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Introduction

Scales in the CNS
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Introduction

Measuring at different scales
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Introduction

Mesoscopic and macroscopic models
Optical imaging

Computer Fast camera
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Visual stimulator
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Introduction

Mesoscopic and macroscopic models

Electroencephalography (EEG) and Magnetoencephalography
(MEG)
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Introduction

Mesoscopic and macroscopic models

The Brain-Scales project
hardware
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Introduction

Mesoscopic and macroscopic models
The Blue Brain project simulator

The Brain-Scales project (EPFL)
hardware
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Introduction

Mesoscopic and macroscopic models

» These two projects continue with the Human Brain Project
(HBP) EC Flagship

» and the Brain project in the US
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Sparsity, emergence

Motivations: Sparse representations, emerging phenomena
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Sparsity, emergence

Motivations

» Represent the neuronal activity at different scales (sparsity)
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Sparsity, emergence

Motivations

» Represent the neuronal activity at different scales (sparsity)

» Predict the occurence of new, emerging, neural phenomena
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Sparsity, emergence

Motivations

» Represent the neuronal activity at different scales (sparsity)
» Predict the occurence of new, emerging, neural phenomena

» Understand the role of randomness
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Sparsity, emergence

An example: a toy model of V1

» For each neuron write its equations (2 x 10")
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Sparsity, emergence

An example: a toy model of V1

» For each neuron write its equations (2 x 10")

» Include the synaptic connections, e.g. chemical (~ 10'1)
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Sparsity, emergence

An example: a toy model of V1

» For each neuron write its equations (2 x 107)

» Include the synaptic connections, e.g. chemical (~ 10'1)

» You end up with
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Sparsity, emergence

An example: a toy model of V1

(qVi = (vt' - (‘/35)3 —w +I(t )) dt + 3 Sy (Vi = View)yldt+
L (S o(vi- Vrev)y{> dBt+aext dWj
dwi =a(bV{i—w])dt
dyi = (a:S(Vi)(1 — yi) — aayi) dt + o(V{, y})aw}”
(Jii(t) = % + F€'()

~ 10 millions times!
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Sparsity, emergence

What can be done?

> Develop a
statistical
neuroscience
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Sparsity, emergence

What can be done?

> Develop a » Ludwig Boltzmann: Inventor of

statistical statistical mechanics
neuroscience
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Sparsity, emergence

What can be done?

> Develop a » Ludwig Boltzmann: Inventor of

statistical statistical mechanics

neuroscience . .
» Explains and predicts how the

properties of atoms (mass, charge, and
structure ...) determine the visible
properties of matter (viscosity, thermal
conductivity, diffusion . ..)
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Sparsity, emergence

Statistical mechanics and statistical neuroscience

ok il
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Large Deviations
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Large Deviations

Large Deviation Principle in a nutshell

» Deals with rare events,

» and the asymptotic computation of their probability on a log
scale.

» Requires a rate function H.
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Large Deviations

An intuitive approach

v

Consider a sequence of random variables {X,},>0.

> It satisfies a Large Deviation Principle with rate function H if
P(X, ~ x) ~ e "H()
» The random variables X,, concentrate on the points x such
that H(x) = 0.
» If H reaches 0 at a unique point x* then the law of X,

converges in law toward the Dirac mass dy+: concentration
of measure phenomenon..
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Large Deviations

The network
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The model

» N neurons, discrete and finite time (T)
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Large Deviations

The model

» N neurons, discrete and finite time (T)

> Intrinsic dynamics:

Ui(t) =Ui(t—1)+oBi(t—1) t=1---T
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The model

» N neurons, discrete and finite time (T)
> Intrinsic dynamics:

Ui(t) =Ui(t—1)+oBi(t—1) t=1---T

» Coupled dynamics

Ui(t) = yUi(t— 1+Z F(U(t=1))+Bi(t-1) t=1---T
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Large Deviations

The parameters

» B': i.i.d. Gaussian N(0,02): intrinsic noise on the membrane
potentials
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Large Deviations

The parameters

» B': i.i.d. Gaussian N(0,02): intrinsic noise on the membrane
potentials

> J,?’: stationary Gaussian field: random synaptic weights

J

cov(J&’J,’(\,’) = N
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Large Deviations

The parameters

» B': i.i.d. Gaussian N(0,02): intrinsic noise on the membrane
potentials

> J,?’: stationary Gaussian field: random synaptic weights

J
Ak —i,l—j
cov(J&’J,’(\,’) = —( N )

> f is a sigmoid defining the firing rate
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Large Deviations

Probabilistic framework

» A trajectory is a point of R7Tt1 =T
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Large Deviations

Probabilistic framework

» A trajectory is a point of R7Tt1 =T

» A solution of the networks equations is a (random) probability
measure QN(JN) on TN
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Large Deviations

Probabilistic framework

» A trajectory is a point of R7Tt1 =T

» A solution of the networks equations is a (random) probability
measure QN(JN) on TN

» The goal is to characterize the limit (if it exists) of
QY =E" Q" (U"),

when N — oo
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Large Deviations

The tools of the trade

» Let 7% be the set of doubly infinite sequences of trajectories

ueT? ' its ith coordinate € T
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Large Deviations

The tools of the trade

» Let 7% be the set of doubly infinite sequences of trajectories
ueT? ' its ith coordinate € T

» The shift operator: . )
S(u)' = utl
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Large Deviations

The tools of the trade

» Let 7% be the set of doubly infinite sequences of trajectories
ueT? ' its ith coordinate € T

» The shift operator: . )
S(u)' = utl

» M7 (TZ) the set of probability measures on 7%
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Large Deviations

The tools of the trade

v

Let 77 be the set of doubly infinite sequences of trajectories

ueT? ' its ith coordinate € T

v

The shift operator: ' '
S(u)' = vt
M (T?) the set of probability measures on 77

MfS(TZ) the set of stationary probability measures on 77
(shift invariant)

v

v
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Large Deviations

Empirical measure

» Let vV = (u™",---,u") be an element of 7TV (N =2n+1)
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Large Deviations

Empirical measure

» Let vV = (u™",---,u") be an element of 7TV (N =2n+1)

» Define the empirical measure

. 1 O
pl () = N > Ssiwm)
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Large Deviations

Empirical measure

» Let vV = (u™",---,u") be an element of 7TV (N =2n+1)

» Define the empirical measure

A IS
pl () = N > Ssiwm)

» What it does:
counts the relative frequency of u", and all its shifted
"friends”.
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Large Deviations

Empirical measure

» Let vV = (u™",---,u") be an element of 7TV (N =2n+1)

» Define the empirical measure

A IS
pl () = N > Ssiwm)

I=—n

» What it does:
counts the relative frequency of u", and all its shifted
"friends”.

» What it is:
a mapping from TV to M o(T%)
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Large Deviations

The search for a neuronal LDP

» Key mathematical idea:
Consider the image law My of QV through

le TN — Mfs(TZ)

I—IN — QN o ([}\LN)fl

Pushed forward measure
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Large Deviations

The search for a neuronal LDP

» Key mathematical idea:
Consider the image law My of QV through

le TN — Mfs(TZ)

My = QYo (a")™"
Pushed forward measure

» It is a probability measure on M <(7%) (probability
measure on a set of probability measures!):

VB € BIM{g(T?), NnY(B)=QN(p" € B)
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Large Deviations

Main result

Theorem (O.F., J. MacLaurin)

NN is governed by a large deviation principle with a good rate
function H.

O.F., J. Maclaurin, 2013.
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Large Deviations

Main result

Theorem (O.F., J. Maclaurin)

MN is governed by a large deviation principle with a good rate
function H.

O.F., J. MaclLaurin, 2013.
It generalizes previous work by

» H. Sompolinsky (Hebrew University)
» G. BenArous and A. Guionnet (Courant Institute and MIT)
» O. Moynot and M. Samuelides (Toulouse University)
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Large Deviations

The unique minimum of the rate function

» One proves that there is a unique pe € M7 (TZ) which
minimizes H (remember the concentration of measure
phenomenon):
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Large Deviations

The unique minimum of the rate function

» One proves that there is a unique pe € M7 (TZ) which
minimizes H (remember the concentration of measure
phenomenon):

> e is essentially an infinite dimensional Gaussian measure (a
Gaussian process)
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Large Deviations

The unique minimum of the rate function

» One proves that there is a unique pe € M7 (TZ) which
minimizes H (remember the concentration of measure
phenomenon):

> e is essentially an infinite dimensional Gaussian measure (a
Gaussian process)

> e can be effectively computed: numerical experiments are
possible!
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Large Deviations

The unique minimum of the rate function

» One proves that there is a unique pe € M7 (TZ) which
minimizes H (remember the concentration of measure
phenomenon):

> e is essentially an infinite dimensional Gaussian measure (a
Gaussian process)

> e can be effectively computed: numerical experiments are
possible!

» It is non-Markov
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Large Deviations

Consequences: Convergence results

Convergence in "large space"
NN — g
= i >

My (M)

This is the concentration of measure phenomenon.
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Large Deviations

Consequences: Convergence results

Convergence of the averaged measure

QY —— e
—= a >
_|_
My

The convergence holds when one averages over all possible
networks
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Large Deviations

Consequences: Convergence results

Convergence of the quenched measure
YN TN
QNI — e

& i >

_I_
M7

The convergence is for almost all synaptic weights: it is
unnecessary to average over many different networks.
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Conclusion: LDP

» Large Deviations are essential in:
1. Proving the existence of a limit law for the dynamics
2. Characterizing the law
3. Establishing averaged and quenched results
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Large Deviations

Conclusion: LDP

» Large Deviations are essential in:

1. Proving the existence of a limit law for the dynamics
2. Characterizing the law
3. Establishing averaged and quenched results
» Situation is a natural generalization of the i.i.d. case:
1. Maximum correlation distance of the synaptic weights is d.
2. The mean-field neurons are uncorrelated if they are separated

by more than d: the representation is sparse
3. If d =0, then we observe propagation of chaos.
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Take home messages
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Take home messages

» Independent synaptic weights hypothesis produces nice
mathematical results but

> it is somewhat unrealistic.
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Take home messages

» Independent synaptic weights hypothesis produces nice
mathematical results but

> it is somewhat unrealistic.

» Taking into account correlations between synaptic weights is
more realistic but

» the mathematical description is more complex.
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Take home messages

» Independent synaptic weights hypothesis produces nice
mathematical results but

> it is somewhat unrealistic.

» Taking into account correlations between synaptic weights is
more realistic but

» the mathematical description is more complex.

» Emerging phenomena may be contained in the non-Markov
description
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Other potential applications of Large Deviations techniques

» Epilepsy: usually involves very large neuronal populations.
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Other potential applications of Large Deviations techniques

» Epilepsy: usually involves very large neuronal populations.
» Piecewise deterministic processes:
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Other potential applications of Large Deviations techniques

» Epilepsy: usually involves very large neuronal populations.
» Piecewise deterministic processes:
1. Stochastic ion channels,
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Other potential applications of Large Deviations techniques

» Epilepsy: usually involves very large neuronal populations.
» Piecewise deterministic processes:

1. Stochastic ion channels,
2. motor-driven intracellular transport,
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Other potential applications of Large Deviations techniques

» Epilepsy: usually involves very large neuronal populations.
» Piecewise deterministic processes:

1. Stochastic ion channels,
2. motor-driven intracellular transport,
3. gene networks.

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience



	Introduction
	Motivations: Sparse representations, emerging phenomena
	Large Deviations
	Take home messages



