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Climate Policy, “Prudence,” and the Role of Technalgical
Innovation

Abstract

We study how uncertainty about climate change ssadifects the relative benefits of early
abatement and a portfolio of research and develop(®&D) in lowering future abatement costs.
Optimal strategies depend on the curvature ofuhetfons for marginal benefits and particularly for
marginal abatement costs (MAC)—that is, prudenceater (less) convexity in MAC implies greater
(less) emphasis on early abatement in responsecrtainty. R&D may change the shape of the MAC
curve and the need for additional early abatenWith competing technologies, uncertainty’s influenc
on the optimal R&D portfolio is more complex. Whethinvestment in a particular technology should
increase depends on whether uncertainty increhegadentives for early abatement; whether investme
lowersmarginalcosts for that technology; whether R&D lowers stapeof that technology’s marginal
cost function; and the shape of that technologyasgimal cost function. We illustrate, focusing ae t
role of backstop technologies.
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Climate Policy, “Prudence,” and the Role of Technalgical
Innovation

Introduction

The ultimate goal of climate policy is to stabilgeeenhouse gas (GHG) concentrations
at a level that is sustainable both ecologically aconomically. However, the determination of
this level is difficult due to the uncertaintiesgaophysical and ecological sciences as well as in
the costs of de-carbonizing economies (e.g., Hedlkaistrom 2002). Thus, the policy problem
for planning long-term reductions in carbon emissi® complicated by uncertainty (see also
Dietz and Stern 2008).

Two types of policy tools are important to dealhwitimate change. First are policies that
encourage abatement directly, such as carbon textesdable emissions permits, and possibly
instruments to encourage non-fossil energy or awaten. Second, as heavily emphasized in
the Stern Review (2006), are technology policies fbcus on bringing down the costs of
reducing carbon emissions. Examples include reBeard development (R&D) investments in
new technologies for energy supply or improveménenergy efficiency. Importantly, the two
types interact because the presence of abatenuemtivies increases the returns to R&D in
reducing the cost of technologies, and the costiseofechnologies determine how much
abatement can be afforded. Because carbon dioRidg (s essentially a stock pollutant,
policies to manage long-term concentrations hamelility in timing. If more abatement is done
early, then less will have to be done in the futoresach any given target. R&D investment
lowers the costs of reducing emissions in the &tlihere is currently considerable

disagreement about how much the global communitylshspend on early abatement versus



R&D for future technologies. The Kyoto protocol gnasizes abatement while some other
initiatives, such as the U.S.-sponsored Asia-Rapd#irtnership, put more emphasis on R&D.

When the future target is uncertain, both actisifecilitate the adoption of more
ambitious targets and thus help reduce the expeosd of future abatement, adaptation, and
damages; furthermore, certain kinds of R&D may &lsip to reduce the degree of uncertainty in
these costs. In this paper, we explore the effgfattimate and emissions target uncertainties on
an optimal portfolio of R&D and emissions reductsirategies. We consider R&D trade-offs
among different types of technologies, as welradd-offs between the research program and
current abatement.

Many studies have addressed the interaction beteygtmal innovation and abatement
strategies when policy targets are certain. Sordeead the effect of induced technical change
(ITC) on the timing of abatement (Wigley et al. 89%oulder and Schneider 1999; Goulder and
Mathai 2000) or on the costs of attaining a clintatget, including the opportunity costs of

R&D (e.g., Goulder and Schneider 1999; Popp 20@&tla@h 2006). We are concerned with the

effect of uncertainty on these interactidns. _ { commentaire [CF1]: more discussion
’’’’’’’’’’’’’’’’’’’’’’’’ here of literature on uncertainty; include
. . X L. irreversibility arguments. Ulph & Ulph
Several climate modelers conduct sensitivity anglysabatement effort, timing, and/or 1997, Kolstad 1996

costs with respect to atmospheric targets. Howeiffarent models produce different results.
For example, van der Zwaan and Gerlagh (2006)tfiatithe timing of emissions reduction
effort in their model is nearly independent of &trgncertainty. Keller et al. (2004) find that
uncertainty about climate sensitivity and threskspécific climate damages can decrease
optimal abatement in the near term. On the othed hRoughgarden and Schneider (1999)

deduce that uncertainty about climate damaged@atsrease optimal carbon taxes.



Several researchers have pointed to the critidalabbackstop and alternative energy
technologies in influencing different model outcanaad in driving technology policies for
climate. Weyant and Olavson (1999) emphasize ¢ mo recognize heterogeneity in
technology options, noting that incremental changesdividual technologies do not necessarily
result in incremental aggregate changes, becansegation in a less competitive technology
may allow it to cross a competitive threshold, legdo rapid diffusion—and further incentives
for innovation. Chakravorty et al. (1997) show tteathnical change in backstop technologies,
not in conventional fossil fuel technologies, ie tiriver of changes in carbon emissions. Popp
(2004) finds that adding an alternative (backstephnology to the model generates larger
welfare gains than the presence of induced techigalbchange. A recent model comparison
study by Edenhofer et al. (2006) reveals that ieduechnological change in combination with
backstop technologies leads to dramatically lowedijoted costs of reaching GHG
concentration targets. Popp (2006b) identifiedricerporation of backstop technologies into
climate models, particularly those of the top-doxaniety, with R&D-based induced technical
change as a major future research need.

We use a general theoretical model to explorerttezactions among uncertainty, early
abatement, and R&D in a portfolio of different kindf technologies. Our goal is to complement
the diverse climate modeling literature by devetggbasic intuition, which will help us
understand how specific choices in representinign@logies and technological change influence
results under uncertainty. While others have eedag somewhat similar efforts using stylized
forms of individual technologies (see e.g., Bakaale2006), we explicitly consider multiple
technologies and employ general functional forms.téke a social planner’s approach and

abstract from questions of how to induce innovatiehich have received much attention in the



literature (Jaffe et al. 2003; Fischer et al. 2088¢cher and Newell 2008; Carraro et al. 2003),
guestions of spillovers (Jaffe et al. 2005; Fis@@8; Goulder and Schneider 1999; Popp
2006a), and how to incorporate these aspects limate policy models (reviewed by
Gillingham et al. 2008). We also abstract from utaiety over the outcome of research
(addressed in Biglaiser and Horowitz 1995; alsemég reviewed in the context of climate
models in Baker and Shittu, 2008), and focus imstgahow target uncertainty affects the
potential returns to R&D and early abatement. e apecifically address the role of backstop
technologies versus conventional technologies.

Our results relate to the literature gridencé as defined by Kimball (1990), in which
an agent is “prudent” if and only if the third dexiive of the utility function is positive, carrngn
the opposite sign of the second derivative. Infamework, prudence is related to the curvature
of cumulative marginal abatement costs (MAC), altjtothat is not the only factor. We find that
the effects of target uncertainty on early abaterdepend in large part on the concavity or
convexity of MAC, which can depend on the availiépknd characterization of a variety of
abatement technologies, including backstops. Furtbee, R&D may change the shape of the
MAC curve, and thereby the need for additionalyeabatement in response to uncertainty. With
competing technologies, the impact of uncertaimyhe optimal R&D portfolio is more
complex than with a single, stylized technology.atffer investment in a particular technology
should increase depends on the interaction of plelfactors: whether investment lowers
marginal costs for that technology; whether R&D lowers shapeof that technology’s marginal
cost function; and whether the marginal cost furcfor that technology—as well as the

cumulative MAC function—is concave or convex. Wasdtrate our results with a simple two-



technology case and relate these results to thg afifunctional forms typically used in climate

policy models.

General Model of Abatement Target Uncertainty

The essence of the problem can be captured by-péwod model that represents actions
taken early on and actions performed in the sepanidd when uncertainty has been resolved.
Although the cost function is assumed to be certamdamages due to emissions are uncertain.
Consequently, the target amount of total abateméntlso uncertaid.

Abatement can be achieved by using various tecgieaboptions. LetA' be abatement
with technologyi at timet, and letK| be the state of knowledge in that technology at time
The cost of each type of abatemeh(t) in each period is a function of abatement andef t
state of that technology' (4, K!), wherec}, >0,¢,,>0,¢, < 0,andc,, >0. We will refrain
from assuming a sign fag,, = c,,; it is commonly assumed that innovation lowersgirel
costs, but it is possible that some improvementsraise costs on the margin, while lowering
total costs. Investmenin cost-reducing technical change comes at a eticwst of f'(1;) for
technologyi, where f; >0 and f, >0. In our two-period model, we normaliz€ =0 and

K, =1, =K".

2 CO, assimilates slowly from the atmosphere and fop#iuity we treat it as a pure stock pollutant.



To distinguish between individual and collectivatgment, lefl, = Z A Dbe total

abatement in a given period afd= T, + T, be the total abatement target, equal to cumulative
abatement over both periods. The benefits of aleiéB(.) are a monotonic, nondecreasing,
and weakly concave function of total abateme®t% 0, B.; < 0) and also a function of an
uncertain parameteg,. Abatement in the second period can also be thafgis the difference
between the ultimate target and the abatementrpeefibin the first periodT, =T - T,. Whereas

first-period abatement lowers costs in the secanib@ by reducing the required level of effort,
investment in technology lowers the cost of acmg\any level of effort. Target abatement is
resolved in the second period, balancing margiosiscand benefits after they are known; when
damages are not perfectly elastic, the targef ig#ldepend on both first-period emissions and
second-period costs.

The planner’s problem is to maximize the benefitalmmtement and research, net of the

costs of these activities, in expectations. \Lebe the net benefits in the second period, when

the benefit function is known:
V2(K,'I'1,£):n/1ax{B(“|1+Z ,g,s)—z é(A,K)} (1)

Let V, be the expected discounted net benefits of batbges maximized with respect

to the vectors of abatement and investment for &satinology:
= GEN K T X €(A0F T £ (K) @

Starting in the second period, after informatioreigealed, the abatement decisions are

characterized by the following complementary sladanconditions for ail



A, 20, (A K)z B (Te) 3
That is, for any technology being used, the maigibatement costs equal the marginal
benefits. From this set of conditions, assumingetlie a unique solution at which Eq. (3) holds

for alli, we can define second-period abatement as anditfiplinction of the first-period
variables and the uncertain ter@(T,, K &), and therebyf,(T,,K ,£).

In the first period, the first-order conditions faction are

A0, ¢ (4,03 55{"\’2(;&@

}=5E[B(T+ T(TK .£)E&)] (4)
and

ov,(K,T,&)

K'20, f (K')=0JE :
Lz o 2

}z—éE[d;(/%(LK 5K ©®

Eq. (4) states that marginal abatement costs ifirdtgperiod are equalized with the
discounted value of the expected marginal bendlitge that, because the target will be
optimized in the second period, the impact of eablgtement on changes in the equilibrium
target does not affect the choice of first-peribdtement.

Eq. (5) states that, if investment in knowledgetémhnologyi occurs, then the marginal
abatement costs will be equalized with the margiedliction in expected total costs, discounted
to the current period. This cost reduction is pesit-and therefore, the investment incentive is
also positive—as long as the technology is expetctdn in use with some positive probability.

We note that, by having only two stages and a wdisol of uncertainty, there is no quasi-
option value to delaying investment (or abatem#rat) might occur in a continuous-time model

with ongoing uncertainty and irreversibilities. dar case, marginal costs in the first stage are



merely equalized with the expected marginal beseditd uncertainty influences those marginal
benefits.
Let us express the cumulative abatement cost ¢@vim periodt as the minimized costs

for achieving a total amount of abatem&nt

C('I;,K)Emin{Zd(At\, K’)] st A= T

This function increases with total abatement armeses with investments in a vector
of technologiek . Although individual technologies might not be disene may safely assume
that some abatement will occur for positive marbbemefits. Thus, we can re-express the first-

order conditions for abatement as a whole in tleersg and first periods, respectively, as

G (T,,K)= B (T + T,8) (6)

which definesT, as an implicit function of the other variablesgan

C (T, ,0)=0E[B(T+ T.8)] =0 B G( TK)] (7)
In other words, the marginal costs of early abatersbould be equalized with the expected

marginal costs of achieving the remaining abaterteeget in the second period.

Portfolio Response to Uncertainty
Early Abatement

To explore the influence of greater uncertaintytfie Rothschild—Stiglitz sense of mean-

preserving spreads in the distribution of potertiiagets) on optimal policy, one need only to



return to the first-order conditions. From Eq. ({¥)s clear that greater uncertainty will increase

first-period abatement if, given ariy,3

E[C(T(T,K,&).K)> G(T(TK , BEDK) 8)
According to Jensen’s inequality, this relationshdgds if (and only if) the marginal
abatement cost function is convex with respechéouncertain parameter. L&t denote this

second derivative, assuming that the function iseéwlifferentiable, so

2
W=Cry(T,.) +CrT,ee ©)
The sign ofW depends on (i) whether thearginalabatement cost function is concave
or convex and (ii) whether second-period abatenseatconcave or convex function of the

uncertain parameter, which involves propertiesaihlihe cost and benefit functions.

From Eq. (6), giverK andTy, T,, :Ci.rgBr and
T~ Brr

Toee =(Bree # (Brer * Bu) T =( G B) T7)/( G B

From the second-order condition for abatemeént,— B;; >0, so the sign off, ,

depends primarily on the third derivative of thetciunction and the second-order derivatives of

the marginal benefit function. Using these relaghips, and noting theB,,, = B, , we can

rewrite Eq. (9):

3 We choose expected marginal costs rather tharctegpenarginal benefits to allow a more straightfarlv
evaluation of the case of threshold target unaastdi.e., perfectly inelastic marginal benefitStherwise, the two
formulations are equivalent.



(ii) (iii)
(i) ——
— 2| = By Brrr B (Cr = By)+2B B
W=(T,, TT T 2 10
( ) & [CTT_BTTJ-'-ET;_' Crim BTT+ B (10)

Tom
N

In essence, the response of early abatement teegrezcertainty depends on the relative

importance of three factors:

0] the curvature of the MAC function (sign 6f;),

(i) the curvature of the marginal benefits functiogiisof B, and size ofB;), and
(i)  the effect of the uncertain parameter on the matdienefits function.

To explore this relationship, let us consider sam@monly used examples for the

benefits function.

First, assume constant (but uncertain) marginagfitsnso thatB = (b+£)T. Then
B,; =0, and all of the third derivatives of the benetibftion are zero. Reducing (10) reveals

Y =0, implying that uncertainty has no effect on eathatement.

An uncertain threshold target is a case of pesfenttlastic linear marginal benefits. In

this case, rather than focusing on the benefitstion, we assum&, =T +£ - T.. Then T, =1

andT.

2. =0, and from Eq. (9W =C,.

The curvature of the MAC function remains a detaing factor when marginal benefits
are linear and decreasing, sin€B.; >0. Furthermore, sinc®,, =0, part (ii) of (10) is
irrelevant. Part (iii) may depend on whether tberse of uncertainty lies with the intercept or
slope of the marginal benefits function and inldt&er case, at what point the function pivots.
(In the Appendix, we show that slope uncertajprty sedoes not affect early action, if the

marginal benefit curve pivots around the expecaeget point.)

10



Thus, when marginal benefits are linear but nostamt, the shape of the marginal cost
curve plays a decisive role in determining the iotjgd uncertainty on the optimal policy
strategy. If the overall marginal abatement coste is convex within the range of potential
outcomes, then greater uncertainty increases abdiement because expected MAC are higher
than marginal costs at the expected mean abatemehe case of linear MAC, uncertainty has
no effect on early abatement. If, however, MAC @acave, as may be the case with sufficient
backstop technologies, then greater uncertaintydeanease early abatement.

Of course, if marginal benefits are nonlinear,iklationship in (10) is more complicated,
and the additional terms can exacerbate or mitigpteffect of the shape of the marginal cost
curve. Convex marginal benefits tend to raiseyeststhtement, whereas concave marginal

benefits tend to lower it. Indeed, if the margiabhtement cost function is lineat,(, = 0), the

nonlinearities in the marginal benefit function dexisive.

Thus, the shapes of the marginal benefits anduhritative marginal abatement cost
curves, representing all technological optionsedeine whether the optimal abatement path
should become steeper or flatter in response @igrencertainty about future abatement
benefits. In general, the less convex the margibatement costs, the lower the need to conduct
additional early abatement in response to uncedytain

These results relate to the conceptmiitiencé as used by Kimball (1990). In Kimball's
study, an agent who maximizes expected utility eithiprudence by responding to an increase
in future risk by saving more today. This behaviocurs when an increase in risk raises the
marginal value of wealth, which equals the expeatadginal utility of future consumption.
Using Jensen’s inequality, Kimball shows that aerdgs “prudent” if and only if the third

derivative of the utility function is positive, aging the opposite sign of the second derivative.

11



In an article on risk prevention, Eeckhoudt andli@o{2005) demonstrate that, by this technical
definition, prudence tends to have a negative impa@revention, contrary to popular intuition.
Because prudence favors the accumulation of wéalitce future risks, it induces agents not to
spend money ex ante on preventive actions.

In our framework, prudence is related to the coitgaf the marginal abatement cost
curve, although that is not the only factor. Ashia Eeckhoudt and Gollier (2005) case, technical
prudence runs counter to notions of prudent belnawiith a concave MAC function and
technical prudence, greater risk induces less pt@rein the form of early action.

An important point to make is that these studiesaoconsider the possibility of
endogenous prudence, such as the role of R&D ipishduture marginal abatement costs. In
this case, R&D can then help reduce reliance oy aation to the extent that it both lowers and

flattens marginal abatement costs in future periods

Uncertainty and R&D

The cost function shape is also important for deteing the optimal R&D portfolio, but
in this case, what matters are the total costsgifen technology rather than the marginal
abatement costs of all technologies. In additiba,response of second-period abatement to cost
changes matters.

Eq. (5) demonstrates that the value of additionaWedge (and thereby the optimal

R&D resources spent) for technologyncreases with uncertainty if

“E[q (A(T,K,8), K)]>-&( A(TK, E), K (11)
The expression in Eq. (11) holds if the marginaldfs to knowledge investment are

convex in the uncertain parameter, or if

12



[//i = _CiKAA( Ag,g)z - dKA'éEgs >0 (12)

Whether this relationship holds in turn dependshansigns of botlt,, and c,,

(whether R&D lowers marginal costs and the slopthefMAC curve for technology and also

the sign ofA‘Z,EE (whether the additional use of abatement technyalagperiod 2 is increasing

or decreasing under greater uncertainty).

From Eq.

(3) and (6), assuming that an interiontsoh exists, a particular abatement

technology will be deployed until its marginal casequal to overall marginal costs:

cy(A,K)=C(T(T,K,&)K ). From this relationship, we derive the implicinttion for

second-period abatement with technolagyivenK, where A,, = C; T,, / ¢,, and

io_ 1
Aose = —(Crmi(

AA

T+ Ci ) - Ci’*’*‘\( A).

Can

Consequently, the expression in (12) can be resmritis

| A _dKAdAAA i \2

Thus, whether greater uncertainty increases opiimaktment in a particular technology

i depends on four components:

i)

i)

ii)

whether investment lowersarginal costs for that technology (the sign of
Cen);

whether uncertainty increases the incentives fdy edatement (the sign of
W),

whether R&D lowers thelopeof that technology’s marginal cost function (the

sign of ¢,,,), and

13



iv) whether the marginal cost function thiattechnology is concave or convex

(the sign ofc),,,).

First, let us consider the common case in which R&Rers marginal, as well as total,
costs of abatement for each technoloq%(< 0). In this case, whenever uncertainty induces

more early abatement, it also encourages additiomaktment in all kinds of technologies.
These results would be reversed if innovation redumsts to a greater extent at low levels of
abatement, making the marginal abatement cost cteeper. Then greater uncertainty would
tend to reduce optimal R&D. Meanwhile, a paraltgftsn costs could mean that the expected
gains to innovation are invariant to the degreerafertainty, as with linear supply and demand
for abatement.

In general, uncertainty means a greater emphasiddsbe placed on those technologies
which have concave marginal costs and for which REreases the slope of those marginal
costs, especially if those technologies are likelpe used more heavily in the event of higher-
than-expected marginal damages. In other wordsemium is placed on technologies that can
help flatten the overall MAC curve. On the othanll, technologies with more convex marginal
costs, because they become increasingly costlpyanature going to be more limited in their
scope for application and should receive less widigthe R&D portfolio when uncertainty over
climate damages looms larger.

This analysis is useful for drawing intuition, bubas certain limitations, as we have
ignored two kinds of interactions. One is thatéleent of abatement with one technology may
affect the marginal costs of abatement with angtioerexample, the effectiveness of carbon

capture and sequestration is lower if the powentdias already reduced emissions by changing

14



from coal to integrated gasification combined cytelehnology. The second relates to the fact
that these results are derived from considerindlsthanges around an equilibrium. For a larger
range of potential outcomes, however, these relaltips may not all hold, partly because of the
interaction with other technologies. The cost fiord for individual technologies with respect to
cumulative target abatement may be discontinuonaus® of the inequality constraints in the
first-order conditions. For example, some targesy mot generate sufficient emissions prices to
trigger the use of certain technologies, wherehsratirgets may be so high that some
technologies reach their limits of capacity or acamhpetitiveness. As a result, the effective cost
function over the target range may be rendered mameave than the underlying cost function
for abatement. Greater target uncertainty can linear the expected costs of abatement from a
particular technology by decreasing the expectkanee on that technology. Such is the effect
of the availability of an adjacent technology: éxample, a backstop limits the maximum
abatement from conventional technologies so, textent that it makes use of the backstop
more likely, uncertainty can lower the expectedieadf investments in conventional methods
Nor do we directly address all issues importantR&D investments. However, we can
learn about their effects from the preceding angly&rst, research success involves its own
uncertainty. Our framework clearly indicates the key question is whether uncertainty raises
or lowers the expected cost savings from resegiean uncertainty about what the research
expenditures will produce. If uncertainty raises éxpected cost savings—such as by allowing
for the possibility of some extremely successfutomes—then R&D investment should
increase as a response. If uncertainty insteadases the expected cost of succeeding, then
R&D investment should fall. A balanced R&D portfolvill have to weigh the relative effects of

research success probabilities and potential gairess different technologies.

15



Knowledge accumulation may not be driven soleh\R&D. Still, intuition for the case
of learning by doing can be derived from the R&Bu#ts. To the extent that abatement is a
learning experience, abatement activities carrya gurpose of reducing emissions and
investing in knowledge. Thus, when greater uncetyaivould call for increased R&D
investment, it similarly would call for increaseshtning by doing, which implies increasing
abatement in the first period. Thus, in the leggriy-doing case, the investment parameter is a
proxy for the premium to additional abatement ia tinst period. Which effect dominates—
increasing early abatement to invest in technoldgibange or decreasing early abatement in

anticipation of technological change—may be ambigu@oulder and Mathai 2000).

Numerical Example with a Backstop Technology

We explore some of these issues of the shape dfi&@ curve by using a simple
combination of two linear technologies: a convemtictechnology with upward-sloping
marginal costs (superscrip”), and a backstop technology with constant maiginats
(superscriptby”). To focus on the role of the cost function, eansider simple target
uncertainty.

The intuition of this simple case is useful. Comesitthat happens in the absence of a

backstop technology: the overall MAC curve is lin€@,,; = c3,,=0), soW =0 and
uncertainty would not affect early abatement. Femfore, reducing (13)/° = —cg,,(A)?,

meaning R&D only increases in response to greateetainty if it lowers thslopeof the MAC
function for the conventional technology (i.e., @i the curve downward, rather than merely

shifting it). We will assume R&D causes a propartibreduction in costs, which means that

16



greater uncertainty would shift the first-periodipptoward more investment and less
abatement because expected marginal costs then fall

On the other handf the backstop were the only technology, then gmeancertainty in
the threshold would have no effect on the desinedstment, because a proportional cost
reduction would result in a parallel shift in th@minal abatement cost curvg'{=0).

However, when both technologies are availableR&® choice is trickier because two
strategies must be balanced. For the regular téohies, the backstop serves to cap marginal
abatement costs so that additional reductions tlinmgpto reduce cost variance in high-
abatement states, as long as the backstop isUsedrtainty can then reduce conventional R&D
incentives if it reduces the likelihood the convenal technology will be the marginal
technology. From the perspective of the backstoprtelogy, having conventional technologies
available means the backstop will come into plaly @mhigh-cost scenarios. In this case, if
greater uncertainty increases the probability aigithe backstop, it raises the expected marginal
benefit of R&D to lower the cost of the backstogheology.

Combining these results implies that greater uaagst tilts the overall policy portfolio
toward developing technologies that are more likelgome into play in extreme outcomes.
Furthermore, the optimal portfolio tends to caH fliverting some resources from improving
existing technologies when greater uncertaintytirthieir expected applicability. Finally, R&D
can reduce the need for engaging in early mitigatiiothe extent that it reduces the convexity of
the cumulative marginal abatement cost function.

As we discuss later, most numerical climate potimydels that do incorporate backstop
technologies assume those technologies are notteifi available (or substitutable), thus

limiting the capacity for their replacement withnentional technologies. In our framework,

17



when a backstop is available but has limited capattie marginal abatement cost curve is
piecewise linear in three pieces: increasing, flen increasing again, The marginal cost
function is concave at the first of these switcinpand convex at the second. The effect of
uncertainty on abatement and R&D in different tedbgies will depend on the interplay of all
these parameters. When the backstop’s applicakslitmited, then there may be a range over
which uncertainty increases and then decreasestmeat in the backstop (with the opposite

effect on the conventional technology).

A study of scenarios with a range of abatement taggs can give a sense of these results.

Figure 1-Figure 3 show the results from a numesaaulation of the preceding model,
revealing how optimal policy responds to increagarget stringency. The parameters are
described and motivated in detail in the Appeniiixe IPCC finds the climate sensitivity to a
doubling of carbon dioxide in the atmosphere t@eafiom 2 to 4.5 degrees centigrade;
assuming damages are mostly temperature relaiedattor introduces an uncertainty of
roughly +/- 50% around a stock target. Plausibtggmtions of emissions lead to a range of
cumulative abatement targets between 200 and 9g@@is of carbon (GtC) for this century.
We assume that a backstop is initially availablg@$420/ton of carbon, approximating the cost
of photovoltaic power, with a capacity constrainB60 GtC in the second period. The key point
of this exercise is to highlight the role of theanhing slope in the marginal abatement cost
function as the backstop enters into play and teanhes its capacity limits.

First, as the target becomes more stringent, cdioreal abatement in both periods

increases initially and then declines as backssgpi the second period increases. This decline
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occurs because R&D shifts from the conventiondinetogy to the backstop, changing the
relative marginal abatement costs. However, aftetbiackstop reaches its capacity constraint of

300 GtC, reliance on the conventional technologyeases again.

Figure 1: Abatement by Type as a Function of TargeStringency
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Next, Figure 2 shows that conventional R&D is credaut as more stringent targets
make R&D in the backstop technology more importaffier investment in backstop R&D
begins, the profitability of conventional R&D falsuntil backstop capacity is reached, at which
point R&D in conventional technology becomes mdteative again. The patterns for R&D in

each technology are similar to those of abatenmragdch respective technology.
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Figure 2: Investment Mix ($) with Different Climate Target Stringency (GtC)
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These sensitivity analyses give indications ofaffects of uncertainty, which are
illustrated in Figure 3. Suppose, first, that tlkpexted target is 400 Gt C, the cusp at which the
backstop would be needed. As uncertainty broadensange of potential targets from that point
(by increasing the standard deviation of the taegéitnate), more scenarios incorporate the
backstop, raising the expected gain from backs®&p Rsee the lower, solid line in Figure 3).
Meanwhile, the expected returns to conventional REfdrease because costs are capped by the
backstop and fall as low-target scenarios become mmbable. However, if the simulation
starts with an expected target of 620, then uniceythas the opposite effect: increasing the
spread of possible targets means lowering the ¢egemlue of the backstop (because its
capacity is maxed out in more situations) and mgishe expected value of lowering

conventional technology costs (see the upper, daénein Figure 3). For an even larger range
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of uncertainty, the effects may be somewhat amhigumecause each cost curve has convex and

concave components.

Figure 3: Effect of Target Uncertainty on BackstopR&D
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Discussion: Prudence in Climate Policy Modeling

In this paper, we have focused on the effects oértainty about the severity of climate
change on the benefits of early abatement and d &estment. We have shown that the
effects depend on several factors, including tfapslof the cumulative marginal abatement cost
curve, or “prudence.” When that curve is convexirgrease in benefit uncertainty implies the
need for more early abatement, whereas with a e@eB\C curve, uncertainty shifts the focus
somewhat away from early action. We find that tkieet of prudence is shaped by the
characteristics of the technologies and their respdo R&D; this aspect of prudence has been
ignored in previous studies, in which the utilispnttion is generally fixed. In the climate policy

case, the national or societal marginal abatenmsttaurve represents a sequence of
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technological options. Backstop technologies catieh out the curve and R&D that lowers
those costs further changes the shape of the owerethe relevant range of potential abatement
requirements. Prudence thus interacts with R&Dpsttathe optimal portfolio of investments;
those investments, in turn, shape the extent afgarce and the desirability of early action. Thus,
given the vast uncertainty in the emissions targetded for climate stability, key empirical
questions for climate policy aim at revealing theetshape of the future marginal abatement cost
curve and the technological options that compose it

In climate policy modeling, however, little attenti seems to have been paid to the third
derivatives of the cost function. Most economic elscaddressing the R&D and abatement path
guestion start with a particular functional forndaierive results from it. Few economic models,
if any, actually combine R&D with a diversity ofdtenological options.

To interpret climate policy model predictions, anast understand how they incorporate
carbon-free backstop technologies, determine lomganarginal abatement costs, and allow for
technological change (see Edenhofer et al. 2006 assumption of a true (nonscarce) backstop
technology, producing a concave marginal abatemesttcurve, is a more common approach for
partial equilibrium models. In contrast, like thast majority of the top-down climate models,
general equilibrium models primarily evaluate athafenergy substitution options, including
mix shifting and output substitution. However, thpical specifications using nested constant
elasticity of substitution (CES) functions—evengbavith a carbon-free technology—
necessarily imply convex marginal abatement cdstat is because the functional form assumes

that some fossil energy sources are always desipethatter how expensive they become,
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implying that removing carbon from the economy bmes increasingly costly.In a meta-
analysis of several major climate models, Fischerorgenstern (2006) find the marginal
abatement costs (as a percentage from baselibe)tasically linear, which does imply convex
marginal costs in terms of levels. However, onlg ofithese models included a backstop
technology, and the range of abatement may not beee stringent enough to evaluate
significant curvature.

Indeed, few energy—economy models allow for theledede replacement of one
technology with another. Those that do allow carfree technologies to enter as perfect
substitutes for other energy sources employ tectasigqo slow their penetration, such as
additional fixed factors of production or capaatpwth constraints, resulting in MAC that are
highly convex in the GHG concentration target.

As a result of these techniques, convexity seemsldminant shape of the effective
marginal abatement cost curves in most modelsthetmore, when technology-specific change
is incorporated, it typically manifests itself apercentage reduction in costs of that technology,
which effectively lowers the slope of that technpl® supply curvé. Therefore, we would
expect most model results to show that target taicgy should lead to more early action and
more R&D in the relevant technologies. The quesity how accurate are the assumptions

needed to close these models and allow for the@nedde computation of solutions?

4 In other words, if carbon-free technologies aiasd a market niche even when they are more eivgetisen
coal and other fossil technologies also are assuredhe in the future, even when they become rexpensive.

5 Examples include the EPPA model, MERGE, and metbm-up models.

6 Some climate models assume technology lowers emisimtensity, or that knowledge substitutes foliyging
factors in production, which can lead marginal eb@nt costs to rise at some point. See reviewakeBand
Shittu (2008).
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Unfortunately, the true shape of these curveseérr¢fevant range cannot easily be
resolved by empirical studies because that raegenkell outside what has historically been
observed. In terms of true backstop technologiesmost-discussed candidates are carbon
capture and storage (CCS), nuclear, and solarh Eaee the possibility of being utilized at large
scales, though location (and risk management) doelldonstraining factors.Solar energy is
particularly large in comparison to societal needsrent world energy use of commercial fuel is
roughly 450 EJ/year, whereas the solar energy ftotwarth is 5.4 million EJ/year (World
Energy Council 2007). Of course, a question thaire large for the more radical technologies is
not just their ultimate capacities, but how rapitfigse capacities can be tapped. Given the
importance of backstop technologies, scientistsemmthomists alike should pay greater attention
to understanding and estimating the future cosdscapacities. Climate policy modelers should
heed these studies and consider how well their tn@de able to represent the dramatic shifts in

energy technologies that some all-too-possible ades will require.
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Appendix

Linear Marginal Abatement Costs and Slope Uncertainty

Suppose thaB=(b+&)T-a T- :I)2/2, whereT is a pivot point. Then
B, =b+e-aT-T), B, =-a B,, =1, andB,,, = B, = B, =0. Consequently, part (i) is
zero as well, and (10) reducestb= (Tz,g)2 (al(C + @) Cy, in which case the sign depends
on that ofC,,, . Suppose, instead, that the uncertain componéehe islope, not the level, of
marginal benefits from abatement; in other worlls; B, + b(T- :I) —(ate)(T- A‘I)2/2. Then
By =b-(a+&)(T-T), By =~(a+¢), By =0, By, =By, =-1, B, =T-T,andB,,, =0

~ — 2
. — T-T ate 2
Consequently, evaluating at=T, W= ——— + —— |. Ifthe
ey ’ [CTT—BW] (C”T{cwan CTT(F—T)]

pivot point occurs at the expected level of totsdtament (i.e.]: =T), the expression reduces to
zero, meaning slope uncertaimgr sedoes not affect early abatement. However, ifpiivet

point is elsewhere, then there is effectively a boration of slope and intercept uncertainty, and

the sign of part (iii) depends on the distance ketwthat pivot point and .

Numerical Model Specifications

In this section, we present the model on whichfidneres and simulations in the text are
based. We consider two technologies, each witalimarginal abatement costs (MAC). The
conventional technology has upward sloping MAC, rehs the carbon-free backstop

technology has flat MAC, but may be limited inutimate capacity. We consider the case of
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target (threshold) uncertainty, as opposed to taicgy about some downward-sloping marginal
benefits function.

The simulation model is intended to illustrate theoretical section and is not intended
as a “scenario.” The simplifications involved in deting the future as two 50-year periods and
all technologies collapsed into one conventional @me backstop make it inappropriate to strive
for any precision; nevertheless, we use represeatatlues as far as possible.

Let a denote the conventional technology drtthe backstop technology. Consider the

case of linear MAC that are shifted by researchdaw@lopment (R&D) investment:
as pa a —p,ka C a
C(A,Kt)=e”f*K‘5(A)2 (.14)
In this case, R&D pivots the MAC curve downwardyéing costs of achieving any

given level of abatement ypercent. By this assumption, R&D lowers margiadts and

flattens the conventional MAC curve, which the teates is a determining factor in the results.

For the backstop technology’(A°, K®) = e y A&, with the additional constraint that
the backstop has a maximum capagjt Ab. We consider cases in which the backstop is
uneconomic or infeasible in the first period, &= A".

For R&D investment costs, we assume a simple gtiaduamction for technology,
implying linear marginal investment cost$(K') =K' +5(K )* .

For modeling simplicity, we consider the case ofianertain target due to an uncertain

catastrophic threshold resulting in a vertical marginal benefit curvette second period,

uncertainty is resolved, and the total abatemegetas determined by this threshold. lpet
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reflect the shadow value of carbon abatement athineshold. That price is, in turn, determined
by the equilibrium conditions at the optimum.
Substituting our functional forms into the firstder condition (Eg. 2 in the main text),
we get
e™'cK=p A>0 (.15)
and
e x=n

e x>p
e"’Kb)( <p

> A>0
0 (A.21)

RGN
I

= A
Let A, = %23 ¥/ ¢ be the level of abatement at which it is cheapemtitch to the

backstop technology for further abatement. In tlise, in the second period, we can express

abatement by each technology as a function ofata target for that period], =T - T,:

A= max[ min[T,,A ],T,- :ﬂ

i (A.22)
A = min[max[O,Tz— A ]AE]

Then, the first-order conditions for the socialrpiar reduce to
AR = JE{ gaki A§}
1425, = E 0,067 S (4
1+25,K = E{ p,06" x 4]
With these five equations, and a distributioTpfve solve the system for

AR AL KK

31



Simulation Parameters

Recognizing the limitations of this simplified modee still attempt to parameterize it
with values representative of the greenhouse ga®aient challenge.

The target value for emissions reductiohdakes values between 200 and 900 gigatons
carbon (GtC). Current emissions are around 7 Gi€ alinear interpolation of business-as-
usual (“BAU") emissions data from Marland et al0(3) would give close to 20 GtC/year, or
1300 GtC total emissions by 2100, which also cpads to the median post SRES scenario of
the Intergovernmental Panel on Climate Change (Ff6@@th assessment report. Stabilization
scenarios from Azar (2006) based on Wigley etl&196) and the IPCC indicate that, to reach
targets of 550, 450, or 350 parts per million (ppemissions would have to stabilize, falling to 4
or almost 0 GtC/year by 2100. In our simulation,aeasider two 50-year periods that together
comprise this century. During this period, the ltatzatement necessary (compared with the
BAU mentioned) is estimated by integrating undereimissions curves, which gives a total of
400, 630, and 1,000 GtC aggregate emissions redgcior 2000-2100 to meet the targets of
550, 450, and 350 ppm, respectively. Many authaead on 550 or 450 ppm, thus the range of
values analyzed for our target of 200 to 900 Gt@&c®the range generally discussed, such as in
the Stern Review (2007).

The discount factor between the two periods wasosgd percentd(= 0.5),
corresponding to a discount rate of just undempersent per yedr.Several other parameters

were calibrated to give realistic marginal abatehoest figures, in line with those used in

8 This is low but can be motivated by the arbitra® year cutoff. It also corresponds well to thecdunt rate in
the Stern Review where the pure rate of time peefee of 0.1% combines with a unitary marginal eagtof
income and per capita growth rates to give a discrate of 1.4%, Stern (2006)
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Survey of Energy Resourc@¥orld Energy Council 2007). The cost parametessevget at =
1.6 10° $/torf in the conventional abatement function arei$420/ton C for the backstop
technology, which is assumed to have a capacitgtcaint of 300 GtC in the second period
(2050-2100). The cost parameteshows the baseline abatement cost for the bazksto
technology in the year 2050 before the cost-sagffegrt of R&D. This number might appear
high but the model is intended to deal with abatartieat leads to the equivalent of emission
reductions in the order of 80 — 100% in the yed®R A backstop abatement cost of 420 $/ton C
corresponds to a 0.06 $/KWh which is a common &dor photovoltaic power, see for instance
Chakravorty et al (1997) or UNDP (2004). 0.06 $/K'@dresponds to 700 $/ton of C
equivalent. The current price of oil is approxima@80 $/ton C and hence the solar backstop
would imply a price increase of 420 $/TC). The paeterc is calibrated so as to give an
illustrative mix of backstop and conventional alba¢at. Depending on the exact investments in
R&D, the backstop becomes profitable after abolt G8C of conventional abatement in the
first period and 260 GtC of conventional abatenierihe second one.

For both types of technologies, costs can be retbgenvestments in R&D as described
above. The parameters were calibrated to give ttof&&D that is roughly equivalent to a
range of values corresponding to between one antinkes the annual cost of R&D by member

countries to the International Energy Agency (IE#A)1980. The parameters were 0.0003 fgr
and 0.000306 fop, ; 0.03 fors, and 0.01 fos,. The cost of R&D in the IEA in 1980 was 15

Billion $ according to OECD (2006). Finally, theopability distribution for the target abatement
is a normal distribution with a standard deviatdri25 GtC. The distribution is truncated to

preclude negative targets and ensure a symmestichdition.
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