Conséquences de la variation du taux de recombinaison chez les vertébrés

Molly Przeworski

Cours \#5

Directed by PRDM9

Apes, mice, others...?

When targeting functional elements

Birds, yeasts,...?

How general is this?

How general is this?

PRDM9 in (225) vertebrates

[^0]

Partial orthologs
are constrained (i.e., $d N / d S<1$ in the SET domain)

The ZF evolves rapidly if \& only if the gene is intact

$p<10^{-6}$, controlling for the phylogeny

Role in recombination of partial ortholog?

An admixture-based genetic map

Sequenced 286 hybrids at $\sim 1 X$ coverage

Role in recombination of partial ortholog?

The partial ortholog of PRDM9 does not direct recombination

Does the complete ortholog of PRDM9 direct recombination outside of mammals?

Two mechanisms for directing recombination in vertebrates

Directed by the complete PRDM9

primates, rodents, snakes (?)
Also turtles, some fish?

Without a complete PRDM9

birds, some fish
amphibians, monotremes?

Zachary Fuller

Implications for patterns of between species introgression

Molly Schumer
(soon faculty, Stanford)

Many species have hybridized or are hybridizing

Many species have hybridized or are hybridizing

PRDM9 is an example of a DMI in some mice crosses

gene flow

Long-term Ne small

Long-term Ne larger

Harris \& Nielsen 2016; Juric et al. 2016
Figure from Simon Aeschbacher

Low recombination rate
High recombination rate

Low recombination rate
High recombination rate

Denisovan ancestry in humans

Population
Spearman's correlation between minor ancestry and rate

	50 kb	250 kb	500 kb
Neandertal ancestry in humans	$\rho=0.09$	$\rho=0.17$	$\rho=0.19$
(diCal-admix)	$\mathrm{p}=10^{-17}$	$\mathrm{p}=10^{-36}$	$\mathrm{p}=10^{-12}$
Denisovan ancestry in humans	$\rho=0.08$	$\rho=0.14$	$\rho=0.15$
	$\mathrm{p}=10^{-14}$	$\mathrm{p}=10^{-24}$	$\mathrm{p}=10^{-29}$

Hybridization between swordtail species

Three independent hybrid populations in Mexico

A fine-scale genetic map for X. birchmanni

>30X genomes
20 unrelated X. birchmanni
\& five offspring of two individuals

Borrowed from Hellenthal \& Stephens 2006

Ancestries of the three hybrid populations

~1X genome coverage for 690 hybrids from the three hybrid populations

at a 50 kb scale, $\rho=0.15, \mathrm{p}=10^{-7}$ in pop. $1 ; \rho=0.10, \mathrm{p}=8 \times 10^{-4}$ in pop. $2 ; \rho=0.10, \mathrm{p}=10^{-4}$ in pop. $3 ; \rho=0.08, \mathrm{p}=10^{-8}$ in humans

Human

$-\square$ PRIST $\square \square \square \square \square I I$

Swordtail population 3

One-tailed $p<0.005$ in all three populations

Summary

* Vertebrates seem to employ at least two strategires to direct recombination to the genome: through PRDM9 binding or by using promoter-like features
* The use of PRDM9 to direct recombination is associated with rapid evolution of the zinc finger and of recombination hotspots. In contrast, using promoter like features is associated with the conservation of hotspots.
* Recombination is an important predictor of where introgression occurs between hybridizing species. Therefore introgression patterns may differ between species that do and do not use PRDM9.

[^0]: Key - All species have complete loss - Some species have complete loss Representative orthologs

 - Representative paralogs
 - Loss of PRDM9 - All species have lost a particular domain
 - Some species have lost domains in at least one paralog

