Vers un système vasculaire numérique

Collège de France, le 10 juin 2014

Jean-Frédéric Gerbeau

INRIA & UPMC Paris 6 France

Maladies cardiovasculaires

- Près de la moitié des décès en Europe
- Coût pour l'économie UE: 169 Mds € / an

Source: European Heart Health Charter

Maladies cardiovasculaires

- Près de la moitié des décès en Europe
- Coût pour l'économie UE: 169 Mds € / an

Source: European Heart Health Charter

• Exemple de maladies vasculaires:

Athérosclérose

Maladies cardiovasculaires

- Près de la moitié des décès en Europe
- Coût pour l'économie UE: 169 Mds € / an

Source: European Heart Health Charter

• Exemple de maladies vasculaires:

Normal coronary artery

Atherosclerosis

Atherosclerosis with blood clot

Coronary spasm

Athérosclérose

Anévrismes

Anévrisme

Fusiforme

Hémodynamiqe:

• étude mécanique de l'écoulement du sang (débit, pression,...)

Hémodynamique numérique:

 modélisation et simulation numérique en hémodynamique

Plan

- Quelques généralités en hémodynamique
- Deux problèmes importants en hémodynamique numérique
 - conditions aux limites
 - interaction fluide-structure
- Vérification, "personnalisation", validation

Résistance vasculaire:

Dissipation par viscosité

• En première approximation (pour un organe, un compartiment):

• Exemple : cylindre de longueur L et de rayon r

$$R = \frac{8L\eta}{\pi r^4}$$
 Evelopement de l'athérosclerose dans le vaisseur
 The vascular between variable to the variable of the v

Compliance vasculaire:

Interaction fluide-structure

- Paroi élastique des grosses artères:
 - Se dilatent pendant la systole
 - Se relâchent pendant la diastole
- C'est l'"effet Windkessel"
- Onde de pression: pouls
- Le long de l'arbe artériel:
 - la pression moyenne décroit
 - la pression maximale peut croitre
- Vitesse de propagation
 - plusieurs m/s

Wikipedia

Hémodynamique numérique Hiérarchie de modèles

• Modèles 3D : fluide seul, ou fluide-structure Variables : vitesse, pression, déplacement

Hémodynamique numérique Hiérarchie de modèles

• Modèles 3D : fluide seul, ou fluide-structure Variables : vitesse, pression, déplacement

• Modèles 1D (Euler equation, 1775)

Variables : débit, pression moyenne, aire section

Hémodynamique numérique Hiérarchie de modèles

• Modèles 3D : fluide seul, ou fluide-structure Variables : vitesse, pression, déplacement

• Modèles 1D (Euler equation, 1775) Variables : débit, pression moyenne, aire section

 Modèles 0D (Equations Différentielles Ordinaires) ?
 Variables : débit, chute de pression (compartiment vasculaire ou conditions aux limites)

 R_p

 R_d

Equations de Navier-Stokes

Loi de Newton:

Equations de Navier-Stokes

Vitesse tenseur de Cauchy $\sigma \cdot \boldsymbol{n} = \text{force sur la surface } \Sigma$ Loi de Newton: $\rho \frac{D \boldsymbol{u}}{D \boldsymbol{u}}$ $\operatorname{div}\boldsymbol{\sigma} = 0$ Pression **Hypothèses** Viscosité Fluide incompressible: $\operatorname{div} \boldsymbol{u} = 0$ $\boldsymbol{\sigma} = -p \,\mathbb{I} + 2\mu \boldsymbol{\epsilon}(\boldsymbol{u})$ Fluide newtonien: Vitesse de déformation: $\boldsymbol{\epsilon}(\boldsymbol{u}) = \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \right)$

Equations de Navier-Stokes

$$\begin{cases} \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \mu \Delta \boldsymbol{u} + \nabla p = 0 \\ \operatorname{div} \boldsymbol{u} = 0 \end{cases}$$

Exemple d'écoulements 3D

Artères pulmonaires

Vignon-Clementel, Arbia (Leducq Foundation project)

Lien entre écoulement et lésions vasculaires

L'athérosclérose est localisée dans des régions privilégiées (aorte abdominale infrarénale, carotide,...)
 Zarins et al., Circ Res 1983

- Correlation avec les propriétés hémodynamiques locales
- Contrainte de cisaillement: $\boldsymbol{\tau} = \boldsymbol{\sigma} \cdot \boldsymbol{n} (\boldsymbol{\sigma} \cdot \boldsymbol{n} \cdot \boldsymbol{n})\boldsymbol{n}$

• On définit
$$\tau_{\text{mean}} = \left| \frac{1}{T} \int_0^T \boldsymbol{\tau} \, dt \right|$$
 et $\tau_{\text{mag}} = \frac{1}{T} \int_0^T |\boldsymbol{\tau}| \, dt$

• Index de Cisaillement Oscillant: OSI = $\frac{1}{2} \left(1 - \frac{\tau_{\text{mean}}}{\tau_{\text{mag}}} \right)$

Ku et al. Atheroscl. 1985

- Bonne correlation entre
 - zones à faible cisaillement moyen et fort OSI
 - zones d'athérosclérose
- Remarque: des études récentes modèrent ce lien Peiffer, Sherwin, Weinberg, 2013 11

Exemple: planification chirurgicale

Fonctionnement normal :

Total Extracardiac Conduit Fontan Palliation of Hypoplastic Left Heart

Malformation congénitale:

CVBRL, Stanford

CVBRL, Stanford

Questions

- Chute de pression
- Répartition droite/gauche des débits
- Contrainte sur les parois, zones de stagnation,...

Vignon-Clementel, Marsden, Feinstein, Progress in Pediatric Cardiology, 2010

Vignon-Clementel, Marsden, Feinstein, Progress in Pediatric Cardiology, 2010

Conditions aux limites

• Equations de Navier-Stokes

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) - \operatorname{div} \boldsymbol{\sigma} = 0$$

• On peut imposer $\boldsymbol{u} = \boldsymbol{u}_d \operatorname{sur} \Gamma_D$ et $\boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{g} \operatorname{sur} \Gamma_N$

$$\int_{\Omega} \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) \cdot \boldsymbol{v} + \int_{\Omega} \boldsymbol{\sigma} : \nabla \boldsymbol{v} = \int_{\Gamma_N} \boldsymbol{g} \cdot \boldsymbol{v}$$

• Pour fixer les idées: $\boldsymbol{\sigma} \cdot \boldsymbol{n} = -p\boldsymbol{n} + 2\mu\boldsymbol{\epsilon}(\boldsymbol{u}) \cdot \boldsymbol{n} \approx -p\boldsymbol{n}.$

Conditions aux limites

• Equations de Navier-Stokes

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) - \operatorname{div} \boldsymbol{\sigma} = 0$$

• On peut imposer $\boldsymbol{u} = \boldsymbol{u}_d \operatorname{sur} \Gamma_D$ et $\boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{g} \operatorname{sur} \Gamma_N$

$$\int_{\Omega} \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) \cdot \boldsymbol{v} + \int_{\Omega} \boldsymbol{\sigma} : \nabla \boldsymbol{v} = \int_{\Gamma_N} \boldsymbol{g} \cdot \boldsymbol{v}$$

• Pour fixer les idées: $\boldsymbol{\sigma} \cdot \boldsymbol{n} = -p\boldsymbol{n} + 2\mu\boldsymbol{\epsilon}(\boldsymbol{u}) \cdot \boldsymbol{n} \approx -p\boldsymbol{n}$.

Si la vitesse ou la pression sont connues sur les bords : OK !
 ... mais ce n'est presque jamais le cas !

Couplage 3D - 0D

• Sur la partie 0D

$$\begin{cases} C\frac{dP_d}{dt} + \frac{P_d - P_v}{R_d} = q \\ P_p = P_d + R_p q \end{cases}$$

• Sur la partie 3D, plusieurs options. Par exemple:

$$\begin{cases} \int_{\Gamma_{out}} \boldsymbol{u} \cdot \boldsymbol{n} &= q \\ \boldsymbol{\sigma} \cdot \boldsymbol{n} \cdot \boldsymbol{n} &= P_p \operatorname{sur} \Gamma_{out} \end{cases} \quad \operatorname{ou} \begin{cases} \int_{\Gamma_{out}} \boldsymbol{u} \cdot \boldsymbol{n} &= q \\ \Gamma_{out} &p &= P_p \operatorname{sur} \Gamma_{out} \end{cases}$$

Couplage 3D - 0D

• Sur la partie 0D

$$\begin{cases} C\frac{dP_d}{dt} + \frac{P_d - P_v}{R_d} = q \\ P_p = P_d + R_p q \end{cases}$$

• Sur la partie 3D, plusieurs options. Par exemple:

$$\begin{cases} \int_{\Gamma_{out}} \boldsymbol{u} \cdot \boldsymbol{n} &= q \\ \boldsymbol{\sigma} \cdot \boldsymbol{n} \cdot \boldsymbol{n} &= P_p \operatorname{sur} \Gamma_{out} \end{cases} \quad \operatorname{ou} \begin{cases} \int_{\Gamma_{out}} \boldsymbol{u} \cdot \boldsymbol{n} &= q \\ \Gamma_{out} &p &= P_p \operatorname{sur} \Gamma_{out} \end{cases}$$

mais beaucoup d'autres choix possibles...

Bilan d'énergie dans la partie 3D:

• Energie cinétique:
$$\mathcal{E}_{K_{\Omega}} = \int_{-\infty}^{\infty} \frac{\rho}{2} |\boldsymbol{u}|^2$$

• Puissance dissipée: 7

• Puissance entrante:

$$\mathcal{P}_{V_{\Omega}} = 2\mu \int_{\Omega} \varepsilon(\boldsymbol{u}) : \varepsilon(\boldsymbol{u})$$
$$\mathcal{P}_{\text{in}} = \int_{\Gamma_{\text{in}}} \boldsymbol{\sigma} \cdot \boldsymbol{n} \cdot \boldsymbol{u} - \rho \int_{\Gamma_{\text{in}}} \frac{|\boldsymbol{u}|^2}{2} \boldsymbol{n} \cdot \boldsymbol{u}$$

$$\frac{d}{dt}\mathcal{E}_{K_{\Omega}} + \mathcal{P}_{V_{\Omega}} = \mathcal{P}_{\text{in}} + \int_{\Gamma_{\text{out}}} \boldsymbol{\sigma} \cdot \boldsymbol{n} \cdot \boldsymbol{u} - \rho \int_{\Gamma_{\text{out}}} \frac{|\boldsymbol{u}|^2}{2} \boldsymbol{n} \cdot \boldsymbol{u}$$

Bilan d'énergie dans la partie 0D:

$$C\frac{d}{dt}\frac{P_{d}^{2}}{2} + \frac{P_{d}^{2}}{R_{d}} + R_{p}q^{2} = P_{p}q$$

Bilan d'énergie dans la partie 3D:

• Energie cinétique:
$$\mathcal{E}_{K_{\Omega}} = \int_{\Omega} \frac{\rho}{2} |\boldsymbol{u}|^2$$

• Puissance dissipée: $\mathcal{P}_{V_{\Omega}} = 2\mu \int_{\Omega} \varepsilon(\boldsymbol{u}) : \varepsilon(\boldsymbol{u})$
• Puissance entrante: $\mathcal{P}_{\text{in}} = \int_{\Gamma_{\text{in}}} \boldsymbol{\sigma} \cdot \boldsymbol{n} \cdot \boldsymbol{u} - \rho \int_{\Gamma_{\text{in}}} \frac{|\boldsymbol{u}|^2}{2} \boldsymbol{n} \cdot \boldsymbol{u}$

$$\frac{d}{dt}\mathcal{E}_{K_{\Omega}} + \mathcal{P}_{V_{\Omega}} = \mathcal{P}_{\text{in}} + \int_{\Gamma_{\text{out}}} \boldsymbol{\sigma} \cdot \boldsymbol{n} \cdot \boldsymbol{u} - \rho \int_{\Gamma_{\text{out}}} \frac{|\boldsymbol{u}|^2}{2} \boldsymbol{n} \cdot \boldsymbol{u}$$

Bilan d'énergie dans la partie 0D:

$$C\frac{d}{dt}\frac{P_d^2}{2} + \frac{P_d^2}{R_d} + R_p q^2 = P_p q$$

• Pour obtenir un bilan énergétique correct:

$$\frac{d}{dt}\mathcal{E}_{K_{\Omega}} + \mathcal{P}_{V_{\Omega}} + C\frac{d}{dt}\frac{P_d^2}{2} + \frac{P_d^2}{R_d} + R_p q^2 = \mathcal{P}_{\text{in}}$$

le "bon" choix serait

$$\left\{ egin{array}{ll} m{\sigma}\cdotm{n}-rac{
ho}{2}|m{u}|^2m{n}&=&-P_pm{n}\ \int_{\Gamma_{out}}m{u}\cdotm{n}&=&q \end{array}
ight.$$

• Pour obtenir un bilan énergétique correct:

$$\frac{d}{dt}\mathcal{E}_{K_{\Omega}} + \mathcal{P}_{V_{\Omega}} + C\frac{d}{dt}\frac{P_d^2}{2} + \frac{P_d^2}{R_d} + R_p q^2 = \mathcal{P}_{\text{in}}$$

le "bon" choix serait

$$\left\{ egin{array}{ll} m{\sigma}\cdotm{n}-rac{
ho}{2}|m{u}|^2m{n}&=&-P_pm{n}\ \int_{\Gamma_{out}}m{u}\cdotm{n}&=&q \end{array}
ight.$$

• Mais ces conditions ne sont pas vérifiées par des écoulements types !

Ecoulement de Poiseuille

• Pour obtenir un bilan énergétique correct:

$$\frac{d}{dt}\mathcal{E}_{K_{\Omega}} + \mathcal{P}_{V_{\Omega}} + C\frac{d}{dt}\frac{P_d^2}{2} + \frac{P_d^2}{R_d} + R_p q^2 = \mathcal{P}_{\text{in}}$$

le "bon" choix serait

$$\left\{ egin{array}{ll} m{\sigma}\cdotm{n}-rac{
ho}{2}|m{u}|^2m{n}&=&-P_pm{n}\ \int_{\Gamma_{out}}m{u}\cdotm{n}&=&q \end{array}
ight.$$

• Mais ces conditions ne sont pas vérifiées par des écoulements types !

Ecoulement de Poiseuille

• Bilan énergétique important quand $\rho \int_{\Gamma_{\text{out}}} \frac{|u|^2}{2} n \cdot u < 0$

(écoulement rétrograde: classique en diastole !)

• Bilan énergétique important quand $\rho \int_{\Gamma_{\text{out}}} \frac{|\boldsymbol{u}|^2}{2} \boldsymbol{n} \cdot \boldsymbol{u} < 0$

(écoulement rétrograde: classique en diastole !)

• Des méthodes de stabilisation été récemment proposées...

• Bilan énergétique important quand $\rho \int_{\Gamma_{\text{out}}} \frac{|u|^2}{2} n \cdot u < 0$

(écoulement rétrograde: classique en diastole !)

Des méthodes de stabilisation été récemment proposées...

Mais à ce jour, pas de solution complètement satisfaisante pour les conditions aux limites

Simulation: G. Arbia

KCL (euHeart)

Hôpital Laval

KCL (euHeart)

• Couplage "multi-physique":

$$\rho^{\mathrm{f}} \left(\frac{\partial \boldsymbol{u}}{\partial t}_{|\widehat{\boldsymbol{x}}} + (\boldsymbol{u} - \boldsymbol{w}) \cdot \boldsymbol{\nabla} \boldsymbol{u} \right) - 2\mu \mathrm{div} \boldsymbol{\epsilon}(\boldsymbol{u}) + \boldsymbol{\nabla} \boldsymbol{p} = \boldsymbol{0}, \quad \mathrm{in} \quad \Omega^{\mathrm{f}}(t)$$
$$\mathrm{div} \, \boldsymbol{u} = \boldsymbol{0}, \quad \mathrm{in} \quad \Omega^{\mathrm{f}}(t)$$
$$\rho^{\mathrm{s}} \frac{\partial^{2} \boldsymbol{d}}{\partial t^{2}} - \mathrm{div} \big(\boldsymbol{F}(\boldsymbol{d}) \boldsymbol{S}(\boldsymbol{d}) \big) = \boldsymbol{0}, \quad \mathrm{in} \quad \widehat{\Omega}^{\mathrm{s}}$$

- Couplage implicite: nombreuses sous-itérations à chaque pas de temps
- Couplage explicite: 1 (ou quelques) sous-itération(s) par pas de temps

- Couplage explicite *a priori* très efficace:
 Coût IFS ≈ coût Fluide + coût Solide
- .. mais les itérations "classiques" sont instables !

- Couplage explicite, observations empiriques:
 - Les instabilités disparaissent quand la densité du solide est plus grande
 - Les instabilités sont indépendantes du pas de temps
 - Les instabilités sont sensibles à la longueur du domaine

Periode 1997-2007

• Algorithmes implicites, pour la stabilité: très cher !

L'effet de masse ajoutée (*Le Tallec, Mouro 2001*) *instabilité inconditionnelle des schémas* explicites si

Causin, JFG, Nobile, 2005

Periode 1997-2007

• Algorithmes implicites, pour la stabilité: très cher !

L'effet de masse ajoutée (*Le Tallec, Mouro 2001*) *instabilité inconditionnelle des schémas* explicites si

Causin, JFG, Nobile, 2005

Periode 2007-2009

• Premier schéma partiellement explicite stable

(Fernández, JFG, Grandmont, 2007)

• Premier schéma totalement explicite stable (Burman, Fernández, 2009)

$$\sigma(\mathbf{u}^{n+1}, p^{n+1})\mathbf{n} + \frac{\gamma\mu}{h}\mathbf{u}^{n+1} = \frac{\gamma\mu}{h}\partial_{\tau}\mathbf{d}_{s}^{n+1} + \sigma(\mathbf{u}^{n}, p^{n})\mathbf{n}$$
 on Σ^{n}

• Nouveau challenge: précision !

1999

2007

~ ~ ~ _

Temps de calcul

2002	2003	2007	2012
50	20	4	1

Temps de calcul 50

Grâce à des progrès algorithmiques!

4

20

JFG, Vidrascu, M2AN 2003 Causin, JFG, Nobile, CMAME 2005 Fernández, JFG, Grandmont, IJNME 2007 Burman, Fernández, CMAME 2009

Fernández, Numer. Math 2012 Fernández, Landajuela, CRAS 2013 Fernández, Mullaert, Vidrascu, CMAME 2013

24

Vérification, "Personnalisation", Validation

Vérification

- Numérique : précision, stabilité, ...
- Physique : conservation de la masse, de l'énergie, ...

"Personnalisation" (Identification)

• Identifier l'état et les paramètres en réduisant l'écart entre modèle et mesures (images médicales, ...)

Validation

• S'assurer que pour les quantités auxquelles on s'intéresse, le modèle est capable de prédire le résultat

Exemple: coarctation de l'aorte

Source: O. Peruta

- Suivi post-opératoire : repos / effort
- Prédire la chute de pression ?

Exemple: coarctation de l'aorte

Challenge Stacom / Miccai 2013 Pant, Fabrèges, JFG, Vignon-Clementel (en préparation)

Source: O. Peruta

- Suivi post-opératoire : repos / effort
- Prédire la chute de pression ?

Exemple: coarctation de l'aorte

Source: O. Peruta

- Suivi post-opératoire : repos / effort
- Prédire la chute de pression ?

Challenge Stacom / Miccai 2013 Pant, Fabrèges, JFG, Vignon-Clementel (en préparation)

- Peut-on éviter le test d'effort ?
- Peut-être... si on parvient à estimer les propriétés mécaniques de l'aorte

INRIA

Assimilation de données

- Identifier paramètres et états du modèle à l'aide de mesures
- Accéder à des quantités "cachées"
- Régulariser les mesures

Bertoglio, Chapelle, Fernandez, JFG, Moireau, 2013 Moireau, Bertoglio, Xiao, Figueroa, Taylor, Chapelle, JFG, 2012 27 Bertoglio, Moireau, JFG, 2013

Ex: estimation de la rigidité artérielle

Ex: estimation de la rigidité artérielle

Experience in vitro (KCL & Sheffield, euHeart)

Ex: estimation de la rigidité artérielle

28

Experience in vitro (KCL & Sheffield, euHeart)

1.05 1.4

1.05

Données cliniques (KCL & Sheffield, euHeart)

Bertoglio et al. 2014

1ère difficulté: l'artère est pré-contrainte

• problème inverse pour obtenir l'état de référence

1ère difficulté: l'artère est pré-contrainte

• problème inverse pour obtenir l'état de référence

2ème difficulté: le déplacement n'est en général pas mesuré

- Sur les images segmentées:
 - Déplacements normaux : OK
 - Déplacements tangentiels différents de ceux des particules matérielles
- L'écart entre modèle et image est évalué à l'aide d'une distance signée:

dist_{*S_k*} : $\begin{vmatrix} (L^2(\Sigma))^3 \mapsto (L^2(\Sigma))^3 \\ \mathbf{x}(\boldsymbol{\xi}) \to \operatorname{dist}_{\mathcal{S}_k}(\mathbf{x}(\boldsymbol{\xi})) \boldsymbol{n}_{\mathcal{S}_k}(\mathbf{x}(\boldsymbol{\xi})) \end{vmatrix}$

1ère difficulté: l'artère est pré-contrainte

• problème inverse pour obtenir l'état de référence

2ème difficulté: le déplacement n'est en général pas mesuré

- Sur les images segmentées:
 - Déplacements normaux : OK
 - Déplacements tangentiels différents de ceux des particules matérielles
- L'écart entre modèle et image est évalué à l'aide d'une distance signée:

dist_{*S_k*} : $\begin{vmatrix} (L^2(\Sigma))^3 \mapsto (L^2(\Sigma))^3 \\ \mathbf{x}(\boldsymbol{\xi}) \to \operatorname{dist}_{\mathcal{S}_k}(\mathbf{x}(\boldsymbol{\xi})) \boldsymbol{n}_{\mathcal{S}_k}(\mathbf{x}(\boldsymbol{\xi})) \end{vmatrix}$

3ème difficulté: tissus environnant

• L'artère n'est pas isolée !

• Conditions aux limites les plus utilisées sur la paroi extérieure de l'artère: $\sigma_s n = p_0 n$

• Conditions aux limites les plus utilisées sur la paroi extérieure de l'artère: $\sigma_s n = p_0 n$

 Conditions sur la paroi

- Conditions aux limites les plus utilisées sur la paroi extérieure de l'artère: $\sigma_s n = p_0 n$
- Modélisation "réduite" des tissus extérieurs

Moireau, Xiao, Astorino, Figueroa, Chapelle, Taylor, JFG, 2012

• Identification des paramètres pour les tissus extérieurs:

Moireau, Xiao, Astorino, Figueroa, Chapelle, Taylor, JFG, 2012 Moireau, Bertoglio, Xiao, Figueroa, Taylor, Chapelle, JFG, 2013

Conclusion

Hémodynamique numérique

- Progrès considérables depuis 15 ans : *couplage fluide-structure*, *couplage multi-résolution*,...
- Beaucoup de questions encore ouvertes: *conditions aux limites*, *comportement en temps long*, *adaptation*, *régulation*, ...

Conclusion

Hémodynamique numérique

- Progrès considérables depuis 15 ans : *couplage fluide-structure*, *couplage multi-résolution*,...
- Beaucoup de questions encore ouvertes: *conditions aux limites*, *comportement en temps long*, *adaptation*, *régulation*, ...

Applications

- Planification de gestes chirurgicaux, ...
- Tests de dispositifs médicaux (en complément de test animaux)

Conclusion

Hémodynamique numérique

- Progrès considérables depuis 15 ans : *couplage fluide-structure*, *couplage multi-résolution*,...
- Beaucoup de questions encore ouvertes: *conditions aux limites*, *comportement en temps long*, *adaptation*, *régulation*, ...

Applications

- Planification de gestes chirurgicaux, ...
- Tests de dispositifs médicaux (en complément de test animaux)

Personnalisation & validation

- Premières étapes encourageantes
- Exploiter toutes les informations disponibles
- Les couplages multiphysiques peuvent améliorer l'identifiabilité

Remerciements

Inria Reo:

- G. Arbia
- C. Bertoglio
- M. Fernández
- C. Grandmont
- S. Pant
- I. Vignon-Clementel
- M. Vidrascu

Inria Medisim:

- D. Chapelle
- P. Moireau

Stanford / KCL:

- A. Figueroa
- C. Taylor
- N. Xiao