Chaire Informatique et sciences numériques

1. Sciences des images médicales

Les grandes classes de problèmes + Recalage d'images

Nicholas Ayache

29 Avril 2014

Images médicales

TDM (scanner)

TEP

Echographie

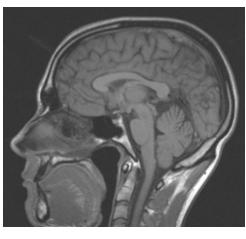
Nicholas Ayache 29 Avril 2014

Le patient numérique personnalisé Images, médecine & informatique

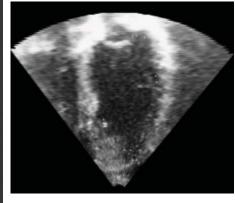
Structure et fonction

TDM (Scanner X)

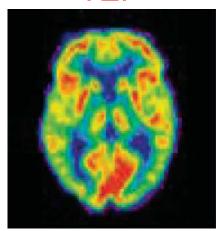
IRM

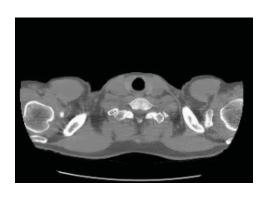


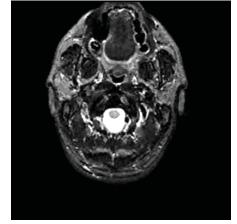
Echographie

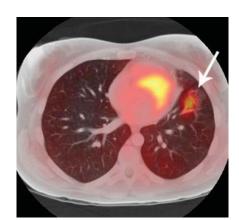


TEP









Source :H. Fujita

Nicholas Ayache 29 Avril 2014 Le patient numérique personnalisé Images, médecine & informatique

Plus d'images

Elastographie (IRM, US, etc.)

Endomicroscopie confocale

 Tomographie de cohérence optique (OCT)

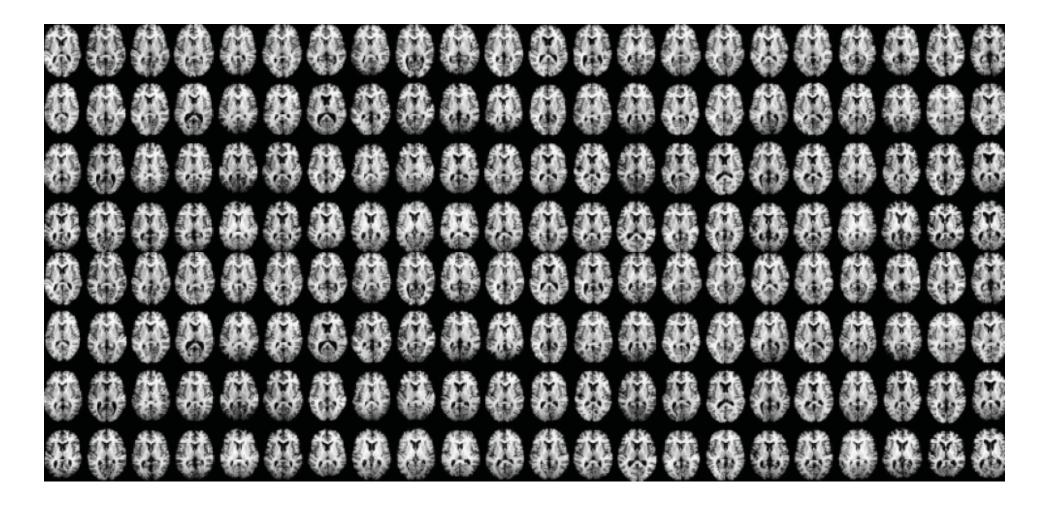
MEG, EEG

• etc.

Supersonic Imagine, Biospace, Eos Imaging, Mauna Kea Technologies,...

Images interventionnelles

Sur la Toile



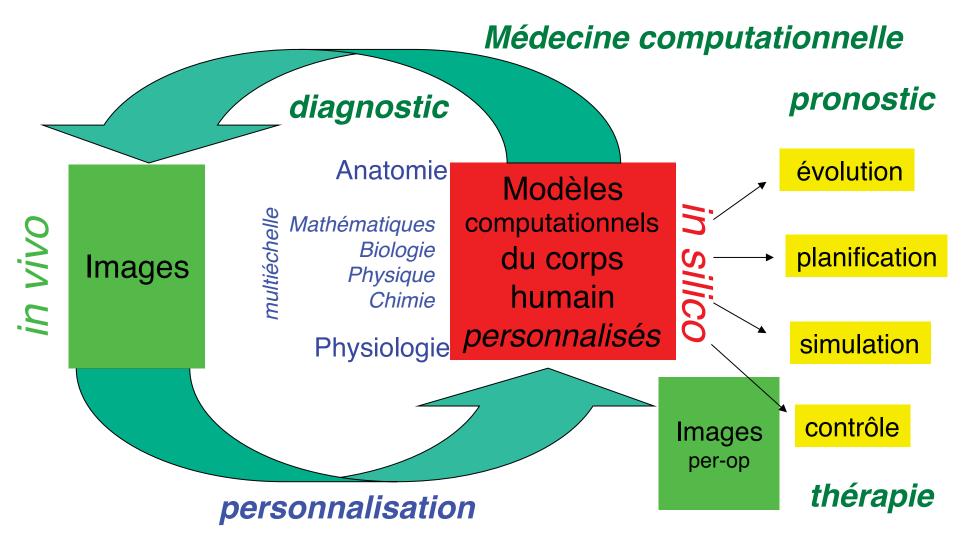
Imagerie médicale computationnelle

Extraire information cliniquement pertinente

La traiter dans un cadre unifié

Patient numérique

Patient numérique



- N Ayache, P Ciarlet, JL Lions (Editors) Computational Models for the Human Body, Elsevier, 2004
- N Ayache, A Frangi, P Hunter, R Hose, I Magnin, M Viceconti et al. Towards Virtual Physiological Human, European White Paper, 2005

Sciences des images médicales

 Comment présenter la recherche « en train de se faire » ?

- Fondations algorithmiques, mathématiques et biophysiques
- Grandes classes de problèmes

Spécialités cliniques

Radiothérapie

Cardiologie

Chirurgie

Oncologie

Radiologie

Orthopédie

Neurologie

Psychiatrie Gastroentérologie

Sénologie

Endoscopie

Dermatologie

Anatomopathologie Urologie

Gynécologie

Ophtalmologie

Nicholas Ayache 29 Avril 2014

Le patient numérique personnalisé Images, médecine & informatique

Méthodes et algorithmes

Détection

Segmentation

Fusion

Visualisation

Mouvement

Recalage

Atlas

Interprétation

Statistiques Compression

Apprentissage

Suivi

Indexation

Parcimonie

Assimilation

Localisation

Reconstruction

Morphométrie

N. Paragios, J. Duncan, N. Ayache Handbook of Medical Imaging, 2014

Nicholas Ayache 29 Avril 2014 Le patient numérique personnalisé Images, médecine & informatique

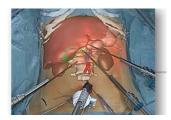
Sciences des images médicales

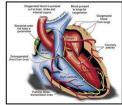
- Une sélection de méthodes générales et d'applications spécialisées
- Chaque cours complété par 2 séminaires :
 - éclairage complémentaire (méthodologique, clinique)
 - illustration de l'état de l'art, avec le colloque de clôture

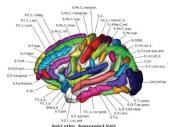
Les cours

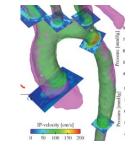
- 1. Recalage
- 2. Segmentation
- 3. Atlas statistiques
- 4. La dimension temporelle
- 5. Imagerie des tumeurs
- 6. Imagerie microscopique in vivo
- 7. Le cœur numérique personnalisé
- 8. Réalité virtuelle, simulation et perspectives

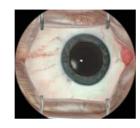
Cours et séminaires	29 avril 2014	Sciences des images médicales : les grandes classes de problèmes + recalage Chirurgie du futur guidée par l'image numérique, Jacques Marescaux, IHU Strasbourg, IRCAD Cardiologie du futur à l'ère du patient numérique, Michel Haïssaguerre, CHU Bordeaux, Université Victor-Segalen, IHU LIRYC
	6 mai 2014	Se repérer dans les images : recalage et segmentation Mesurer le cerveau numérique, Jean-François Mangin, Neurospin Saclay Reconstruction d'organes dans les formes, Hervé Delingette, Inria, Sophia Antipolis
	13 mai 2014	Variabilité anatomique et fonctionnelle : atlas statistiques Phénotype, fonction et génotype, Bertrand Thirion, <i>Inria Saclay Île-de-France, CEA, DSV, I2BM, Neurospin</i> Statistiques de formes et variétés anatomiques, Xavier Pennec, <i>Inria Sophia Antipolis</i>
	20 mai 2014	La dimension temporelle : quantifier une évolution La neuro-imagerie à l'ère du patient numérique, Stéphane Lehéricy, IHU Pitié Salpêtrière Biomarqueurs d'imagerie dans les pathologies cérébrales, Christian Barillot, CNRS, Inserm, Inria Rennes
	27 mai 2014	Imagerie des tumeurs : modèles biophysiques pour mesurer et prédire Neurochirurgie guidée par l'image, Emmanuel Mandonnet, Hôpital Lariboisière Radiothérapie guidée par l'image, Jocelyne Troccaz, TIMC Grenoble, CNRS
	03 juin 2014	Imagerie microscopique in vivo : mosaïques numériques et indexation Les enjeux médicaux de l'endomicroscopie, Stanislas Chaussade, Hôpital Cochin Des étoiles aux cellules, de la recherche à l'entreprise, Sacha Loiseau, Mauna Kea Technologies
	10 juin 2014	Le cœur numérique personnalisé : diagnostic, pronostic et thérapie Images et signaux cardiaques : état de l'art et futur, Pierre Jaïs, CHU Bordeaux, Université Victor-Segalen, IHU LIRYC Vers un système vasculaire numérique, Jean-Frédéric Gerbeau, Inria UPMC
	17 juin 2014	Réalité virtuelle, simulation, et perspectives Réalité augmentée en endoscopie et chirurgie, Luc Soler, IRCAD/IHU, Strasbourg Simulation en médecine : présent et futur, Stéphane Cotin, Inria











09h10 Biophysical Models for Cancer Imaging Michael Brady, *University of Oxford, United Kingdom*

09h50 Learning Clinical information from Medical Images

Daniel Rueckert, *Imperial College London, United Kingdom*

10h30 Spatiotemporal Analysis of Brain Development and Disease Progression Guido Gerig, *University of Utah*, *United States*

11h10 Break

11h20 Decision Forests in Medical Image Analysis
Antonio Criminisi, *Microsoft Research, United Kingdom*

12h00 Computational Physiology: Connecting Molecular Systems Biology with Clinical Medicine

Peter Hunter, University of Auckland, New Zealand

Olivier Faugeras, Inria, Université de Nice Sophia Antipolis

14h50 Model-Based Biomedical Image Analysis
James Duncan, *Yale University, United States*

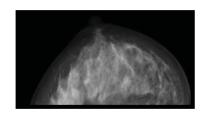
15h30 Multi-Scale Image-Guided Interventions
David Hawkes, *University College London, United Kingdom*

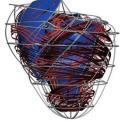
16h10 Break

16h20 Augmented Reality in the Operating Room
Nassir Navab, *Tech. Univ. Munich, Germany & J. Hopkins Univ., United States*

17h00 Towards Image-Based Personalized Medicine

Dorin Comaniciu, Siemens Corporate Technology, United States



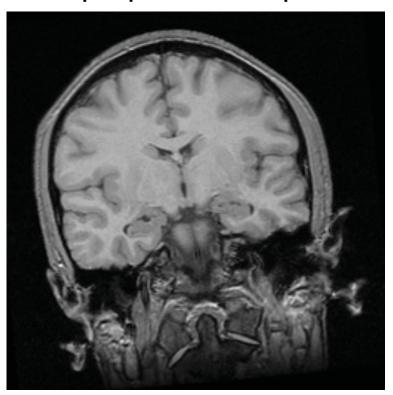


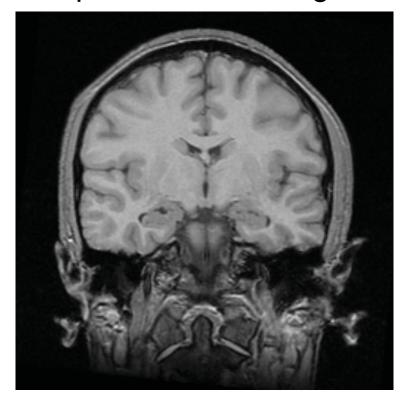
Se repérer dans les images médicales: recalage et segmentation

1. Le recalage

Le recalage - c'est quoi?

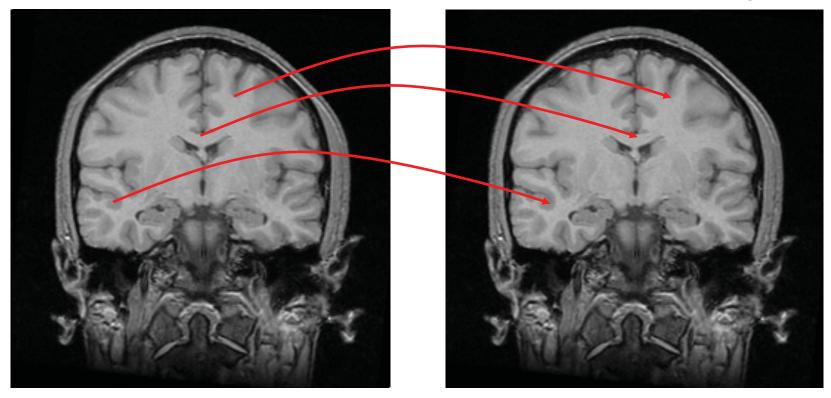
 Aligner une image source avec une image cible en superposant les points anatomiquement homologues





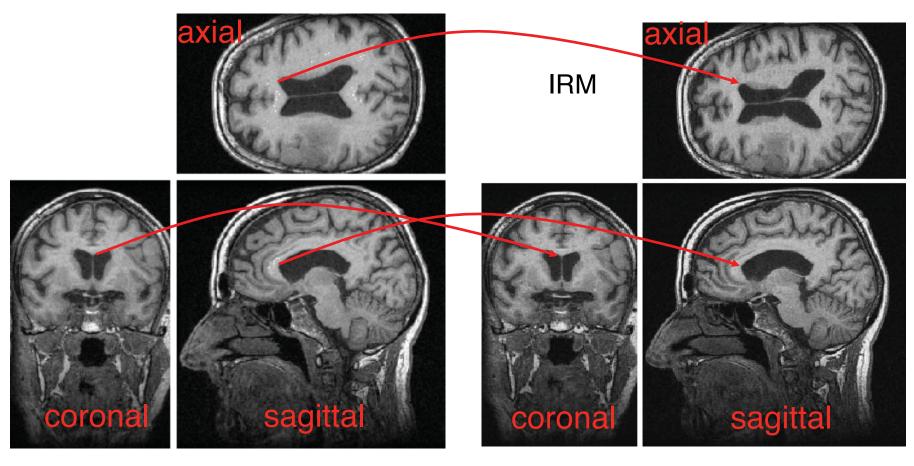
Le recalage - c'est quoi?

 Aligner une image source avec une image cible en superposant les points anatomiquement homologues



Images 3-D

IRM Cérébrale (+20-100 millions de voxels)



Le patient numérique personnalisé Images, médecine & informatique

Le recalage – pourquoi?

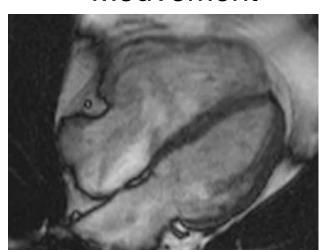
- Un problème central en imagerie
 - Suivre une évolution temporelle
 - différences entre 2 examens (étude longitudinale)
 - mouvement d'un organe dynamique (cœur, poumon), d'une articulation
 - Fusionner des images complémentaires
 - Structurelles, fonctionnelles, pré et per-op...
 - Étudier une population
 - construire un atlas statistique,
 - le superposer sur un patient

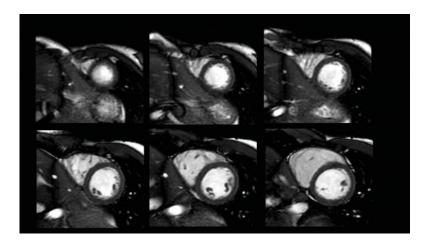
Maintz-Viergever 1997;

Sotiras-Davatzikos-Paragios 2013

Evolution temporelle

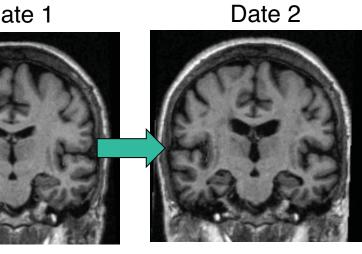
Mouvement

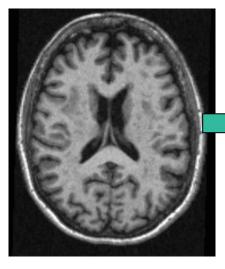


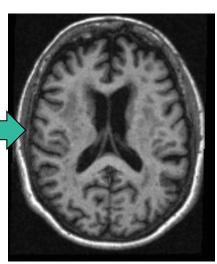


Nicholas Ayache 29 Avril 2014

Evolution

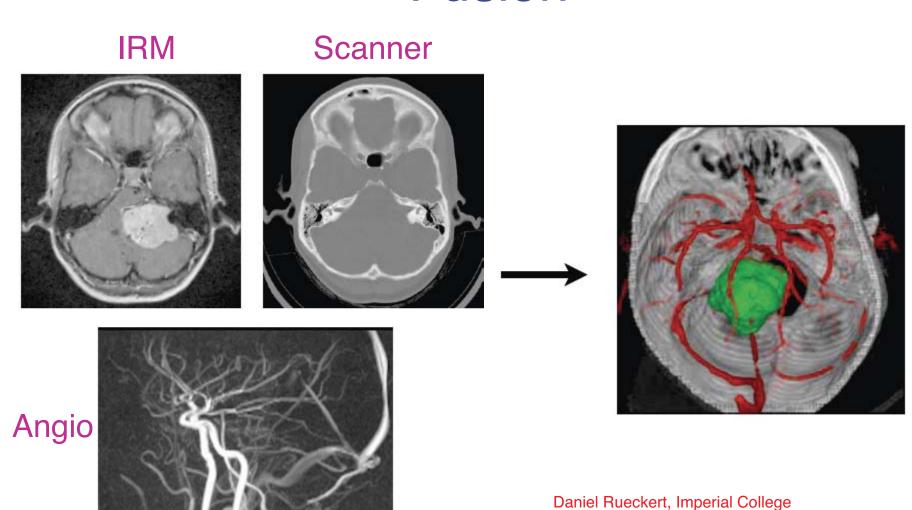






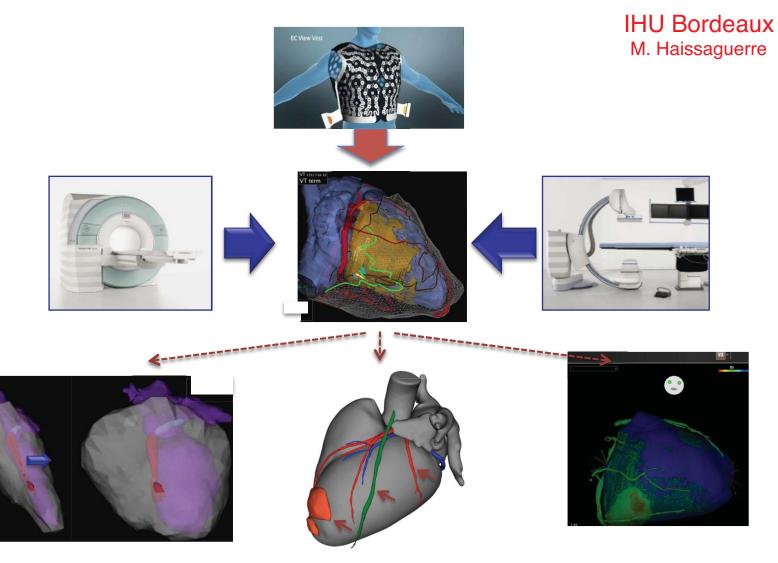
Le patient numérique personnalisé Images, médecine & informatique

Fusion



Le patient numérique personnalisé Images, médecine & informatique

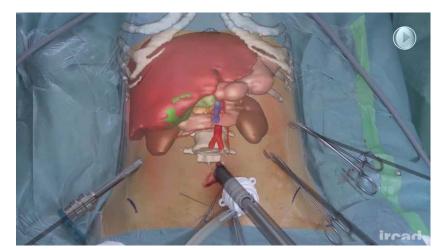
Fusion



Nicholas Ayache 29 Avril 2014

Le patient numérique personnalisé Images, médecine & informatique

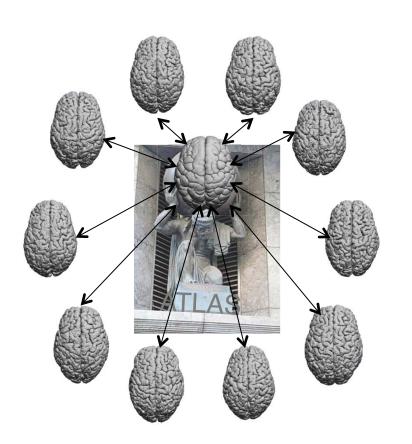
Fusion : Réalité Augmentée

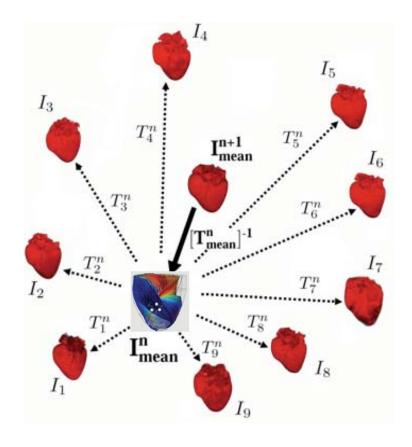


IHU Strasbourg J. Marescaux

S. Nicolau, Xavier Pennec, Luc Soler, X. Buy, A. Gangi, N. Ayache, and J. Marescaux. *An Augmented Reality System for Liver Thermal Ablation: Design and Evaluation on Clinical Cases.* Medical Image Analysis, 2009.

Atlas statistique





Atlas pour la neurochirurgie

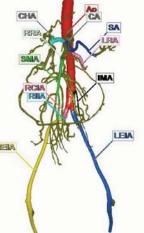
• Electrostimulation de patients parkinsoniens

IHU Pitié Salpêtrière Y. Agid

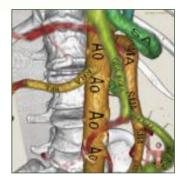


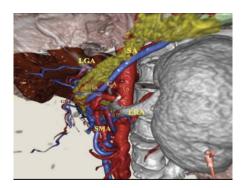
J Yelnik, E Bardinet, D Dormont, G Malandain, S Ourselin, D Tande, C Karachi, N Ayache, P Cornu, Y Agid. Neuroimage, 2007

Atlas vasculaire pour la chirurgie digestive



- Abdominal aorta (Ao)
- Celiac artery (CA)
- Right renal artery (RRA)
- Left renal artery (LRA)
- Common hepatic artery (CHA)
- Splenic artery (SA)
- Superior mesenteric artery (SMA)
- Inferior mesenteric artery (IMA)
- · Right and left internal iliac arteries (RIIA+LIIA)
- · Right and left common iliac arteries (RCIA+LCIA)
- Right and left external iliac arteries (REIA+LEIA)



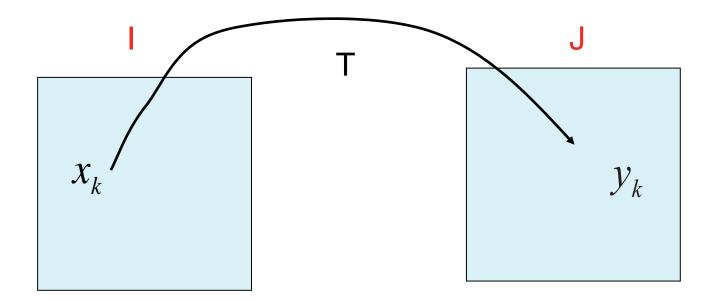


Kensaku Mori, Univ. of Nagoya

Nicholas Ayache 29 Avril 2014 Le patient numérique personnalisé Images, médecine & informatique

Le recalage – comment?

 Déterminer la transformation géométrique T qui superpose les points x de l'image source I sur les points homologues y de l'image cible J



Le recalage – comment?

- Quel modèle de transformation?
 - Rigide à déformable et non linéaire
 - de 6 degrés de liberté à plusieurs millions (infinité)
- Que met-on en correspondance?
 - points singuliers : dizaines milliers
 - tous les voxels : plusieurs millions
- Avec quels algorithmes?

Transformations

- Linéaires
 - rigide (6)
 - similitude (7)
 - affine (12)
 - projective (11)

- Non linéaires
 - polyrigide
 - polyaffine
 - spline (1000+)
 - libre (3x # voxels)
 - difféomorphisme (infini)

Que mettre en correspondance? 2 approches:

- 1 Marqueurs (features)
 - Appariement de points singuliers (artificiels/anatomiques)
 - Influencée par la vision par ordinateur et la puissance limitée des ordinateurs au 20^{ème} siècle.
 - D'abord appliqué au recalage rigide, affine, monomodal

Que mettre en correspondance? 2 approches:

- 2 Iconique (intensity-based)
 - Comparaison des intensités de tous les voxels
 - Rendue possible par l'accélération des ordinateurs.
 - Recalage déformable non linéaire et multimodal

1. Recalage de marqueurs

- Quels marqueurs
 - artificiels ou naturels?

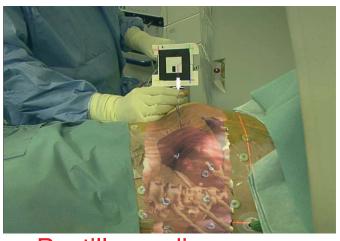
Quels algorithmes de recalage?

Marqueurs artificiels

Invasifs

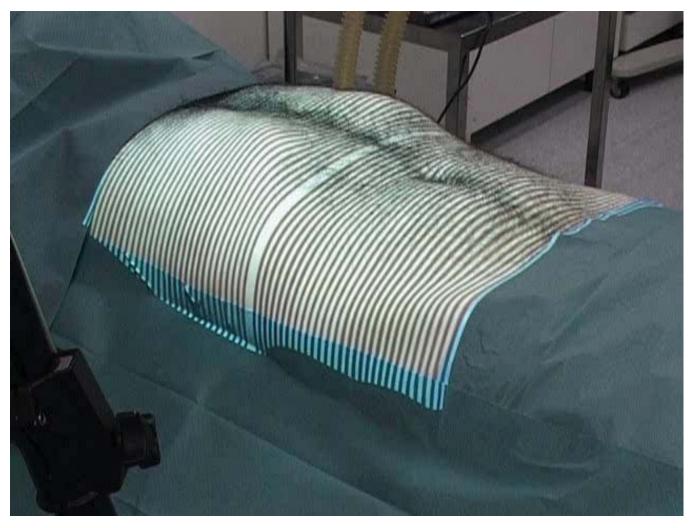
Durée

Externes



Pastilles radio-opaques

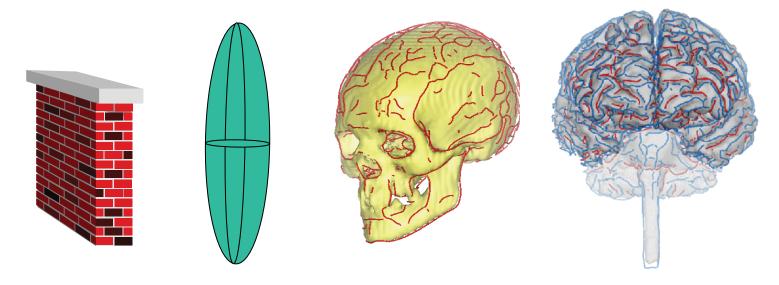
Mouvement interne



Luc Soler

Marqueurs naturels

 Singularités géométriques sur les surfaces anatomiques.

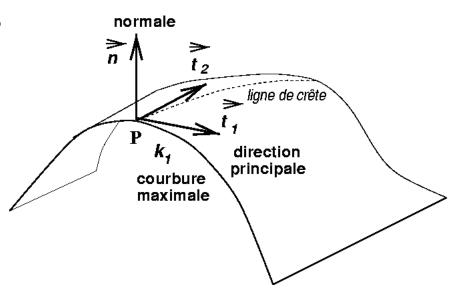


 Généralisation des arêtes et des sommets sur des surfaces lisses

Lignes de Crêtes Points Extrémaux

 Définis à partir des propriétés différentielles des surfaces anatomiques;

 Correspondent à des valeurs extrémales d'une ou deux courbures principales.

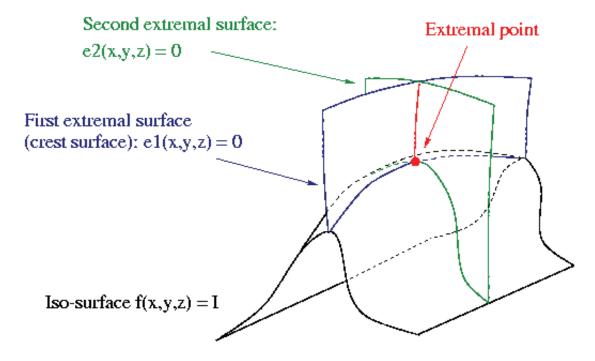


X. Pennec, N. Ayache and J.P. Thirion: *Landmark-Based Registration Using Features Identified Through Differential Geometry*, Handbook of Medical Imaging, Chapter 31, Academic Press, 2000.

Lignes de Crêtes Points Extrémaux

Intersection de 2 ou 3 surfaces implicites

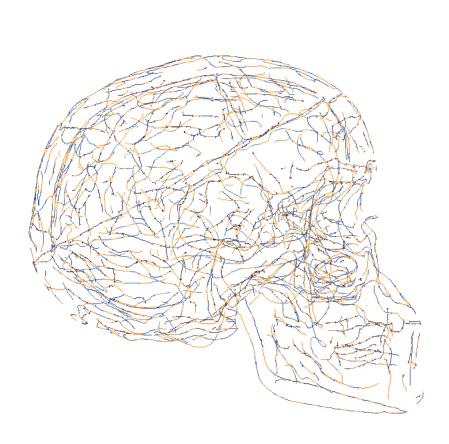
$$f(x,y,z) = I$$
 $e_1 = \nabla k_1 \cdot t_1 = 0$ $e_2 = \nabla k_2 \cdot t_2 = 0$

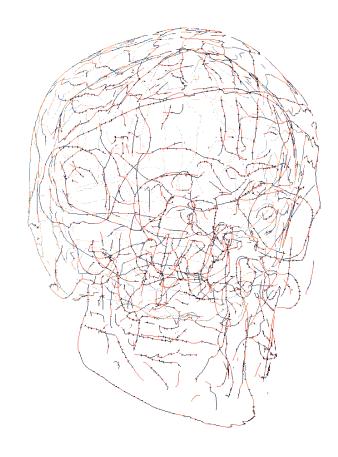


Mise en Œuvre

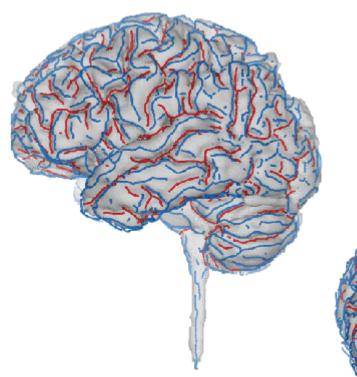
- Calcul en chaque voxel de la valeur des critères d'extrémalité à partir des dérivées de l'intensité f(x,y,z); (Théorème des fonctions implicites)
- Les dérivées de f(x,y,z) sont approximées par des produits de convolution discrets de l'image avec les dérivées de la fonction de Gauss
- Suivi de la ligne d'intersection des surfaces implicites par l'algorithme du Marching Line

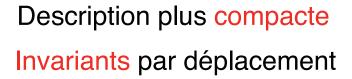
Lignes et points extrêmaux (scanner X)

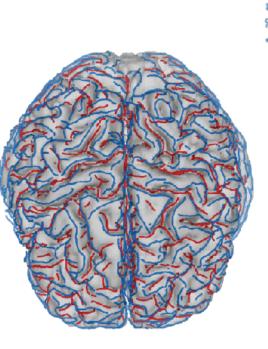


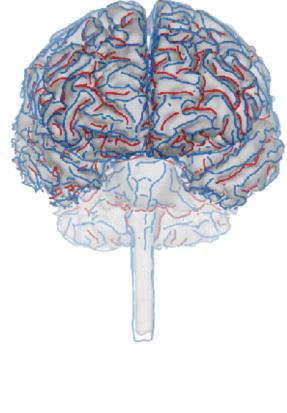


Cortex : Lignes de crêtes (IRM)





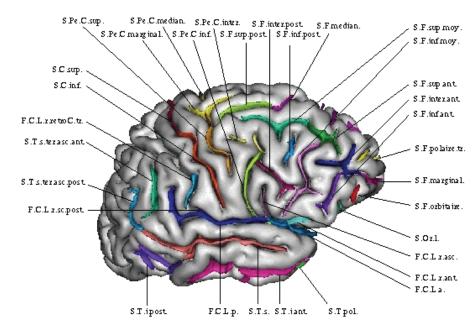




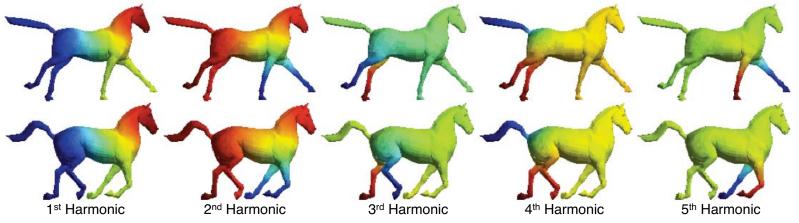
Nicholas Ayache 29 Avril 2014 Le patient numérique personnalisé Images, médecine & informatique

Autres marqueurs « naturels »

- Morphologie mathématique
- SIFT (Scale Invariant Feature Transform)
 - DG Lowe, Pami 2004
- Analyse spectrale
 - · Lombaert et al., IJCV 2014



JF. Mangin, D. Rivière, 2003, SHFJ-CEA



Recalage de « marqueurs »

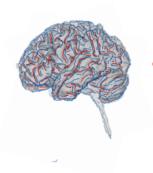
- Quels marqueurs
 - artificiels ou anatomiques?

Quels algorithmes de recalage?

Algorithmes de recalage de marqueurs

- Optimiser 2 objectifs antagonistes
 - Maximiser le nombre de marqueurs appariés
 - Minimiser les distances entre points recalés
- Quelques algorithmes populaires:
 - Prédiction et vérification d'hypothèses
 - Hachage géométrique
 - Plus proche voisin itéré (ICP:Iterative Closest Point) Besl McKay 92

Prédiction-Vérification

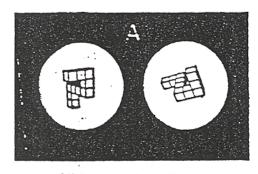


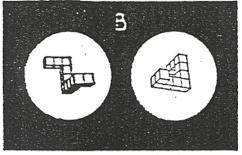
• Prédiction:

- Sélectionner k couples de marqueurs permettant de prédire T
 - T rigide: k = 3 points ou 1 repère
 - T affine: k = 4 points

Vérification:

- Appliquer T et vérifier la qualité de l'alignement
- Solution:
 - Hypothèse qui produit le maximum de superpositions







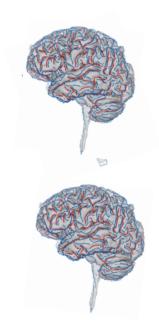
COLLÈGE 45

X. Pennec, N. Ayache and J.P. Thirion: *Landmark-Based Registration Using Features Identified Through Differential Geometry*, Handbook of Medical Imaging, Chapter 31, Academic Press, 2000.

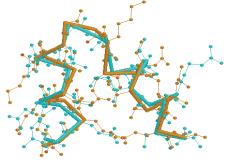
Estimation de T

 On peut estimer T aux moindres carrés sur les appariements courants puis raffiner T récursivement avec un filtre de Kalman

Ayache - Faugeras, IEEE Pami 1984



 On peut prédire les hypothèses par hachage géométrique

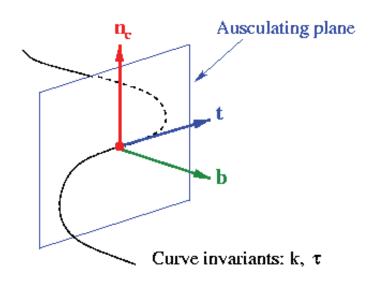


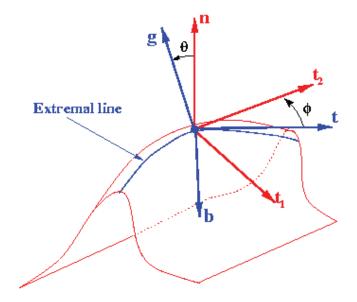
Recherche de motifs communs dans les protéines

Pennec- Ayache - Bioinformatics 1998

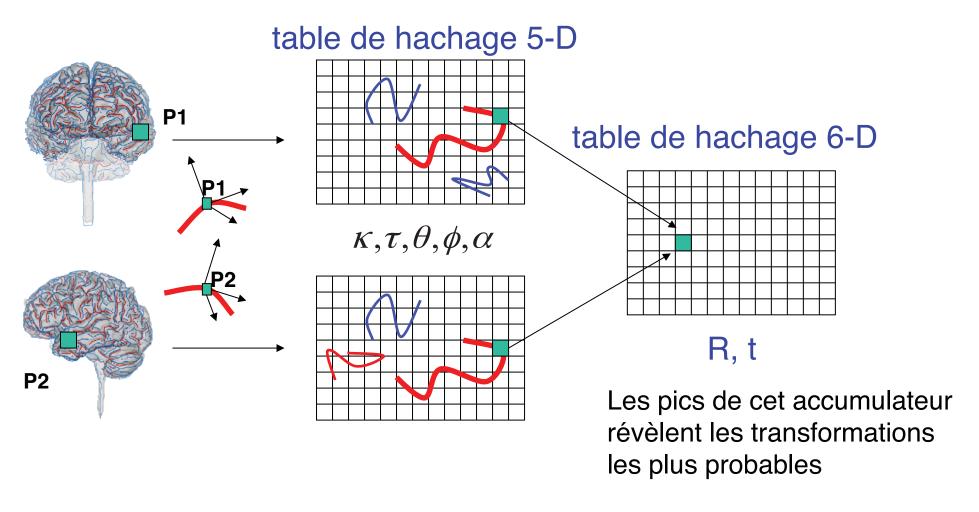
Prédiction par Hachage Géométrique

- Exploiter les invariants géométriques des marqueurs
 - Courbure, torsion,
 - angles entre repère de Frénêt et repère de la surface

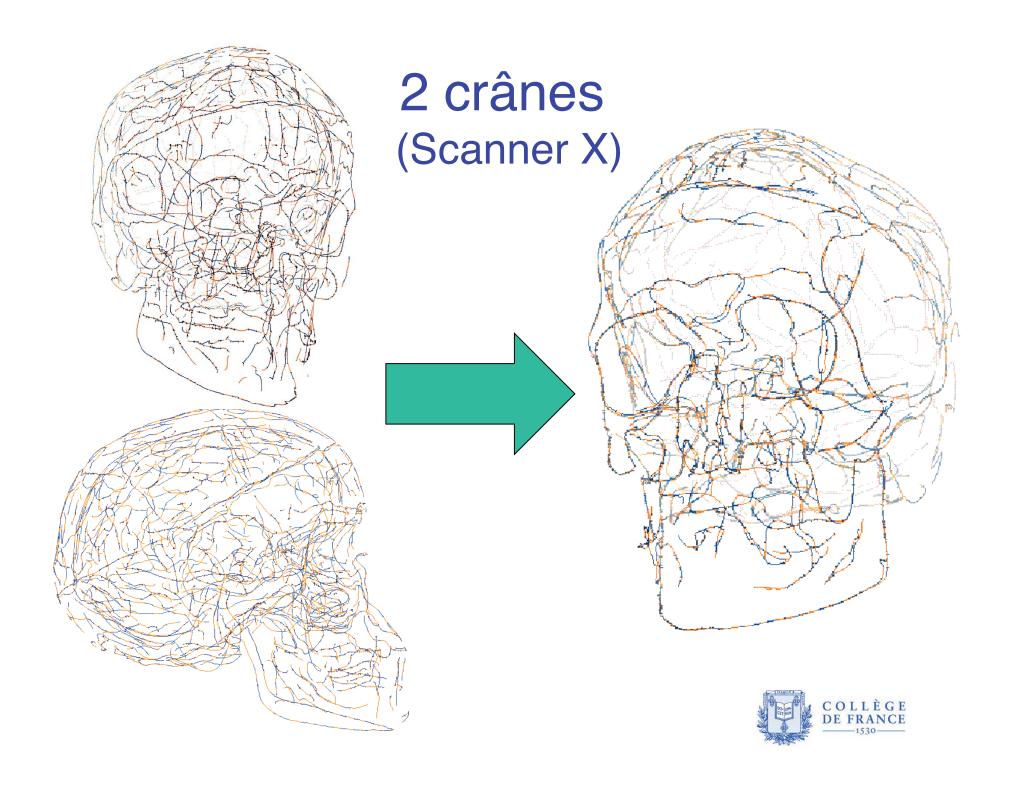


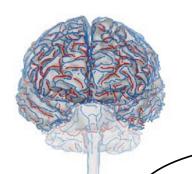


Hachage géométrique



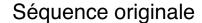
Guéziec-Pennec-Ayache'97

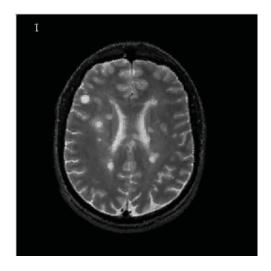




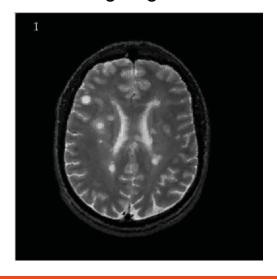
Cerveau (IRM)

sclérose en plaques

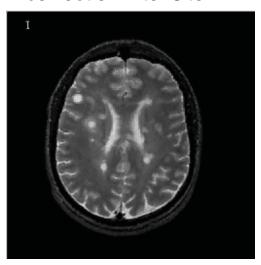




recalage rigide



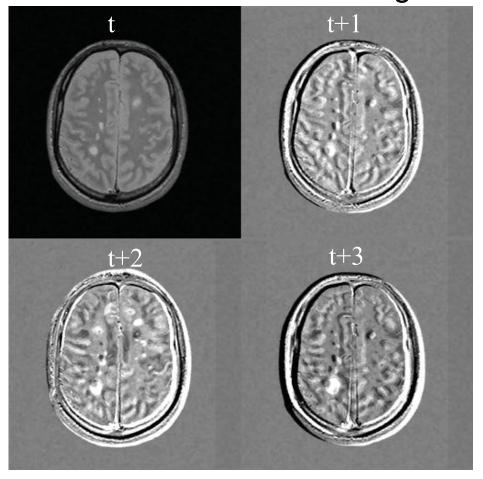
+ correction intensité

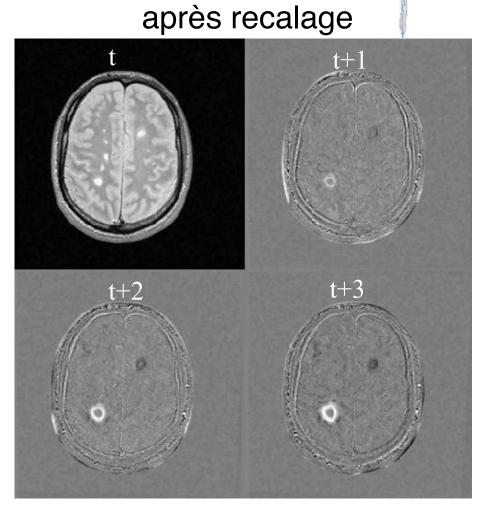


Patient suivi pendant 18 mois (24 acquisitions)

Image acquisition: R. Kikinis

Comparaison d'images

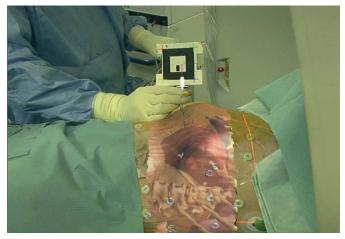




Conclusion : recalage de marqueurs

Avantages

- automatiques (pas d'initialisation)
- rapides (après la segmentation)
- robustes (exclusion points aberrants)
- marqueurs artificiels & naturels

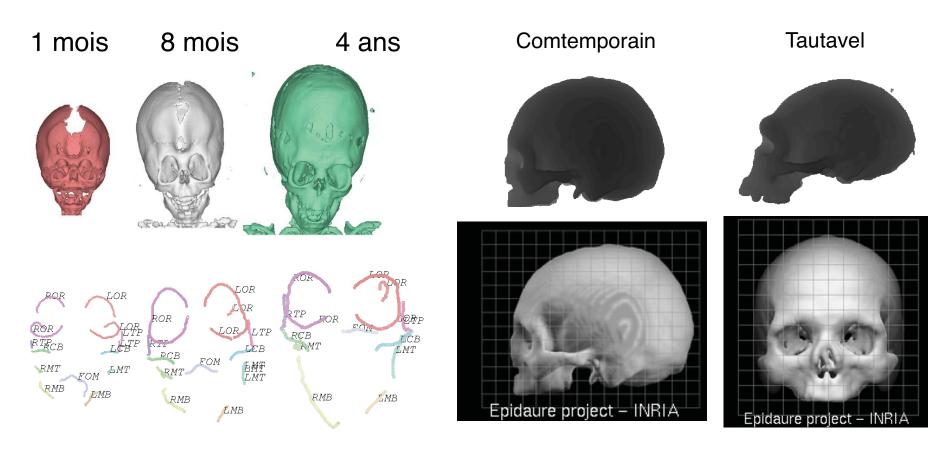


Nicolau, Pennec, Soler, Buy, Gangi, Ayache, Marescaux 2009

Limitations

- Extraction marqueurs dans les images
- Stabilité aux transformations de l'image

Le crâne à travers les ages



Subsol-Thirion-Ayache, Medical Image Analysis 1998.

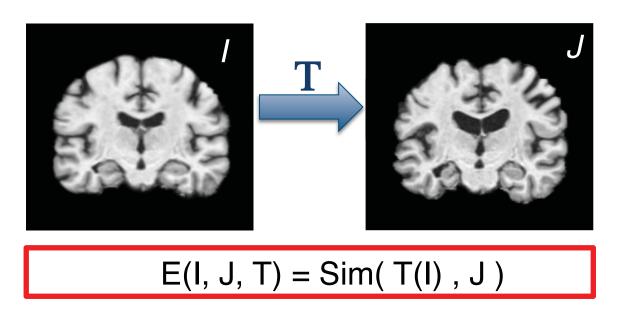
Subsol-Meline-Mafart- De Lumley 2002

2. La "révolution" iconique

- Prendre en compte tous les voxels
 - segmentation préalable inutile!
- Critère de ressemblance « iconique »
 - Comparer les intensités des points alignés
- Déformations « libres »

Un problème d'optimisation

Energie : ressemblance iconique



- questions clefs:
 - quelle mesure de ressemblance?
 - quelle transformation?

+ quel algorithme d'optimisation

Mesures de ressemblance

Somme des différences au carré

$$d^{2} = \sum_{k} (I(T(x_{k})) - J(x_{k}))^{2}$$

- la plus populaire, énergie facile à dériver, mais très sensible aux variations des paramètres de la machine (IRM), pas adaptée au modalités différentes
- Coefficient de Corrélation :

$$\rho^2 = \frac{Cov^2(T(I), J)}{Var(I)}$$

- Autorise une transformation affine globale de l'intensité
- Un peu plus robuste, mais pas adapté au variations locales de l'intensité de l'IRM, ni aux images multimodales

Théorie de l'information

Colignon 95 - Viola 1995

Information Mutuelle:

$$IM(I^*, J) = H(I^*) + H(J) - H(I^*, J)$$

$$I^* = T(I)$$

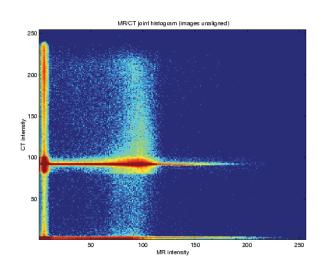
- Exploite l'entropie de Shannon H : $H(J) = \sum_{j} (p(j) \log(p(j)))$
 - maximum pour la distribution uniforme p(j) = constante
- Maximiser IM revient à minimiser l'entropie conjointe

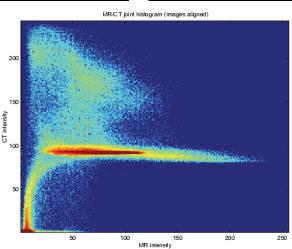
$$H(I^*,J)$$

Permet de recaler images multimodales sans segmentation préalable

Scanner - IRM

Avant recalage

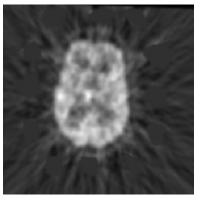


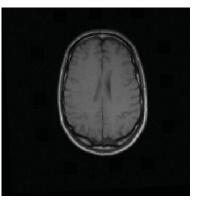


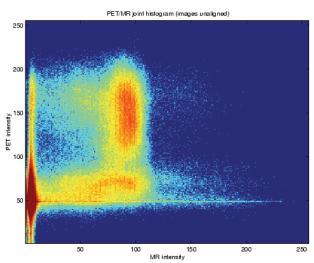
Après recalage

TEP-IRM

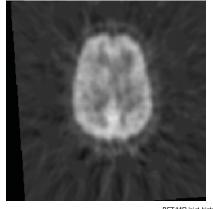
Avant recalage

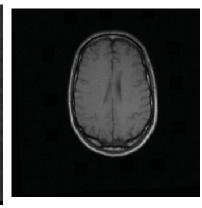


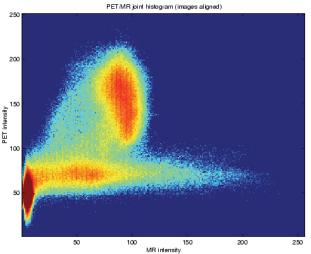




Après recalage

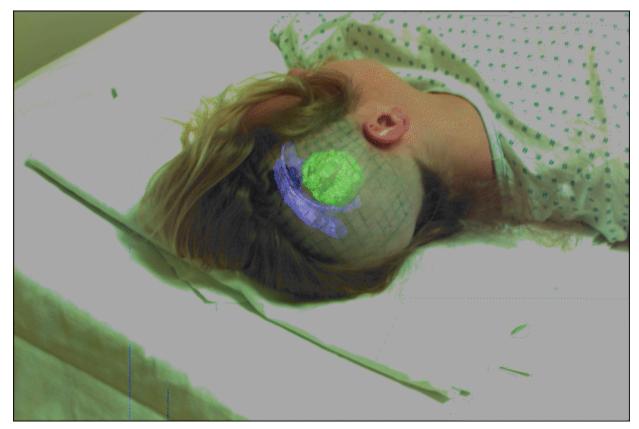






Nicholas Ayache 29 Avril 2014

IRM et Vidéo



Viola, Wells, E. Grimson, 1995

Information mutuelle entre intensité vidéo et les 2 composantes de la normale de la surface du crâne dans l'image IRM

Note historique

Minimiser Entropie

Collignon, Vandermeulen, Suetens, Marchal, CVRMed,
 2-4 Avril 1995, Nice, Fr.

Maximiser Information Mutuelle

- Viola, Wells, ICCV, 20-23 Juin 1995, Boston, USA
- Collignon, Maes, Delaere, Vandermeulen, Suetens, Marchal, IPMI, 26 Juin 1995, Berder, Fr.

Quel critère Choisir?

- Alexis Roche dans sa thèse se place dans un cadre statistique et montre que le critère de ressemblance à utiliser dépend de la relation physique connue entre les intensités des images.
- Il retrouve les principaux critères utilisés, et introduit un nouveau critère si une relation fonctionnelle existe entre les 2 images: le rapport de corrélation

A. Roche, G. Malandain and N.Ayache: *Unifying maximum likelihood approaches in medical image registration*. International Journal of Imaging Systems and Technology: Special Issue on 3D Imaging, 2000.

Critère optimal

Identité : somme des différences au carré

$$ssd^{2} = \sum_{k} (I * (x_{k}) - J(x_{k}))^{2}$$

$$I^* = T(I)$$

Relation entre I et J

Affine: Coefficient de corrélation

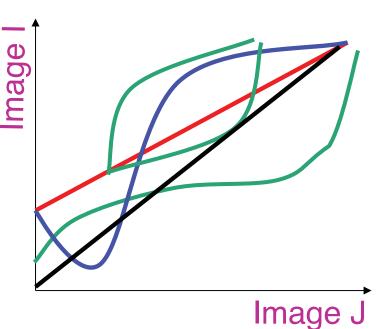
$$\rho^2 = \frac{Cov^2(I^*, J)}{Var(I^*)}$$

Fonctionnelle: rapport de corrélation

$$\eta^2 = 1 - \frac{Var(E(I^*/J))}{Var(I^*)}$$

Statistique : information mutuelle

$$IM(I^*, J) = H(I^*) + H(J) - H(I^*, J)$$



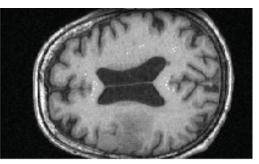
Rapport de corrélation bivarié

IRM f(),

) =

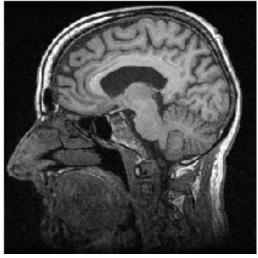
Echo

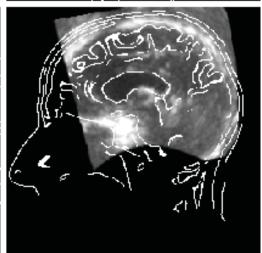
Pré – Opératoire



Per – opératoire recalée



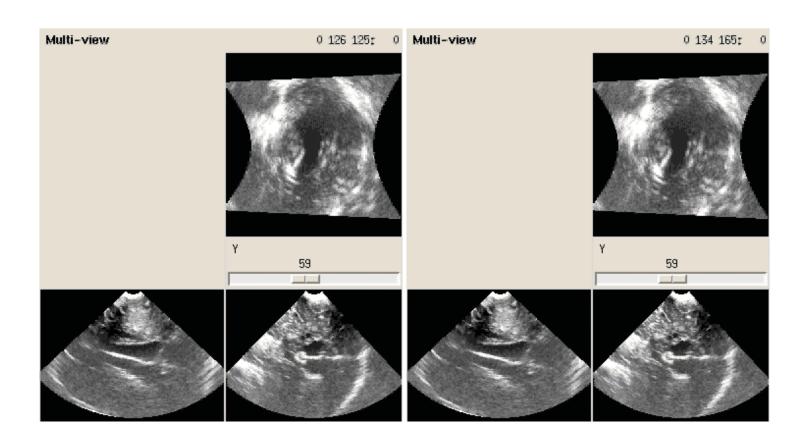




A Roche, X Pennec, G Malandain, N Ayache, IEEE - Trans. Medical Imaging, 2001

Nicholas Ayache 29 Avril 2014 Le patient numérique personnalisé Images, médecine & informatique

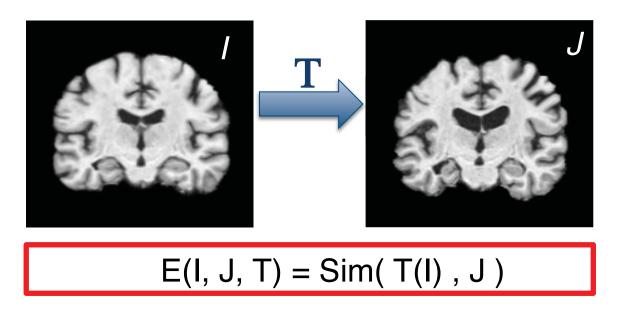
Recalage IRM - Echographie



COLLÈGE 65 DE FRANCE

Un problème d'optimisation

• Energie : ressemblance iconique et régularité



- questions clefs:
 - quelle mesure de ressemblance?
 - quelle transformation?

+ quel algorithme d'optimisation

Libérer la transformation

- Les déformations « libres »
 - Introduire un champ de déplacement sur l'image :
 T(x) = x + u(x)
 - Adjoindre une énergie de régularisation Reg(T)
 - Considérations géométriques, statistiques, ou physiques (élasticité, fluide),
- Ouvre un champ de possibilités immense, recherche toujours très active

Sotiras, Davatzikos, Paragios 2013 : Deformable Medical Image Registration: A Survey

Quelques exemples pour comprendre

 Du modèle élastique de l'image aux flots de difféomorphismes

Modèle physique de déformation

 L'image est assimilée à un matériau élastique ou à un fluide visqueux
 Broit 81, Bajcsy 89, Christensen 94

Elasticité linéaire
$$\mu \nabla^2 u + (\mu + \lambda) \nabla (div(u)) = F$$

Fluide visqueux

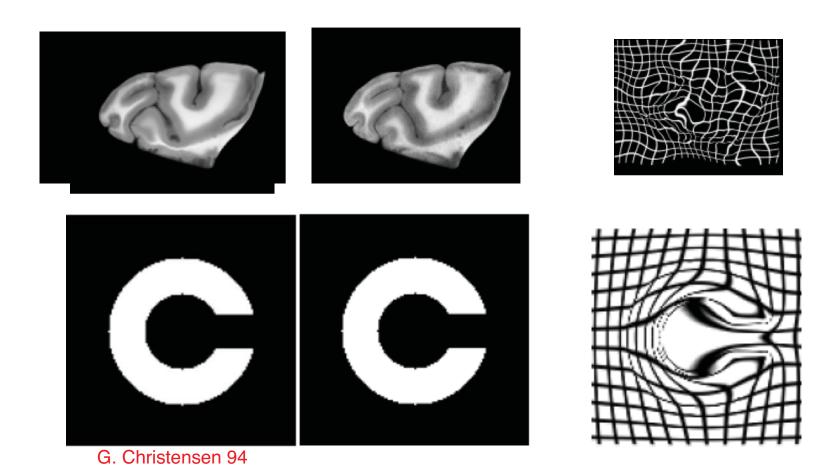
$$\mu \nabla^2 v + (\mu + \lambda) \nabla (div(v)) = F$$

$$\frac{\partial u}{\partial v} = v \quad (\nabla u) v$$

$$\frac{\partial u}{\partial t} = v - (\nabla u) v$$

 Elle se déforme sous l'action de forces locales obtenues en dérivant le critère de ressemblance

Exemples



Problème : temps de calcul!

Algorithme des démons

- Découpler à chaque itération
 - petits déplacements u_{n+1}: démons placés en chaque voxel pour accroitre la ressemblance locale

$$u_{n+1} = \frac{I - J \circ u_n}{\left\|\nabla I\right\|^2 + \left(I - J \circ u_n\right)^2} \nabla I$$

- régularisation de u_{n+1}: par filtrage gaussien
- Très rapide : O(n)

J.P. Thirion: Image Matching as a diffusion process: an analogy with Maxwell's demons. Med. Image Anal. 1998.

Interprétation des Démons

 Il est possible de replacer l'algorithme des démons dans un cadre variationnel pour montrer qu'il minimise bien une énergie globale :

$$E = SDC * + \int \left\| \nabla u \right\|^2$$

X. Pennec, P. Cachier and N. Ayache: Understanding the Demons Algorithm: 3D non rigid registration by gradient descent, MICCAI 1999.

J. Modersitzki: Numerical Methods for Image Registration, Oxford University Press,2004.

Minimisation alternée

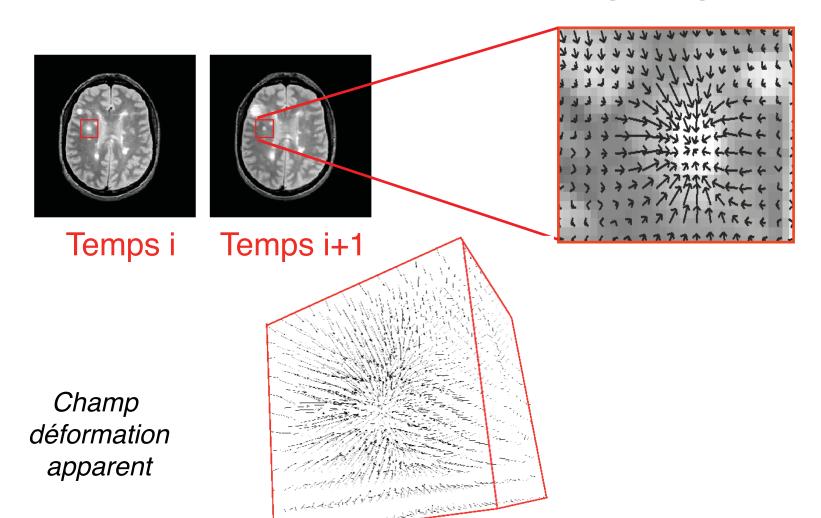
Transformation auxiliaire T_{aux}

$$E(I, J, T, T_{aux}) = Sim(T(I), J) + Dist(T, T_{aux}) + Reg(T_{aux})$$

- Optimisation de T par descente de gradient
- Optimisation de T_{aux} par filtrage

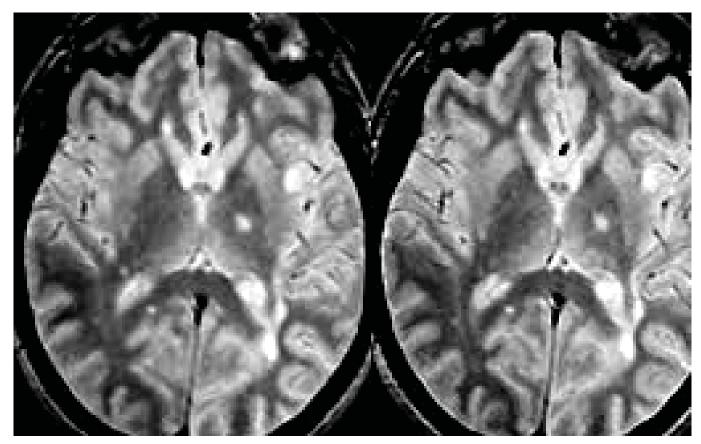
P. Cachier, N Ayache, *Isotropic Energies, Filters and Splines for Vector Field Regulatization,* J. of Mathematical Imaging and Vision, 2004

Evolution sclérose en plaques



Nicholas Ayache 29 Avril 2014 Le patient numérique personnalisé Images, médecine & informatique

Déformations résiduelles apparentes

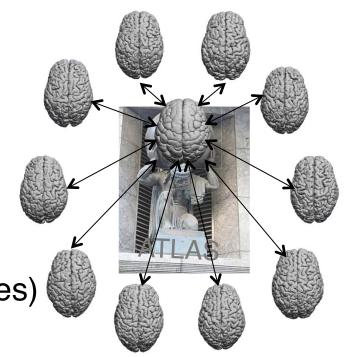


Temps i

Temps i+1 recalé

Difféomorphismes

- Transformations
 - inversibles
 - très régulières (infiniment dérivables)



Idéal

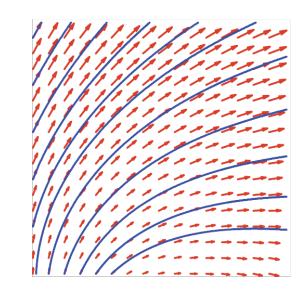
- pour statistiques de déformation (cours 3)
- pour mesurer des évolutions subtiles (cours 4)
- pour construire des mosaïques (cours 6)
- pour analyser le mouvement cardiaque (cours 7)

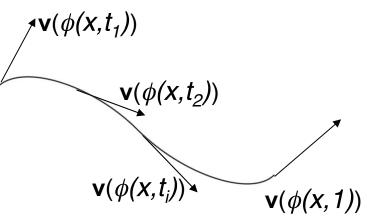
Flots de difféomorphismes

 La transformation φ(x,t) est paramétrée par un champ de vecteurs tangents qui varie au cours du temps

$$\frac{\partial \phi(x,t)}{\partial t} = \mathbf{v}(\phi(x,t),t)$$

Leur intégration pendant une unité de temps (0,1) fournit le déplacement $T(x) = \phi(x,1)$





Trouvé 98, Miller 01, Chefd'hotel 01, Beg 2005, Younes, etc.

LDDMM:

Large Deformation Diffeomorphic Metric Mapping

$$E = Sim(I \circ \phi, J) + \int ||v(t)||_{\mathsf{V}}^{2} dt$$

- Difféomorphisme le plus proche de l'identité qui superpose au mieux I et J
 - Norme de v calculée dans un espace de Sobolev, métrique riemannienne entre images
- Très beaux résultats, notamment pour les grandes déformations, mais coût élevé

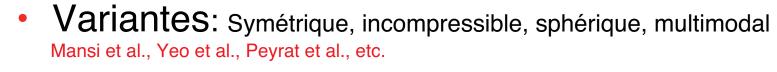
Beg, Miller, Trouvé, Younes, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, IJCV 2005

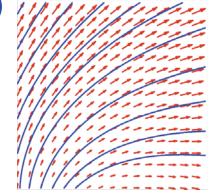
Les log-démons difféomorphes

- Algorithme des démons adapté aux flot de difféomorphismes Vercauteren 08, Lorenzi 13
- Champs de vitesse v stationnaires Arsigny 06

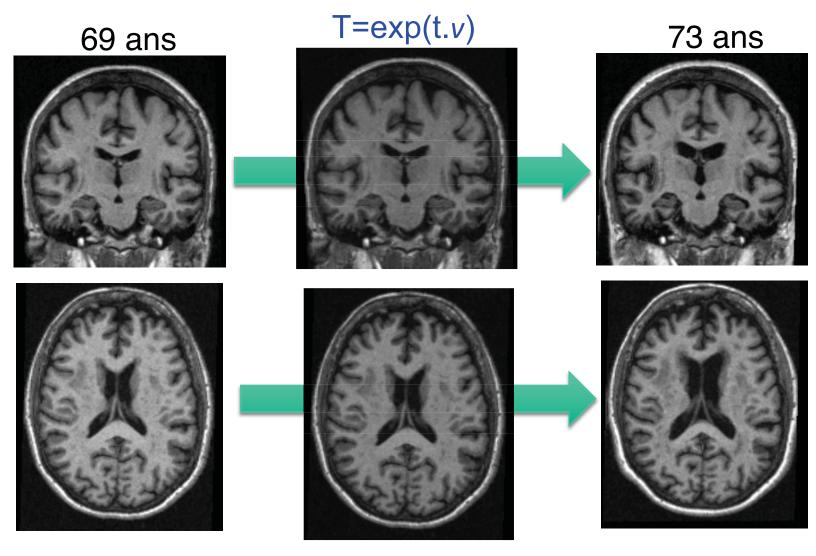
$$T=exp(t.v)$$

- Algorithmes efficaces
 - Minimisation alternée
 - calcul récursif (scaling & squaring),
 - approximation BCH (groupes de Lie)





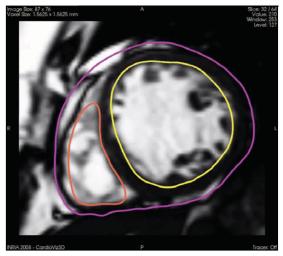
Analyse longitudinale

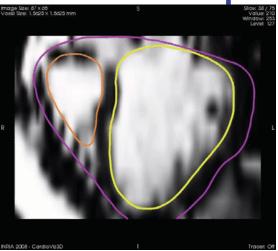


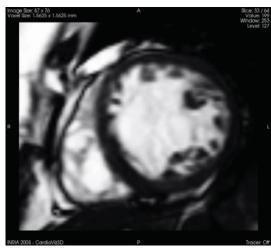
Nicholas Ayache 29 Avril 2014

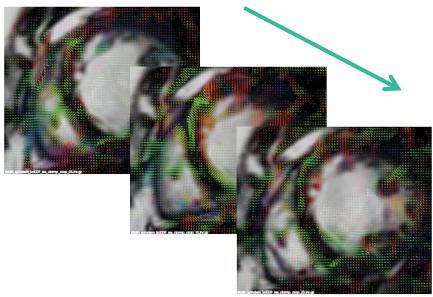
Le patient numérique personnalisé Images, médecine & informatique

Mouvement cardiaque





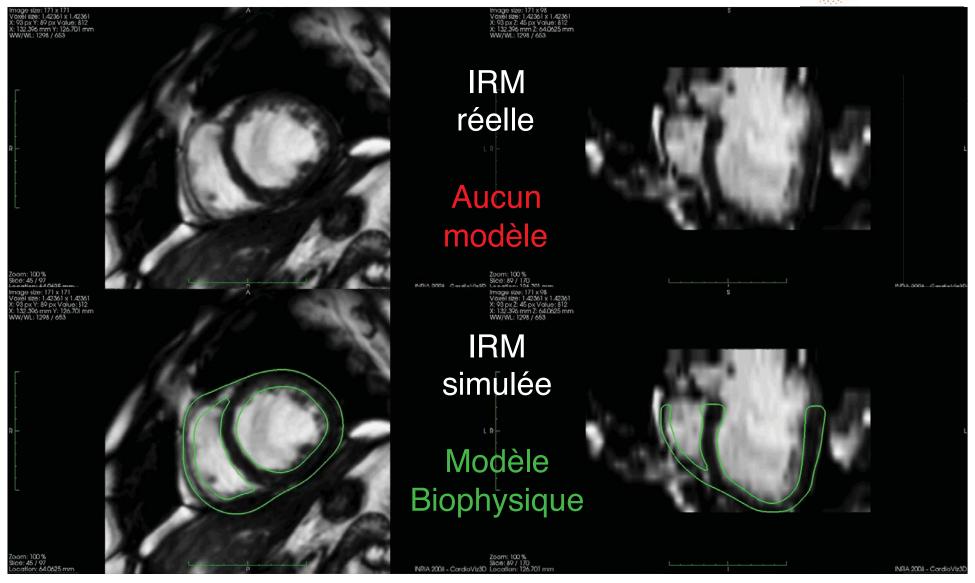




COLLÈGE 81 DE FRANCE

T Mansi, X Pennec, M Sermesant, H Delingette, and N Ayache. iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues. IJCV 2011

Simuler un mouvement

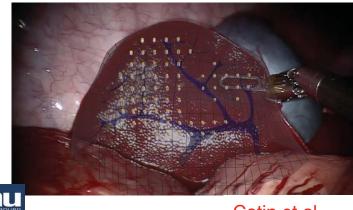


Prakosa, Sermesant, Allain, Villain, Rinaldi, Rhode, Razavi, Delingette, Ayache, IEEE TBME 2013

Nicholas Ayache 29 Avril 2014 Le patient numérique personnalisé Images, médecine & informatique

Recalage: un problème résolu?

- Des problèmes difficiles restent ouverts:
 - Influence du choix de la régularisation Ashburner 2013
 - Quelle validation? Klein Neuroimage 2009
 - Modèles biophysiques (croissance, atrophie, déformation)
 - Temps réel (réalité augmentée)



Cotin et al.

 Nous retrouverons les outils de recalage dans les prochains cours, et dès la semaine prochaine pour guider la segmentation d'images

Séminaires

- Pr. Jacques Marescaux, directeur de l'IHU de Strasbourg
 - Chirurgie du futur guidée par l'imagerie
- Pr. Michel Haïssaguerre, directeur de l'IHU de Bordeaux
 - · Cardiologie du futur à l'ère du patient numérique

