
Introduction Sparsity, emergence Large Deviations Take home

Toward a Statistical Neuroscience

Olivier Faugeras

NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

From Medical Images to Computational Medicine
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Scales in the CNS
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Measuring at different scales
Microelectrode

Utah Multi Electrode Array
(MEA)
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Mesoscopic and macroscopic models

Optical imaging
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Mesoscopic and macroscopic models

Electroencephalography (EEG) and Magnetoencephalography
(MEG)
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Mesoscopic and macroscopic models

The Brain-Scales project
hardware

The Blue Brain project simulator
(EPFL)
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Mesoscopic and macroscopic models

I These two projects continue with the Human Brain Project
(HBP) EC Flagship

I and the Brain project in the US
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Motivations

I Represent the neuronal activity at different scales (sparsity)

I Predict the occurence of new, emerging, neural phenomena

I Understand the role of randomness
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An example: a toy model of V1

I For each neuron write its equations (2× 107)

I Include the synaptic connections, e.g. chemical (' 1011)
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An example: a toy model of V1

I For each neuron write its equations (2× 107)

I Include the synaptic connections, e.g. chemical (' 1011)

I You end up with
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An example: a toy model of V1
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What can be done?

I Develop a
statistical
neuroscience

I Ludwig Boltzmann: Inventor of
statistical mechanics

I Explains and predicts how the
properties of atoms (mass, charge, and
structure . . . ) determine the visible
properties of matter (viscosity, thermal
conductivity, diffusion . . . )
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Statistical mechanics and statistical neuroscience
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Large Deviation Principle in a nutshell

I Deals with rare events,

I and the asymptotic computation of their probability on a log
scale.

I Requires a rate function H.
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An intuitive approach

I Consider a sequence of random variables {Xn}n≥0.

I It satisfies a Large Deviation Principle with rate function H if

P(Xn ' x) ' e−nH(x)

I The random variables Xn concentrate on the points x such
that H(x) = 0.

I If H reaches 0 at a unique point x∗ then the law of Xn

converges in law toward the Dirac mass δx∗ : concentration
of measure phenomenon..
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The network
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The model

I N neurons, discrete and finite time (T )

I Intrinsic dynamics:

U i (t) = γU i (t − 1) + σB i (t − 1) t = 1 · · ·T

I Coupled dynamics

U i (t) = γU i (t−1)+
N∑
j=1

JNij f (U j(t−1))+B i (t−1) t = 1 · · ·T

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience



Introduction Sparsity, emergence Large Deviations Take home

The model

I N neurons, discrete and finite time (T )

I Intrinsic dynamics:

U i (t) = γU i (t − 1) + σB i (t − 1) t = 1 · · ·T

I Coupled dynamics

U i (t) = γU i (t−1)+
N∑
j=1

JNij f (U j(t−1))+B i (t−1) t = 1 · · ·T

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience



Introduction Sparsity, emergence Large Deviations Take home

The model

I N neurons, discrete and finite time (T )

I Intrinsic dynamics:

U i (t) = γU i (t − 1) + σB i (t − 1) t = 1 · · ·T

I Coupled dynamics

U i (t) = γU i (t−1)+
N∑
j=1

JNij f (U j(t−1))+B i (t−1) t = 1 · · ·T

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience



Introduction Sparsity, emergence Large Deviations Take home

The parameters

I B i : i.i.d. Gaussian N (0, σ2): intrinsic noise on the membrane
potentials

I JNij : stationary Gaussian field: random synaptic weights

E[JNij ] =
J

N

cov(JNij J
N
kl ) =

Λ(k − i , l − j)

N

I f is a sigmoid defining the firing rate
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Probabilistic framework

I A trajectory is a point of RT+1 ≡ T

I A solution of the networks equations is a (random) probability
measure QN(JN) on T N

I The goal is to characterize the limit (if it exists) of

QN = EJN [QN(JN)],

when N →∞
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The tools of the trade

I Let T Z be the set of doubly infinite sequences of trajectories

u ∈ T Z, ui its ith coordinate ∈ T

I The shift operator:
S(u)i = ui+1

I M+
1 (T Z) the set of probability measures on T Z

I M+
1,S(T Z) the set of stationary probability measures on T Z

(shift invariant)
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Empirical measure

I Let uN = (u−n, · · · , un) be an element of T N (N = 2n + 1)

I Define the empirical measure

µ̂N(uN) =
1

N

n∑
i=−n

δS i (uN)

I What it does:
counts the relative frequency of uN , and all its shifted
”friends”.

I What it is:
a mapping from T N to M+

1,S(T Z)
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The search for a neuronal LDP

I Key mathematical idea:
Consider the image law ΠN of QN through

µ̂N : T N →M+
1,S(T Z)

ΠN = QN ◦ (µ̂N)−1

Pushed forward measure

I It is a probability measure on M+
1,S(T Z) (probability

measure on a set of probability measures!):

∀B ∈ B(M+
1,S(T Z)), ΠN(B) = QN(µ̂N ∈ B)
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Main result

Theorem (O.F., J. MacLaurin)

ΠN is governed by a large deviation principle with a good rate
function H.

O.F., J. MacLaurin, 2013.
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Main result

Theorem (O.F., J. MacLaurin)

ΠN is governed by a large deviation principle with a good rate
function H.

O.F., J. MacLaurin, 2013.

It generalizes previous work by

I H. Sompolinsky (Hebrew University)

I G. BenArous and A. Guionnet (Courant Institute and MIT)

I O. Moynot and M. Samuelides (Toulouse University)
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The unique minimum of the rate function

I One proves that there is a unique µe ∈M+
1,s(T Z) which

minimizes H (remember the concentration of measure
phenomenon):

I µe is essentially an infinite dimensional Gaussian measure (a
Gaussian process)

I µe can be effectively computed: numerical experiments are
possible!

I It is non-Markov
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Consequences: Convergence results

This is the concentration of measure phenomenon.
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Consequences: Convergence results

The convergence holds when one averages over all possible
networks
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Consequences: Convergence results

The convergence is for almost all synaptic weights: it is
unnecessary to average over many different networks.
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Conclusion: LDP

I Large Deviations are essential in:

1. Proving the existence of a limit law for the dynamics
2. Characterizing the law
3. Establishing averaged and quenched results

I Situation is a natural generalization of the i.i.d. case:

1. Maximum correlation distance of the synaptic weights is d .
2. The mean-field neurons are uncorrelated if they are separated

by more than d : the representation is sparse
3. If d = 0, then we observe propagation of chaos.

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience



Introduction Sparsity, emergence Large Deviations Take home

Conclusion: LDP

I Large Deviations are essential in:

1. Proving the existence of a limit law for the dynamics
2. Characterizing the law
3. Establishing averaged and quenched results

I Situation is a natural generalization of the i.i.d. case:

1. Maximum correlation distance of the synaptic weights is d .
2. The mean-field neurons are uncorrelated if they are separated

by more than d : the representation is sparse
3. If d = 0, then we observe propagation of chaos.

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience



Introduction Sparsity, emergence Large Deviations Take home

Introduction

Motivations: Sparse representations, emerging phenomena

Large Deviations

Take home messages

Olivier Faugeras NeuroMathComp Laboratory - INRIA Sophia/UNSA LJAD

Statistical Neuroscience



Introduction Sparsity, emergence Large Deviations Take home

Take home messages

I Independent synaptic weights hypothesis produces nice
mathematical results but

I it is somewhat unrealistic.

I Taking into account correlations between synaptic weights is
more realistic but

I the mathematical description is more complex.

I Emerging phenomena may be contained in the non-Markov
description
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Other potential applications of Large Deviations techniques

I Epilepsy: usually involves very large neuronal populations.

I Piecewise deterministic processes:

1. Stochastic ion channels,
2. motor-driven intracellular transport,
3. gene networks.
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