Toward a Statistical Neuroscience

Olivier Faugeras

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

From Medical Images to Computational Medicine Collège de France June 24 2014

Introduction

Motivations: Sparse representations, emerging phenomena

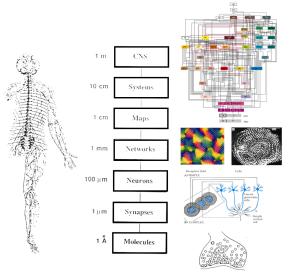
Large Deviations

Take home messages

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

_ →

Scales in the CNS



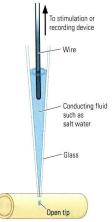
Olivier Faugeras

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

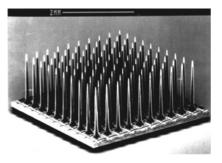
< Ξ

Statistical Neuroscience

Measuring at different scales Microelectrode



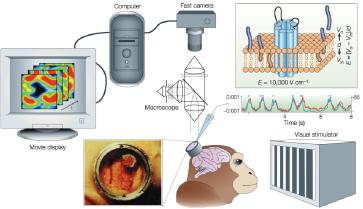
Utah Multi Electrode Array (MEA)



NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Mesoscopic and macroscopic models

Optical imaging

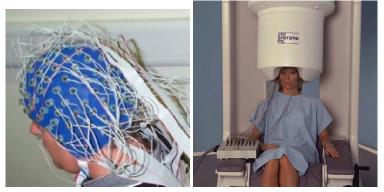


Grinvald-Hildesheim Nature Reviews Neuroscience 04

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Mesoscopic and macroscopic models

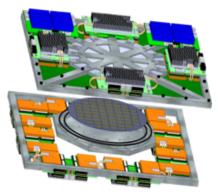
Electroencephalography (EEG) and Magnetoencephalography (MEG)



NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Mesoscopic and macroscopic models

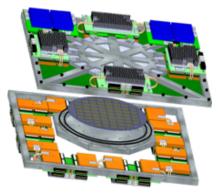
The Brain-Scales project hardware



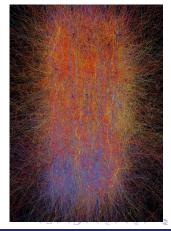
NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Mesoscopic and macroscopic models

The Brain-Scales project hardware



The Blue Brain project simulator (EPFL)



NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Mesoscopic and macroscopic models

- These two projects continue with the Human Brain Project (HBP) EC Flagship
- and the Brain project in the US

Introduction

Motivations: Sparse representations, emerging phenomena

Large Deviations

Take home messages

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Motivations

Represent the neuronal activity at different scales (sparsity)

Olivier Faugeras Statistical Neuroscience NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Motivations

- Represent the neuronal activity at different scales (sparsity)
- > Predict the occurence of new, emerging, neural phenomena

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Motivations

- Represent the neuronal activity at different scales (sparsity)
- Predict the occurence of new, emerging, neural phenomena
- Understand the role of randomness

An example: a toy model of V1

• For each neuron write its equations (2×10^7)

Olivier Faugeras Statistical Neurosc<u>ience</u> বিটেন্ড বিটান্ড বেটান্ড বেটান্ড বিটান্ড বেটান্ড বেটান্ট বিটান্ড বেটাৰ্ট বেটান্ট বেটাৰ্ট বেটাৰ্ট বেটাৰ্ট বেটাৰ্ট বেটাৰ্ট বেটাৰ্ট বেটাৰ্ট বেটাৰ্ট বিটান্ট বিটান্ট বেটাৰ্ট বেটাৰ্ট বিটান্ট বেটাৰ্ট ব

An example: a toy model of V1

- For each neuron write its equations (2×10^7)
- Include the synaptic connections, e.g. chemical ($\simeq 10^{11}$)

Olivier Faugeras Statistical Neuroscience NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

An example: a toy model of V1

- For each neuron write its equations (2×10^7)
- Include the synaptic connections, e.g. chemical ($\simeq 10^{11}$)
- You end up with

A ► < NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

-

An example: a toy model of V1

$$\begin{cases} dV_t^i &= \left(V_t^i - \frac{(V_t^i)^3}{3} - w_t^i + I(t)\right) dt + \frac{1}{N} \sum_{j=1}^N \overline{J}(V_t^i - V_{\text{rev}}) y_t^j dt + \frac{1}{N} \left(\sum_{j=1}^N \sigma(V_t^i - V_{\text{rev}}) y_t^j\right) dB_t^i + \sigma_{\text{ext}} dW_t^i \\ dw_t^i &= a \left(b V_t^i - w_t^i\right) dt \\ dy_t^i &= \left(a_r S(V_t^i)(1 - y_t^i) - a_d y_t^i\right) dt + \sigma(V_t^i, y_t^i) dW_t^{i, y} \\ J_{ij}(t) &= \frac{\overline{J}}{N} + \frac{\sigma}{N} \xi^i(t) \end{cases}$$

 \simeq 10 millions times!

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

3 →

@ ▶

Statistical Neuroscience

Olivier Faugeras

What can be done?

 Develop a statistical neuroscience

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 め�(

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

What can be done?

 Develop a statistical neuroscience

 Ludwig Boltzmann: Inventor of statistical mechanics

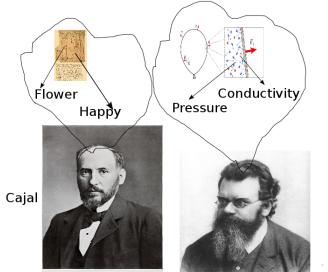
Olivier Faugeras Statistical Neuroscience NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

What can be done?

 Develop a statistical neuroscience

- Ludwig Boltzmann: Inventor of statistical mechanics
- Explains and predicts how the properties of atoms (mass, charge, and structure ...) determine the visible properties of matter (viscosity, thermal conductivity, diffusion ...)

Statistical mechanics and statistical neuroscience



NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

S.R. Cajal

Introduction

Motivations: Sparse representations, emerging phenomena

Large Deviations

Take home messages

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

A ►

Large Deviation Principle in a nutshell

- Deals with rare events,
- and the asymptotic computation of their probability on a log scale.
- ▶ Requires a rate function *H*.

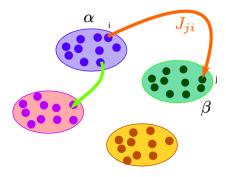
An intuitive approach

- Consider a sequence of random variables $\{X_n\}_{n\geq 0}$.
- ▶ It satisfies a Large Deviation Principle with rate function H if

$$P(X_n \simeq x) \simeq e^{-nH(x)}$$

- ► The random variables X_n concentrate on the points x such that H(x) = 0.
- If H reaches 0 at a unique point x* then the law of X_n converges in law toward the Dirac mass δ_{x*}: concentration of measure phenomenon..

The network



2 NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

э

< **∂** >

The model

N neurons, discrete and finite time (T)

< 🗗 > < NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

3

The model

- ► N neurons, discrete and finite time (T)
- Intrinsic dynamics:

$$U^{i}(t) = \gamma U^{i}(t-1) + \sigma B^{i}(t-1)$$
 $t = 1 \cdots T$

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

1 ►

The model

- N neurons, discrete and finite time (T)
- Intrinsic dynamics:

$$U^i(t) = \gamma U^i(t-1) + \sigma B^i(t-1)$$
 $t = 1 \cdots T$

Coupled dynamics

$$U^{i}(t) = \gamma U^{i}(t-1) + \sum_{j=1}^{N} J_{ij}^{N} f(U^{j}(t-1)) + B^{i}(t-1)$$
 $t = 1 \cdots T$

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

P.

Olivier Faugeras

Statistical Neuroscience

The parameters

Bⁱ: i.i.d. Gaussian N(0, σ²): intrinsic noise on the membrane potentials

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience

Olivier Faugeras

The parameters

- Bⁱ: i.i.d. Gaussian N(0, σ²): intrinsic noise on the membrane potentials
- ► J_{ij}^N : stationary Gaussian field: random synaptic weights

$$\mathbb{E}[J_{ij}^{N}] = \frac{\overline{J}}{N}$$
$$cov(J_{ij}^{N}J_{kl}^{N}) = \frac{\Lambda(k-i,l-j)}{N}$$

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

The parameters

- Bⁱ: i.i.d. Gaussian N(0, σ²): intrinsic noise on the membrane potentials
- ► J_{ij}^N : stationary Gaussian field: random synaptic weights

$$\mathbb{E}[J_{ij}^{N}] = rac{\overline{J}}{N}$$

$$cov(J_{ij}^N J_{kl}^N) = \frac{\Lambda(k-i, l-j)}{N}$$

f is a sigmoid defining the firing rate

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience

Olivier Faugeras

Probabilistic framework

• A trajectory is a point of $\mathbb{R}^{T+1} \equiv \mathcal{T}$

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Probabilistic framework

- A trajectory is a point of $\mathbb{R}^{T+1} \equiv \mathcal{T}$
- ► A solution of the networks equations is a (random) probability measure Q^N(J^N) on T^N

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Probabilistic framework

- A trajectory is a point of $\mathbb{R}^{T+1} \equiv \mathcal{T}$
- ► A solution of the networks equations is a (random) probability measure Q^N(J^N) on T^N
- The goal is to characterize the limit (if it exists) of

$$Q^N = \mathbb{E}^{J^N}[Q^N(J^N)],$$

when $N
ightarrow \infty$

ৰ □ ▶ ৰ ঐ ▶ ৰ ই ▶ ৰ ই ▶ হি → ি থ NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience

Olivier Faugeras

The tools of the trade

 \blacktriangleright Let $\mathcal{T}^{\mathbb{Z}}$ be the set of doubly infinite sequences of trajectories

 $u \in \mathcal{T}^{\mathbb{Z}}, \quad u^i$ its *i*th coordinate $\in \mathcal{T}$

< □ > < ⊡ > < Ξ > < Ξ > < Ξ > Ξ < < </p>
NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience

Olivier Faugeras

The tools of the trade

• Let $\mathcal{T}^{\mathbb{Z}}$ be the set of doubly infinite sequences of trajectories

$$u\in \mathcal{T}^{\mathbb{Z}}, \hspace{1em} u^i \hspace{1em}$$
 its $\hspace{1em} i$ th coordinate $\hspace{1em}\in \mathcal{T}$

The shift operator:

$$S(u)^i = u^{i+1}$$

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

The tools of the trade

 \blacktriangleright Let $\mathcal{T}^{\mathbb{Z}}$ be the set of doubly infinite sequences of trajectories

$$u\in \mathcal{T}^{\mathbb{Z}}, \hspace{1em} u^{i}$$
 its i th coordinate $\in \mathcal{T}$

The shift operator:

$$S(u)^i = u^{i+1}$$

• $\mathcal{M}^+_1(\mathcal{T}^{\mathbb{Z}})$ the set of probability measures on $\mathcal{T}^{\mathbb{Z}}$

The tools of the trade

 \blacktriangleright Let $\mathcal{T}^{\mathbb{Z}}$ be the set of doubly infinite sequences of trajectories

$$u\in \mathcal{T}^{\mathbb{Z}}, \hspace{1em} u^{i}$$
 its i th coordinate $\in \mathcal{T}$

The shift operator:

$$S(u)^i = u^{i+1}$$

- $\mathcal{M}^+_1(\mathcal{T}^{\mathbb{Z}})$ the set of probability measures on $\mathcal{T}^{\mathbb{Z}}$
- *M*⁺_{1,S}(*T*^ℤ) the set of stationary probability measures on *T*^ℤ (shift invariant)

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Olivier Faugeras

• Let
$$u^{\mathsf{N}} = (u^{-n}, \cdots, u^n)$$
 be an element of \mathcal{T}^{N} $(\mathsf{N} = 2n+1)$

・日本 ・ヨト・ NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

э

• Let
$$u^N = (u^{-n}, \cdots, u^n)$$
 be an element of \mathcal{T}^N $(N = 2n + 1)$

Define the empirical measure

$$\hat{\mu}^N(u^N) = \frac{1}{N} \sum_{i=-n}^n \delta_{S^i(u^N)}$$

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

P.

• Let
$$u^N = (u^{-n}, \cdots, u^n)$$
 be an element of \mathcal{T}^N $(N = 2n + 1)$

Define the empirical measure

$$\hat{\mu}^{N}(u^{N}) = \frac{1}{N} \sum_{i=-n}^{n} \delta_{S^{i}(u^{N})}$$

What it does:

counts the relative frequency of u^N , and all its shifted "friends".

- Let $u^N = (u^{-n}, \cdots, u^n)$ be an element of \mathcal{T}^N (N = 2n + 1)
- Define the empirical measure

$$\hat{\mu}^N(u^N) = \frac{1}{N} \sum_{i=-n}^n \delta_{S^i(u^N)}$$

What it does:

counts the relative frequency of u^N , and all its shifted "friends".

What it is:

a mapping from \mathcal{T}^{N} to $\mathcal{M}^{+}_{1,S}(\mathcal{T}^{\mathbb{Z}})$

The search for a neuronal LDP

• Key mathematical idea: Consider the image law Π_N of Q^N through

$$\hat{\mu}^{N}:\mathcal{T}^{N}
ightarrow\mathcal{M}^{+}_{1,S}(\mathcal{T}^{\mathbb{Z}})$$

$$\Pi_N = Q^N \circ (\hat{\mu}^N)^{-1}$$

Pushed forward measure

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

The search for a neuronal LDP

Key mathematical idea:
 Consider the image law Π_N of Q^N through

$$\hat{\mu}^{\mathsf{N}}:\mathcal{T}^{\mathsf{N}}
ightarrow\mathcal{M}^{+}_{1,\mathsf{S}}(\mathcal{T}^{\mathbb{Z}})$$

$$\Pi_N = Q^N \circ (\hat{\mu}^N)^{-1}$$

Pushed forward measure

It is a probability measure on M⁺_{1,S}(T^ℤ) (probability measure on a set of probability measures!):

$$\forall B \in \mathcal{B}(\mathcal{M}^+_{1,S}(\mathcal{T}^{\mathbb{Z}})), \quad \Pi^N(B) = Q^N(\hat{\mu}^N \in B)$$

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience

Olivier Faugeras

Main result

Theorem (O.F., J. MacLaurin)

Π^N is governed by a large deviation principle with a good rate function H.

O.F., J. MacLaurin, 2013.

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Main result

Theorem (O.F., J. MacLaurin)

 Π^N is governed by a large deviation principle with a good rate function H.

O.F., J. MacLaurin, 2013.

It generalizes previous work by

- H. Sompolinsky (Hebrew University)
- ► G. BenArous and A. Guionnet (Courant Institute and MIT)
- O. Moynot and M. Samuelides (Toulouse University)

► One proves that there is a unique µ_e ∈ M⁺_{1,s}(T^Z) which minimizes H (remember the concentration of measure phenomenon):

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience

Olivier Faugeras

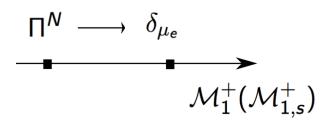
- One proves that there is a unique µ_e ∈ M⁺_{1,s}(T^ℤ) which minimizes H (remember the concentration of measure phenomenon):
- µ_e is essentially an infinite dimensional Gaussian measure (a
 Gaussian process)

- One proves that there is a unique µ_e ∈ M⁺_{1,s}(T^ℤ) which minimizes H (remember the concentration of measure phenomenon):
- μ_e is essentially an infinite dimensional Gaussian measure (a Gaussian process)
- µ_e can be effectively computed: numerical experiments are possible!

- One proves that there is a unique µ_e ∈ M⁺_{1,s}(T^ℤ) which minimizes H (remember the concentration of measure phenomenon):
- µ_e is essentially an infinite dimensional Gaussian measure (a
 Gaussian process)
- µ_e can be effectively computed: numerical experiments are possible!
- It is non-Markov

Consequences: Convergence results

Convergence in "large space"



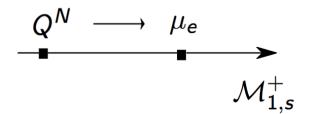
This is the concentration of measure phenomenon.

Olivier Faugeras Statistical Neuroscience NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

∃ >

Consequences: Convergence results

Convergence of the averaged measure



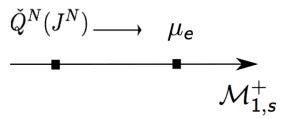
The convergence holds when one averages over **all possible networks**

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

3 ×

Consequences: Convergence results

Convergence of the quenched measure



The convergence is for **almost all synaptic weights**: it is unnecessary to average over many different networks.

Conclusion: LDP

Large Deviations are essential in:

- 1. Proving the existence of a limit law for the dynamics
- 2. Characterizing the law
- 3. Establishing averaged and quenched results

Olivier Faugeras Statistical Neuroscience NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Conclusion: LDP

Large Deviations are essential in:

- 1. Proving the existence of a limit law for the dynamics
- 2. Characterizing the law
- 3. Establishing averaged and quenched results
- Situation is a natural generalization of the i.i.d. case:
 - 1. Maximum correlation distance of the synaptic weights is d.
 - 2. The mean-field neurons are uncorrelated if they are separated by more than *d*: the representation is **sparse**
 - 3. If d = 0, then we observe propagation of chaos.

Introduction

Motivations: Sparse representations, emerging phenomena

Large Deviations

Take home messages

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

A ►

Take home messages

- Independent synaptic weights hypothesis produces nice mathematical results but
- ▶ it is somewhat unrealistic.

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Take home messages

- Independent synaptic weights hypothesis produces nice mathematical results but
- it is somewhat unrealistic.
- Taking into account correlations between synaptic weights is more realistic but
- the mathematical description is more complex.

Take home messages

- Independent synaptic weights hypothesis produces nice mathematical results but
- it is somewhat unrealistic.
- Taking into account correlations between synaptic weights is more realistic but
- the mathematical description is more complex.
- Emerging phenomena may be contained in the non-Markov description

► Epilepsy: usually involves very large neuronal populations.

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

- ► Epilepsy: usually involves very large neuronal populations.
- Piecewise deterministic processes:

- ► Epilepsy: usually involves very large neuronal populations.
- Piecewise deterministic processes:
 - 1. Stochastic ion channels,

- ► Epilepsy: usually involves very large neuronal populations.
- Piecewise deterministic processes:
 - 1. Stochastic ion channels,
 - 2. motor-driven intracellular transport,

- ► Epilepsy: usually involves very large neuronal populations.
- Piecewise deterministic processes:
 - 1. Stochastic ion channels,
 - 2. motor-driven intracellular transport,
 - 3. gene networks.