of</u> <u>use</u>
НЕМТ	40-80	25-35dB	small	easy
SQUID	1-2	20-30dB	concern	ОК
RF-SET	1-2	15-20 dB	concern	ОК
QPC	1	~0dB	very small	difficult
HEMT: High Electron Mobility Transistor, SET: Single Electron Transistor, QPC: Quantum Point Contact				

<u>OUTLINE</u>

- 1. Main ideas introduced in last lecture, purpose of this lecture
- 2. Minimal symplectic circuits are maximally efficient
- 3. Characteristics of amplifiers
- 4. Scattering matrix of minimal 1-port and 2-port active circuits

08-1/1

5. Ring modulator implementation of 2-port circuit

