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CIRCUITS ET SIGNAUX QUANTIQUES

QUANTUM SIGNALS AND CIRCUITS

Chaire de Physique Mésoscopique
Michel Devoret
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May 13: Denis Vion, (Quantronics group, SPEC-CEA Saclay)
Continuous dispersive quantum measurement of an electrical circuit 

May 20: Bertrand Reulet (LPS Orsay)
Current fluctuations : beyond noise

June 3:  Gilles Montambaux (LPS Orsay)
Quantum interferences in disordered systems

June 10:  Patrice Roche (SPEC-CEA Saclay)
Determination of the coherence length in the Integer Quantum Hall Regime

June 17: Olivier Buisson, (CRTBT-Grenoble)
A quantum circuit with several energy levels

June 24: Jérôme Lesueur (ESPCI)
High Tc Josephson Nanojunctions: Physics and Applications

CALENDAR OF SEMINARS

NOTE THAT THERE IS NO LECTURE AND NO SEMINAR ON MAY 27 ! 
08-II-3

PROGRAM OF THIS YEAR'S LECTURES

Lecture I: Introduction and overview

Lecture II: Modes of a circuit and propagation of signals

Lecture III: The "atoms" of signals

Lecture IV: Non-linear circuit elements: length and energy
scales of superconductivity

Lecture V: Hamiltonian vs scattering description of circuits

Lecture VI: Amplifying quantum signals with dispersive circuits 

08-II-4
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LECTURE II : MODES OF A CIRCUIT,
PROPAGATION OF SIGNALS

08-II-5

OUTLINE

1. Introduction, purpose of this lecture

2. Finding the Hamiltonian of an arbitrary circuit

3. Comparison with cavity QED

4. Transmission lines and waveguides 

5. Coupled LC oscillators: model of transmission line

REVIEW OF LAST LECTURE

Vβ

Iβ

rest
of

circuit

banch β
Introduce branch flux and charge

generalized mass : C M
generalized spring constant: 1/L k

φL = LIL

QC = CVC PM = MVM

XS = fS /k
constitutive
relations:

08-II-6b
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PROBLEM:  NOT ALL BRANCH
VARIABLES ARE INDEPENDENT

b bd

branches
around loop

0V
λ

λ =∑
branches
tied to node

0I
ν

ν =∑

KIRCHHOFF'S LAWS:

b

c

b

a

d

a

c

IMPOSE CONSTRAINTS ON BRANCH VARIABLES
08-II-7

BRANCH CONSTRAINTS IN LC OSCILLATOR 

VC

IL

electrical world mechanical world

IC

Kirchhoff's law (loop) : VL=VC
Kirchhoff's law (node): 

VS = VM
IL=-IC fS = -fM

Constitutive relation (inductive) : φL=LIL
Constitutive relation (capacitive): 

XS = fS /k
QC=CVC PM = MVM

Faraday's Law: 

Charge conservation: 
L LV φ= �

S SV X= �

C CI Q= �
M Mf P= �

action - reaction principle

Newton's Law

VL

φL = LIL

QC = CVC XS

M
k

fM fS

XM

XS = fS /k PM = MVM

08-II-8b

X0

X0 = equilibrium length of spring

mass-spring rigid link

Hookes's Law
Linear momentum

Def. of velocity
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HOW DO WE FIND THE HAMILTONIAN
OF AN ARBITRARY CIRCUIT?

L CCjLJ

Cc

Example: 

Wish also to extend the notions of circuits to distributed elements
Progagation of signals on transmission lines :  standing modes  to propagating  modes
Dissipative dynamical evolution: treating resistors and measuring instruments

Josephson junction coupled to 1 resonator mode

08-II-9

1. Introduction, purpose of this lecture

2. Finding the Hamiltonian of an arbitrary circuit

3. Comparison with cavity QED

4. Transmission lines and waveguides 

5. Coupled LC oscillators: model of transmission line

08-II-5b

OUTLINE
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FIRST, HOW DO WE FIND A COMPLETE
SET OF INDEPENDENT VARIABLES?

Method of nodes

branch

node

Example of circuit:

08-II-10

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

Method of nodes

1) Choose a reference electrode
(ground)

08-II-10a



7

Method of nodes

1) Choose a reference electrode
(ground)

2) Choose a spanning tree
(accesses every node, no loop)

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

08-II-10b

Method of nodes

1) Choose a reference electrode
(ground)

2) Choose a spanning tree
(accesses every node, no loop)

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

08-II-10c
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Method of nodes

1) Choose a reference electrode
(ground)

2) Choose a spanning tree
(accesses every node, no loop)

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

08-II-10d

Method of nodes

1) Choose a reference electrode
(ground)

2) Choose a spanning tree
(accesses every node, no loop)

3) Select tree branch fluxes
(closure branches left out)

φa

φb φc

φe

φgφf

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

08-II-10e

φd
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Method of nodes

1) Choose a reference electrode
(ground)

2) Choose a spanning tree
(accesses every node, no loop)

3) Select tree branch fluxes
(closure branches left out)

4) Node flux is sum of branch
fluxes to ground  (closure branch
fluxes are expressed as differences
between node fluxes)

Φ1

Φ2 Φ3

Φ4

Φ6

Φ5

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

08-II-10f

Φ7

Method of nodes

1) Choose a reference electrode
(ground)

2) Choose a spanning tree
(accesses every node, no loop)

3) Select tree branch fluxes
(closure branches left out)

Φ1

Φ2 Φ3 Φ7

Φ5

φg

φe

Φ 7 = φd + φe + φgexample: 

4) Node flux is sum of branch
fluxes to ground  (closure branch
fluxes are expressed as differences
between node fluxes)

φh

φh = Φ 7 - Φ 6 + cst

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

08-II-10g

φd

φf

Φ4

Φ6
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Method of nodes

1) Choose a reference electrode
(ground)

2) Choose a spanning tree
(accesses every node, no loop)

3) Select tree branch fluxes
(closure branches left out)

Φ1

Φ2 Φ3 Φ7

Φ5

φg

φe

Φ 7 = φd + φe + φgexample: 

4) Node flux is sum of branch
fluxes to ground  (closure branch
fluxes are expressed as differences
between node fluxes)

φh

φh = Φ 7 - Φ 6 + cst

FINDING A COMPLETE
SET OF INDEPENDENT VARIABLES

08-II-10h

φd

φf

( ) ( ) cstn nγγ γφ
+ −

Φ Φ= − +

tree branches
leading to

n

n
β

βφΦ = ∑

Φ4

Φ6

TWO METHODS FOR DEFINING  A COMPLETE
SET OF INDEPENDENT VARIABLES

Method of nodes

Method of loops

08-II-11a

Defines loop charges



11

SHORTCUT

It is advantageous in the method of nodes
to choose a spanning tree that passes only

through inductors

Not necessary, just avoid tedious details in most cases

08-II-12

GAUGE INVARIANCE

The choice of spanning tree or set of independent
loops is analogous to the choice of gauge in continuous

media electromagnetism

t

y

3rd spatial dimension not represented

lattice model of
spacetime

08-II-13

x
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GAUGE INVARIANCE

The choice of spanning tree or set independent loops
is analogous to the choice of gauge in continuous

media electromagnetism

t

y

lattice model of
spacetime

08-II-13-bis

consider 
1 point 
inside
lattice

x

GAUGE INVARIANCE

The choice of spanning tree or set independent loops
is analogous to the choice of gauge in continuous

media electromagnetism

t

y

08-II-13-ter

: Bz

: Ex

: Ey

x
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GAUGE INVARIANCE

The choice of spanning tree or set independent loops
is analogous to the choice of gauge in continuous

media electromagnetism

t

y

08-II-13-4

: Bz

: Ex

: Ey

Ax

Ay U

x

GAUGE INVARIANCE

The choice of spanning tree or set independent loops
is analogous to the choice of gauge in continuous

media electromagnetism

t

x

y

08-II-13-5

: Bz

: Ex

: Ey

Ax

Ay U

A A

U U
t

→ + ∇Λ
∂

→ − Λ
∂

G G G

gauge
transformation

Charge 
transported
by edges is
conserved.
Gauge field
components,
which give
these currents,
are not ind-
pendent. In
4D, only 3 
components
are needed to
specify field at
one point.

{ },A U
G

= gauge
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INDUCTIVE vs CAPACITIVE ELEMENTS

( )
0

' ' '
t

E I Vdt I d
φ

φ φ
−∞

= ⋅ =∫ ∫
I

φ

Inductance : current I function only of flux φ

Electrical equivalent of spring: φ ↔ X ; I ↔ f

( )
0

' ' '
t Q

E V Idt V Q dQ
−∞

= ⋅ =∫ ∫
Q

V

Capacitance : voltage V function only of charge Q

Electrical equivalent of mass: Q ↔ P ; V ↔ V

08-II-14a

NODE CHARGES

The conjugate coordinates of node fluxes
are node charges: they are the sum of all the charges

going into capacitances linked to this node.

This can be demonstrated by writing the Lagrangian
of the circuit from its dynamical equations

and performing a Legendre transform to obtain the Hamiltonian

Dynamical
equations

Lagrangian conjugate
coordinates Hamiltonian

   capacitive
    branches
exiting from 

n

n

Q Qβ= ∑ n

( ), ,L x x t� ( ), ,H x p tLp x
∂= ∂ �

08-II-15a

[ ], nn iQΦ = =
for each
node: 
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A SIMPLE EXAMPLE
Φ1 Φ2

X1
k1

X2
k2

M1 M2

L1

L2

C1 C2

( )
( )

1 1 2 2

2
2 2 2

2 11 1 2

1 1 2 2

ˆ ˆˆ ˆ ˆ, ; ,

ˆ ˆˆ ˆˆ

2 2 2 2

H Q Q

Q Q
C L C L

Φ Φ =

Φ − ΦΦ
+ + +

Each electrical branch (mechanical element) contributes
to the Hamiltonian by its energy expressed in terms of the
variables of  the chosen set of canonical coordinates

( )
( )

1 1 2 2

2
2 2 2

2 2 11 1 1 2

1 2

ˆ ˆ ˆ ˆ ˆ, ; ,

ˆ ˆˆ ˆ ˆ

2 2 2 2

H X P X P

k X XP k X P
M M

=

−
+ + +

Method is equally valid for non-linear elements! 
08-II-16b

REVIEWS ON QUANTUM CIRCUIT
THEORY

Yurke B.  and Denker J.S., Phys. Rev. A 29, 1419  (1984)

Devoret M. H. in "Quantum Fluctuations", S. Reynaud, E. Giacobino,
J. Zinn-Justin, Eds. (Elsevier, Amsterdam, 1997) p. 351-385

G. Burkard, R. H. Koch, and D. P. DiVincenzo, Phys. Rev. B 69, 064503 (2004)

08-II-17
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1. Introduction, purpose of this lecture

2. Finding the Hamiltonian of an arbitrary circuit

3. Comparison with cavity QED

4. Transmission lines and waveguides 

5. Coupled LC oscillators: model of transmission line

08-II-5c

OUTLINE

HAMILTONIAN OF COOPER PAIR BOX
COUPLED TO 1 RESONATOR MODE

L CCjLJ

Cc

Artificial atom Resonator

BASIC CIRCUIT ANALOG OF CAVITY QED EXPERIMENTS

08-II-18
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EARLIER EXPERIMENT

08-II-19

QUANTUM JOSEPHSON JUNCTION 
COUPLED TO A TRANSMISSION LINE

08-II-19b
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Blais A. et al.,  Phys. Rev. A 75, 032329 2007

SCHEMATIC OF COOPER PAIR BOXES
IN A MICROWAVE CAVITY

08-II-20

CAVITY QED

field mode

mirror

( )†
0

†

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

ˆ

ˆ ˆ

ˆˆ ˆ
2

ˆ

ˆ

field atom coupling

field m

atom eg

coupling

H H H H

H

H

a a

a aiH

σ σ

σ σ

ω

ω + −

+ −Ω

= + +

=

=

= − −

=

=

=

JAYNES-CUMMINGS HAMILTONIAN

0

1

2

3

g

e
egω

mω

mω

mω

atom
Fabry-Perot

cavity

vacuum
Rabi

frequency

08-II-21b

See S. Haroche
College lectures
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MICRO/MACRO CHARACTER OF COUPLING
CONSTANTS IN CAVITY QED

2

0

0

2
2

1
2

2

vac

vac

e

e Z
h

Z

m cR

α

μ
ε

α∞

=

=

=

3/ 2
0

0
2 2 1 1d R

n k
α
π

∞⎛ ⎞= = ⎜ ⎟
⎝ ⎠

Ω
E
= =

Fine structure constant

Impedance of vacuum

Rydberg constant (infinite core mass)

atomic dipole moment zero-point field amplitude

atom principal quantum number

e.m. field
mode
order

/ 2
c

n

dk
λ

=

distance
between
cavity
mirrors

08-II-22c

See book by
S. Haroche and
J.M. Raimond

HAMILTONIAN OF TWO CAPACITIVELY
COUPLED RESONATOR MODES

LbCaLa

Cc

Cb

Φ1 Φ2

( )
2 2
1 2

1 1 2 2

2 2
1 2 1 2

1 2 3

ˆ ˆˆ ˆˆ ˆ ˆ, ; ,
2 2

ˆ ˆ ˆ ˆ

2 2

a b

H Q Q
L L

Q Q Q Q
C C C

Φ Φ
Φ Φ = +

+ + +

Reduced capacitance matrix:

a c c

c b c

C C C
C C C
+ −⎡ ⎤

= ⎢ ⎥− +⎣ ⎦
C

Inverse of reduced capacitance matrix:

1 1 b c c

c a ca b a c b c

C C C
C C CC C C C C C

− +⎡ ⎤
= ⎢ ⎥++ + ⎣ ⎦

C
08-II-23d
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FORM OF COUPLING TERM
1 2

1 2
3

†
1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ . .
2

c

a b a c b c

c c

a a b

CQ Q Q Q
C C C C C C C

C CQ Q QV a a h c
C C C

ω ω

=
+ +

⎡ ⎤= = +⎣ ⎦� =

( )†

†

ˆ 1ˆ ˆ 2
ˆ ˆ ˆ ˆ

ˆ ˆ;

2

2

r

r r r r

r r

r r

H a a

Q Qa i a i
Q Q

L

Q C

ω

φ φ
φ φ

φ ω

ω

= +

= + = −

=

=

=

=

=

( )†

†

ˆ ˆ ˆ
2

ˆ ˆˆ
2

r

r

L a a

C a aQ
i

ωφ

ω

= +

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

=

=

just capacitances

( )
2 2ˆ ˆˆ ˆ,

2 2
QH Q
C L

φφ = +

08-II-24b

have kept here
only RWA terms"g" in cQED

These expressions are useful for obtaining value of g

Ω0/2=

Ω0 = 250 MHz!

cavity
qubit

Msmt. of qubit-cavity 
avoided crossing vacuum Rabi splitting

STRONG QUBIT-CAVITY COUPLING

~ ADC
IN OUT

~

Φ/Φ0
0.25 0.40

courtesy A. Houck and R. Schoelkopf

08-II-25
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1. Introduction, purpose of this lecture

2. Finding the Hamiltonian of an arbitrary circuit

3. Comparison with cavity QED

4. Transmission lines and waveguides 

5. Coupled LC oscillators: model of transmission line

08-II-5d

OUTLINE

SIMPLEST DISTRIBUTED ELEMENT SITUATION:
GUIDED ELECTROMAGNETIC PROPAGATION

Optical fiber

core

cladding

Metallic wire

Metallic hollow waveguide

L λ�

SIGNALS WITH FREQUENCY ABOVE CUT-OFF 

08-II-26
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BETTER BOUNDARY CONDITIONS:
WIRE ABOVE A GROUND PLANE

In coaxial line, ground plane is replaced by a cylindrical shield around wire.
In microwave microtechnology: wire of rectangular cross-section (stripline).
Also, ground plane can be split and extend on either side of wire (coplanar)

h << λ

08-II-27

BOUNDARY CONDITIONS:
WIRE ABOVE A GROUND PLANE

h

Electric field lines from wire end on ground plane: T.E.M.

PREVENTS RADIATION  AROUND TURNS
08-II-27a
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SUPERCONDUCTING TRANSMISSION LINES 

1/e propagation length ~ 10km!

Si or Al2O3

Al or Nb

COPLANAR WAVEGUIDE: 2D VERSION OF COAXIAL CABLE

a few
10μm

(1mm dia. copper wire:  700m)

attenuation comparable to optical fibers

08-II-28

1. Introduction, purpose of this lecture

2. Finding the Hamiltonian of an arbitrary circuit

3. Comparison with cavity QED

4. Transmission lines and waveguides 

5. Coupled LC oscillators: model of transmission line

08-II-5e

OUTLINE
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LC LADDER MODEL OF TRANSMISSION LINE
L L LLL

C C C C

1

1n n n

n nn

I

I I

d
d

V V L
t

d
dt

C V−

+ =

=−

−

nI
1nV +1nV − 1nI +1nI −

a

nV

Dynamical equations: Continuum limit:

1

1

;

n

n

n

n

I I I

V

C C L

V V
a x

x
L

a

a a

+

+

− ∂

− ∂
→

∂

∂

→

→

→A A

L I
t

I VC

V

x

x

t

∂
∂

∂

= −
∂

= −

∂

∂
∂∂

A

A

Field equations:

08-II-29e

n n+1 n+2n-1

PROPAGATING WAVE AMPLITUDES

Introduce right- and left-moving
fields:

characteristic
impedance

x

( )

( )

,

,

1

1

c
c

c
c

c

A x t

A x t

Z
Z

Z

V

V
Z

C

I

LZ

I

→

←

= +

= −

= A

A
08-II-30
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PROPAGATING WAVE AMPLITUDES

( )

( )

,

,

1

1

c
c

c
c

c

A x t

A x t

Z
Z

Z

V

V
Z

C

I

LZ

I

→

←

= +

= −

= A

A

1st order
equations

1

1

1

p

p

p

A A
x v

A A

t

x v t

v
L C

→ →

← ←

∂ ∂
= −

∂ ∂

∂ ∂
= +

∂ ∂

=
A A

propagation
velocity

x

08-II-30a

characteristic
impedance

PROPAGATING WAVE AMPLITUDES

( )0 pA x v t→ −

( )0 pA x v t← +

( ) ( )0, pA x t A x v t=R R ∓

solution:

08-II-30c

( )

( )

,

,

1

1

c
c

c
c

c

A x t

A x t

Z
Z

Z

V

V
Z

C

I

LZ

I

→

←

= +

= −

= A

A

1

1

1

p

p

p

A A
x v

A A

t

x v t

v
L C

→ →

← ←

∂ ∂
= −

∂ ∂

∂ ∂
= +

∂ ∂

=
A A
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REFLEXION ON A RESISTIVE LOAD

c

c

R Zr
R Z

−
=

+

cR Z= NO REFLECTION

INVERSELY, VIEWED FROM ITS TERMINAL,
A SEMI-INFINITE TRANSMISSION LINE CANNOT

BE DISTINGUISHED FROM A RESISTANCE!

08-II-31

Reflection coefficient:

NEXT LECTURE:

How do we quantize the propagating modes
on the transmission line?

The answer is crucial for understanding friction
in quantum regime 

08-II-32
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END OF LECTURE


