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Climate Policy, “Prudence,” and the Role of Technological 
Innovation 

Abstract 

We study how uncertainty about climate change severity affects the relative benefits of early 
abatement and a portfolio of research and development (R&D) in lowering future abatement costs. 
Optimal strategies depend on the curvature of the functions for marginal benefits and particularly for 
marginal abatement costs (MAC)—that is, prudence. Greater (less) convexity in MAC implies greater 
(less) emphasis on early abatement in response to uncertainty. R&D may change the shape of the MAC 
curve and the need for additional early abatement. With competing technologies, uncertainty’s influence 
on the optimal R&D portfolio is more complex. Whether investment in a particular technology should 
increase depends on whether uncertainty increases the incentives for early abatement; whether investment 
lowers marginal costs for that technology; whether R&D lowers the slope of that technology’s marginal 
cost function; and the shape of that technology’s marginal cost function. We illustrate, focusing on the 
role of backstop technologies.  
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Climate Policy, “Prudence,” and the Role of Technological 
Innovation 

Introduction 

The ultimate goal of climate policy is to stabilize greenhouse gas (GHG) concentrations 

at a level that is sustainable both ecologically and economically. However, the determination of 

this level is difficult due to the uncertainties in geophysical and ecological sciences as well as in 

the costs of de-carbonizing economies (e.g., Heal and Kriström 2002). Thus, the policy problem 

for planning long-term reductions in carbon emissions is complicated by uncertainty (see also 

Dietz and Stern 2008). 

Two types of policy tools are important to deal with climate change. First are policies that 

encourage abatement directly, such as carbon taxes or tradable emissions permits, and possibly 

instruments to encourage non-fossil energy or conservation. Second, as heavily emphasized in 

the Stern Review (2006), are technology policies that focus on bringing down the costs of 

reducing carbon emissions. Examples include research and development (R&D) investments in 

new technologies for energy supply or improvements in energy efficiency. Importantly, the two 

types interact because the presence of abatement incentives increases the returns to R&D in 

reducing the cost of technologies, and the costs of the technologies determine how much 

abatement can be afforded. Because carbon dioxide (CO2) is essentially a stock pollutant, 

policies to manage long-term concentrations have flexibility in timing. If more abatement is done 

early, then less will have to be done in the future to reach any given target. R&D investment 

lowers the costs of reducing emissions in the future. There is currently considerable 

disagreement about how much the global community should spend on early abatement versus 
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R&D for future technologies.  The Kyoto protocol emphasizes abatement while some other 

initiatives, such as the U.S.-sponsored Asia-Pacific partnership, put more emphasis on R&D.  

When the future target is uncertain, both activities facilitate the adoption of more 

ambitious targets and thus help reduce the expected costs of future abatement, adaptation, and 

damages; furthermore, certain kinds of R&D may also help to reduce the degree of uncertainty in 

these costs. In this paper, we explore the effects of climate and emissions target uncertainties on 

an optimal portfolio of R&D and emissions reduction strategies. We consider R&D trade-offs 

among different types of technologies, as well as trade-offs between the research program and 

current abatement. 

Many studies have addressed the interaction between optimal innovation and abatement 

strategies when policy targets are certain. Some address the effect of induced technical change 

(ITC) on the timing of abatement (Wigley et al. 1996; Goulder and Schneider 1999; Goulder and 

Mathai 2000) or on the costs of attaining a climate target, including the opportunity costs of 

R&D (e.g., Goulder and Schneider 1999; Popp 2004; Gerlagh 2006). We are concerned with the 

effect of uncertainty on these interactions.     

Several climate modelers conduct sensitivity analysis of abatement effort, timing, and/or 

costs with respect to atmospheric targets. However different models produce different results. 

For example, van der Zwaan and Gerlagh (2006) find that the timing of emissions reduction 

effort in their model is nearly independent of target uncertainty.  Keller et al. (2004) find that 

uncertainty about climate sensitivity and threshold-specific climate damages can decrease 

optimal abatement in the near term. On the other hand, Roughgarden and Schneider (1999) 

deduce that uncertainty about climate damages acts to increase optimal carbon taxes.  

Commentaire [CF1]: more discussion 
here of literature on uncertainty; include 
irreversibility arguments.  Ulph & Ulph 
1997, Kolstad 1996 



 

3 

Several researchers have pointed to the critical role of backstop and alternative energy 

technologies in influencing different model outcomes and in driving technology policies for 

climate.  Weyant and Olavson (1999) emphasize the need to recognize heterogeneity in 

technology options, noting that incremental changes in individual technologies do not necessarily 

result in incremental aggregate changes, because innovation in a less competitive technology 

may allow it to cross a competitive threshold, leading to rapid diffusion—and further incentives 

for innovation. Chakravorty et al. (1997) show that technical change in backstop technologies, 

not in conventional fossil fuel technologies, is the driver of changes in carbon emissions.  Popp 

(2004) finds that adding an alternative (backstop) technology to the model generates larger 

welfare gains than the presence of induced technological change. A recent model comparison 

study by Edenhofer et al. (2006) reveals that induced technological change in combination with 

backstop technologies leads to dramatically lower predicted costs of reaching GHG 

concentration targets.  Popp (2006b) identifies the incorporation of backstop technologies into 

climate models, particularly those of the top-down variety, with R&D-based induced technical 

change as a major future research need.   

We use a general theoretical model to explore the interactions among uncertainty, early 

abatement, and R&D in a portfolio of different kinds of technologies. Our goal is to complement 

the diverse climate modeling literature by developing basic intuition, which will help us 

understand how specific choices in representing technologies and technological change influence 

results under uncertainty.  While others have engaged in somewhat similar efforts using stylized 

forms of individual technologies (see e.g., Baker et al. 2006), we explicitly consider multiple 

technologies and employ general functional forms. We take a social planner’s approach and 

abstract from questions of how to induce innovation, which have received much attention in the 
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literature (Jaffe et al. 2003; Fischer et al. 2003; Fischer and Newell 2008; Carraro et al. 2003), 

questions of spillovers (Jaffe et al. 2005; Fischer 2008; Goulder and Schneider 1999; Popp 

2006a), and how to incorporate these aspects into climate policy models (reviewed by 

Gillingham et al. 2008). We also abstract from uncertainty over the outcome of research 

(addressed in Biglaiser and Horowitz 1995; also recently reviewed in the context of climate 

models in Baker and Shittu, 2008), and focus instead on how target uncertainty affects the 

potential returns to R&D and early abatement.  We also specifically address the role of backstop 

technologies versus conventional technologies. 

Our results relate to the literature on “prudence” as defined by Kimball (1990), in which 

an agent is “prudent” if and only if the third derivative of the utility function is positive, carrying 

the opposite sign of the second derivative. In our framework, prudence is related to the curvature 

of cumulative marginal abatement costs (MAC), although that is not the only factor. We find that 

the effects of target uncertainty on early abatement depend in large part on the concavity or 

convexity of MAC, which can depend on the availability and characterization of a variety of 

abatement technologies, including backstops. Furthermore, R&D may change the shape of the 

MAC curve, and thereby the need for additional early abatement in response to uncertainty. With 

competing technologies, the impact of uncertainty on the optimal R&D portfolio is more 

complex than with a single, stylized technology. Whether investment in a particular technology 

should increase depends on the interaction of multiple factors: whether investment lowers 

marginal costs for that technology; whether R&D lowers the slope of that technology’s marginal 

cost function; and whether the marginal cost function for that technology—as well as the 

cumulative MAC function—is concave or convex. We illustrate our results with a simple two-
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technology case and relate these results to the array of functional forms typically used in climate 

policy models. 

General Model of Abatement Target Uncertainty 

The essence of the problem can be captured by a two-period model that represents actions 

taken early on and actions performed in the second period when uncertainty has been resolved. 

Although the cost function is assumed to be certain, the damages due to emissions are uncertain. 

Consequently, the target amount of total abatement T is also uncertain.2  

Abatement can be achieved by using various technological options. Let i
tA  be abatement 

with technology i at time t, and let i
tK  be the state of knowledge in that technology at that time. 

The cost of each type of abatement (.)ic  in each period is a function of abatement and of the 

state of that technology: ( , )i i i
t tc A K , where 0, 0, 0,i i i

A AA Kc c c> ≥ < and 0i
KKc > . We will refrain 

from assuming a sign for i i
AK KAc c= ; it is commonly assumed that innovation lowers marginal 

costs, but it is possible that some improvements can raise costs on the margin, while lowering 

total costs.  Investment I in cost-reducing technical change comes at a current cost of ( )i i
tf I  for 

technology i, where 0i
If >  and 0i

IIf ≥ . In our two-period model, we normalize 1 0iK =  and 

2 1
i i iK I K= = .  

                                                 
2 CO2 assimilates slowly from the atmosphere and for simplicity we treat it as a pure stock pollutant.  
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To distinguish between individual and collective abatement, let i
t t

i

T A≡∑  be total 

abatement in a given period and 1 2T T T≡ +  be the total abatement target, equal to cumulative 

abatement over both periods.  The benefits of abatement B(.) are a monotonic, nondecreasing, 

and weakly concave function of total abatement ( 0, 0T TTB B≥ ≤ ) and also a function of an 

uncertain parameter, ε . Abatement in the second period can also be thought of as the difference 

between the ultimate target and the abatement performed in the first period: 2 1T T T= − . Whereas 

first-period abatement lowers costs in the second period by reducing the required level of effort, 

investment in technology lowers the cost of achieving any level of effort. Target abatement is 

resolved in the second period, balancing marginal costs and benefits after they are known; when 

damages are not perfectly elastic, the target itself will depend on both first-period emissions and 

second-period costs. 

The planner’s problem is to maximize the benefits of abatement and research, net of the 

costs of these activities, in expectations.  Let 2V  be the net benefits in the second period, when 

the benefit function is known:  

2
2 1 1 2 2( , , ) max ( , ) ( , )i i i i

i i

V T B T A c A Kε ε = + − 
 

∑ ∑
A

K                                       (1) 

 Let 1V  be the expected discounted net benefits of both periods, maximized with respect 

to the vectors of abatement and investment for each technology: 

1
1 2 1 1

,
max [ ( , , )] ( ,0) ( )i i i i

i i

V E V T c A f Kδ ε = − − 
 

∑ ∑
A K

K %                                    (2) 

Starting in the second period, after information is revealed, the abatement decisions are 

characterized by the following complementary slackness conditions for all i: 
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2 20, ( , ) ( , )i i i i
A TA c A K B T ε≥ ≥  (3) 

That is, for any technology being used, the marginal abatement costs equal the marginal 

benefits. From this set of conditions, assuming there is a unique solution at which Eq. (3) holds 

for all i, we can define second-period abatement as an implicit function of the first-period 

variables and the uncertain term: 2 1( , , )iA T εK , and thereby 2 1( , , )T T εK .   

In the first period, the first-order conditions for action are 

2 1
1 1 1 2 1

1

( , , )
0, ( ,0) [ ( ( , , ), )]i i i

A Ti

V T
A c A E E B T T T

A

εδ δ ε ε
 ∂≥ ≥ = + ∂ 

K
K

%
% %  (4) 

and 

2 1
2 1

( , , )
0, ( ) [ ( ( , , ), )]i i i i i i

K Ki

V T
K f K E E c A T K

K

εδ δ ε
 ∂≥ ≥ = − ∂ 

K
K

%
%  (5) 

Eq. (4) states that marginal abatement costs in the first period are equalized with the 

discounted value of the expected marginal benefits. Note that, because the target will be 

optimized in the second period, the impact of early abatement on changes in the equilibrium 

target does not affect the choice of first-period abatement. 

Eq. (5) states that, if investment in knowledge for technology i occurs, then the marginal 

abatement costs will be equalized with the marginal reduction in expected total costs, discounted 

to the current period. This cost reduction is positive—and therefore, the investment incentive is 

also positive—as long as the technology is expected to be in use with some positive probability.   

We note that, by having only two stages and a resolution of uncertainty, there is no quasi-

option value to delaying investment (or abatement) that might occur in a continuous-time model 

with ongoing uncertainty and irreversibilities.  In our case, marginal costs in the first stage are 
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merely equalized with the expected marginal benefits, and uncertainty influences those marginal 

benefits. 

Let us express the cumulative abatement cost curve (C) in period t as the minimized costs 

for achieving a total amount of abatement tT : 

( , ) min ( , ) , s.t. i i i i
t t t t t

i i

C T c A K A T
 ≡ = 
 
∑ ∑K  

This function increases with total abatement and decreases with investments in a vector 

of technologies K . Although individual technologies might not be used, one may safely assume 

that some abatement will occur for positive marginal benefits. Thus, we can re-express the first-

order conditions for abatement as a whole in the second and first periods, respectively, as 

2 1 2( , ) ( , )T TC T B T T ε= +K  (6) 

which defines T2 as an implicit function of the other variables, and 

[ ]1 1 2 2( , ) ( , ) [ ( , )]T T TC T E B T T E C Tδ ε δ= + =0 K%  (7) 

In other words, the marginal costs of early abatement should be equalized with the expected 

marginal costs of achieving the remaining abatement target in the second period. 

Portfolio Response to Uncertainty 

Early Abatement 

To explore the influence of greater uncertainty (in the Rothschild–Stiglitz sense of mean-

preserving spreads in the distribution of potential targets) on optimal policy, one need only to 
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return to the first-order conditions. From Eq. (7), it is clear that greater uncertainty will increase 

first-period abatement if, given any 1T ,3 

2 1 2 1[ ( ( , , ), )] ( ( , , [ ]), )T TE C T T C T T Eε ε>K K K K% %  (8) 

According to Jensen’s inequality, this relationship holds if (and only if) the marginal 

abatement cost function is convex with respect to the uncertain parameter.  Let Ψ  denote this 

second derivative, assuming that the function is twice differentiable, so 

 ( )2

2, 2,TTT TTC T C Tε εεΨ ≡ +  (9) 

The sign of Ψ  depends on (i) whether the marginal abatement cost function is concave 

or convex and (ii) whether second-period abatement is a concave or convex function of the 

uncertain parameter, which involves properties of both the cost and benefit functions. 

From Eq. (6), given K  and T1, 2,
T

TT TT

B
T

C B
ε

ε =
−

 and  

( )( ) ( )2
2, 2, 2,( ) /T T T TT TTT TTT TT TTT B B B T C B T C Bεε εε ε ε ε ε= + + − − −

. 

From the second-order condition for abatement, 0TT TTC B− > , so the sign of 2,T εε  

depends primarily on the third derivative of the cost function and the second-order derivatives of 

the marginal benefit function. Using these relationships, and noting that T T TTB Bε ε= , we can 

rewrite Eq. (9): 

                                                 
3 We choose expected marginal costs rather than expected marginal benefits to allow a more straightforward 
evaluation of the case of threshold target uncertainty (i.e., perfectly inelastic marginal benefits). Otherwise, the two 
formulations are equivalent.  
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( )
}

{

2, 1

( )( )
( )

2

2, 2

( ) 2

T

iiiii
i

T TT TT TT TTT TTT
TTT TT

TT TT TT TT T

T

B C B B BB B
T C C

C B C B B
εε ε ε

ε
ε+

+

 
  

    − +−Ψ = + +   − −     
  

 

6444474444864748

14243

 (10) 

In essence, the response of early abatement to greater uncertainty depends on the relative 

importance of three factors:  

(i) the curvature of the MAC function (sign of TTTC ),  

(ii)  the curvature of the marginal benefits function (sign of TTTB  and size of TTB ), and  

(iii)  the effect of the uncertain parameter on the marginal benefits function. 

To explore this relationship, let us consider some commonly used examples for the 

benefits function. 

First, assume constant (but uncertain) marginal benefits, so that ( )B b Tε= + . Then 

0TTB = , and all of the third derivatives of the benefit function are zero.  Reducing (10) reveals 

0Ψ = , implying that uncertainty has no effect on early abatement. 

An uncertain threshold target is a case of perfectly inelastic linear marginal benefits.  In 

this case, rather than focusing on the benefits function, we assume 2 1T T Tε= + −% . Then  2, 1T ε =  

and 2, 0T εε = , and from Eq.  (9), TTTCΨ = .  

The curvature of the MAC function remains a determining factor when marginal benefits 

are linear and decreasing, since 0TTB− > .  Furthermore, since 0TTTB = , part (ii) of (10) is 

irrelevant.  Part (iii) may depend on whether the source of uncertainty lies with the intercept or 

slope of the marginal benefits function and in the latter case, at what point the function pivots.  

(In the Appendix, we show that slope uncertainty per se does not affect early action, if the 

marginal benefit curve pivots around the expected target point.) 
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Thus, when marginal benefits are linear but not constant, the shape of the marginal cost 

curve plays a decisive role in determining the impact of uncertainty on the optimal policy 

strategy.  If the overall marginal abatement cost curve is convex within the range of potential 

outcomes, then greater uncertainty increases early abatement because expected MAC are higher 

than marginal costs at the expected mean abatement. In the case of linear MAC, uncertainty has 

no effect on early abatement. If, however, MAC are concave, as may be the case with sufficient 

backstop technologies, then greater uncertainty can decrease early abatement.   

Of course, if marginal benefits are nonlinear, the relationship in (10) is more complicated, 

and the additional terms can exacerbate or mitigate the effect of the shape of the marginal cost 

curve.  Convex marginal benefits tend to raise early abatement, whereas concave marginal 

benefits tend to lower it.  Indeed, if the marginal abatement cost function is linear ( 0TTTC = ), the 

nonlinearities in the marginal benefit function are decisive. 

Thus, the shapes of the marginal benefits and the cumulative marginal abatement cost 

curves, representing all technological options, determine whether the optimal abatement path 

should become steeper or flatter in response to greater uncertainty about future abatement 

benefits. In general, the less convex the marginal abatement costs, the lower the need to conduct 

additional early abatement in response to uncertainty.  

These results relate to the concept of “prudence” as used by Kimball (1990). In Kimball’s 

study, an agent who maximizes expected utility exhibits prudence by responding to an increase 

in future risk by saving more today. This behavior occurs when an increase in risk raises the 

marginal value of wealth, which equals the expected marginal utility of future consumption. 

Using Jensen’s inequality, Kimball shows that an agent is “prudent” if and only if the third 

derivative of the utility function is positive, carrying the opposite sign of the second derivative. 



 

12 

In an article on risk prevention, Eeckhoudt and Gollier (2005) demonstrate that, by this technical 

definition, prudence tends to have a negative impact on prevention, contrary to popular intuition. 

Because prudence favors the accumulation of wealth to face future risks, it induces agents not to 

spend money ex ante on preventive actions. 

In our framework, prudence is related to the concavity of the marginal abatement cost 

curve, although that is not the only factor. As in the Eeckhoudt and Gollier (2005) case, technical 

prudence runs counter to notions of prudent behavior. With a concave MAC function and 

technical prudence, greater risk induces less prevention in the form of early action.  

An important point to make is that these studies do not consider the possibility of 

endogenous prudence, such as the role of R&D in shaping future marginal abatement costs. In 

this case, R&D can then help reduce reliance on early action to the extent that it both lowers and 

flattens marginal abatement costs in future periods. 

Uncertainty and R&D 

The cost function shape is also important for determining the optimal R&D portfolio, but 

in this case, what matters are the total costs of a given technology rather than the marginal 

abatement costs of all technologies. In addition, the response of second-period abatement to cost 

changes matters.  

Eq. (5) demonstrates that the value of additional knowledge (and thereby the optimal 

R&D resources spent) for technology i increases with uncertainty if 

2 1 2 1[ ( ( , , ), )] ( ( , , [ ]), )i i i i i i
K KE c A T K c A T E Kε ε− > −K K% %  (11) 

The expression in Eq. (11) holds if the marginal benefits to knowledge investment are 

convex in the uncertain parameter, or if 
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2
2, 2,( ) 0i i i i i

KAA KAc A c Aε εεψ ≡ − − >  (12) 

Whether this relationship holds in turn depends on the signs of both iKAc  and i
KAAc  

(whether R&D lowers marginal costs and the slope of the MAC curve for technology i) and also 

the sign of 2,
iA εε  (whether the additional use of abatement technology i in period 2 is increasing 

or decreasing under greater uncertainty). 

From Eq. (3) and (6), assuming that an interior solution exists, a particular abatement 

technology will be deployed until its marginal cost is equal to overall marginal costs: 

2 2 1( , ) ( ( , , ), )i i i
A Tc A K C T T ε= K K .  From this relationship, we derive the implicit function for 

second-period abatement with technology i, given K , where 2, 2, /i i
TT AAA C T cε ε=  and 

( ) ( )22
2, 2, 2, 2,

1
( ) .

i
i iAAA

TTT TTi i
AA AA

c
A C T C T A

c cεε ε εε ε= + −  

Consequently, the expression in (12) can be rewritten as 

2
2,2

( )
( )

i i i
i i iKA KA AAA

KAAi i
AA AA

c c c
c A

c c εψ  − −= Ψ − + 
 

 (13) 

Thus, whether greater uncertainty increases optimal investment in a particular technology 

i depends on four components:  

i) whether investment lowers marginal costs for that technology (the sign of 

i
KAc ,);  

ii)  whether uncertainty increases the incentives for early abatement (the sign of 

Ψ ,);  

iii)  whether R&D lowers the slope of that technology’s marginal cost function (the 

sign of i
KAAc ), and  
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iv) whether the marginal cost function for that technology is concave or convex 

(the sign of i
AAAc ). 

First, let us consider the common case in which R&D lowers marginal, as well as total, 

costs of abatement for each technology ( 0i
KAc < ).  In this case, whenever uncertainty induces 

more early abatement, it also encourages additional investment in all kinds of technologies.  

These results would be reversed if innovation reduced costs to a greater extent at low levels of 

abatement, making the marginal abatement cost curve steeper. Then greater uncertainty would 

tend to reduce optimal R&D. Meanwhile, a parallel shift in costs could mean that the expected 

gains to innovation are invariant to the degree of uncertainty, as with linear supply and demand 

for abatement. 

In general, uncertainty means a greater emphasis should be placed on those technologies 

which have concave marginal costs and for which R&D decreases the slope of those marginal 

costs, especially if those technologies are likely to be used more heavily in the event of higher-

than-expected marginal damages.  In other words, a premium is placed on technologies that can 

help flatten the overall MAC curve.  On the other hand, technologies with more convex marginal 

costs, because they become increasingly costly, are by nature going to be more limited in their 

scope for application and should receive less weight in the R&D portfolio when uncertainty over 

climate damages looms larger. 

This analysis is useful for drawing intuition, but it has certain limitations, as we have 

ignored two kinds of interactions.  One is that the extent of abatement with one technology may 

affect the marginal costs of abatement with another; for example, the effectiveness of carbon 

capture and sequestration is lower if the power plant has already reduced emissions by changing 



 

15 

from coal to integrated gasification combined cycle technology.  The second relates to the fact 

that these results are derived from considering small changes around an equilibrium.  For a larger 

range of potential outcomes, however, these relationships may not all hold, partly because of the 

interaction with other technologies. The cost functions for individual technologies with respect to 

cumulative target abatement may be discontinuous because of the inequality constraints in the 

first-order conditions. For example, some targets may not generate sufficient emissions prices to 

trigger the use of certain technologies, whereas other targets may be so high that some 

technologies reach their limits of capacity or cost competitiveness. As a result, the effective cost 

function over the target range may be rendered more concave than the underlying cost function 

for abatement. Greater target uncertainty can then lower the expected costs of abatement from a 

particular technology by decreasing the expected reliance on that technology. Such is the effect 

of the availability of an adjacent technology: for example, a backstop limits the maximum 

abatement from conventional technologies so, to the extent that it makes use of the backstop 

more likely, uncertainty can lower the expected value of investments in conventional methods  

Nor do we directly address all issues important for R&D investments. However, we can 

learn about their effects from the preceding analysis. First, research success involves its own 

uncertainty. Our framework clearly indicates that the key question is whether uncertainty raises 

or lowers the expected cost savings from research, given uncertainty about what the research 

expenditures will produce. If uncertainty raises the expected cost savings—such as by allowing 

for the possibility of some extremely successful outcomes—then R&D investment should 

increase as a response. If uncertainty instead increases the expected cost of succeeding, then 

R&D investment should fall. A balanced R&D portfolio will have to weigh the relative effects of 

research success probabilities and potential gains across different technologies. 
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Knowledge accumulation may not be driven solely by R&D. Still, intuition for the case 

of learning by doing can be derived from the R&D results. To the extent that abatement is a 

learning experience, abatement activities carry a dual purpose of reducing emissions and 

investing in knowledge. Thus, when greater uncertainty would call for increased R&D 

investment, it similarly would call for increased learning by doing, which implies increasing 

abatement in the first period. Thus, in the learning-by-doing case, the investment parameter is a 

proxy for the premium to additional abatement in the first period. Which effect dominates—

increasing early abatement to invest in technological change or decreasing early abatement in 

anticipation of technological change—may be ambiguous (Goulder and Mathai 2000). 

Numerical Example with a Backstop Technology 

We explore some of these issues of the shape of the MAC curve by using a simple 

combination of two linear technologies: a conventional technology with upward-sloping 

marginal costs (superscript “a”), and a backstop technology with constant marginal costs 

(superscript “b”).  To focus on the role of the cost function, we consider simple target 

uncertainty.   

The intuition of this simple case is useful. Consider what happens in the absence of a 

backstop technology: the overall MAC curve is linear ( 0a
TTT AAAC c= = ), so 0Ψ =  and 

uncertainty would not affect early abatement. Furthermore, reducing (13), 2
2,( )a a a

KAAc A εψ = − , 

meaning R&D only increases in response to greater uncertainty if it lowers the slope of the MAC 

function for the conventional technology (i.e., pivots the curve downward, rather than merely 

shifting it). We will assume R&D causes a proportional reduction in costs, which means that 
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greater uncertainty would shift the first-period policy toward more investment and less 

abatement because expected marginal costs then fall.   

On the other hand, if the backstop were the only technology, then greater uncertainty in 

the threshold would have no effect on the desired investment, because a proportional cost 

reduction would result in a parallel shift in the marginal abatement cost curve ( 0bψ = ).   

However, when both technologies are available, the R&D choice is trickier because two 

strategies must be balanced. For the regular technologies, the backstop serves to cap marginal 

abatement costs so that additional reductions do nothing to reduce cost variance in high-

abatement states, as long as the backstop is used. Uncertainty can then reduce conventional R&D 

incentives if it reduces the likelihood the conventional technology will be the marginal 

technology. From the perspective of the backstop technology, having conventional technologies 

available means the backstop will come into play only in high-cost scenarios. In this case, if 

greater uncertainty increases the probability of using the backstop, it raises the expected marginal 

benefit of R&D to lower the cost of the backstop technology. 

Combining these results implies that greater uncertainty tilts the overall policy portfolio 

toward developing technologies that are more likely to come into play in extreme outcomes. 

Furthermore, the optimal portfolio tends to call for diverting some resources from improving 

existing technologies when greater uncertainty limits their expected applicability. Finally, R&D 

can reduce the need for engaging in early mitigation to the extent that it reduces the convexity of 

the cumulative marginal abatement cost function. 

As we discuss later, most numerical climate policy models that do incorporate backstop 

technologies assume those technologies are not infinitely available (or substitutable), thus 

limiting the capacity for their replacement with conventional technologies. In our framework, 



 

18 

when a backstop is available but has limited capacity, the marginal abatement cost curve is 

piecewise linear in three pieces: increasing, flat, then increasing again, The marginal cost 

function is concave at the first of these switch points and convex at the second. The effect of 

uncertainty on abatement and R&D in different technologies will depend on the interplay of all 

these parameters.  When the backstop’s applicability is limited, then there may be a range over 

which uncertainty increases and then decreases investment in the backstop (with the opposite 

effect on the conventional technology). 

A study of scenarios with a range of abatement targets can give a sense of these results.  

 

 

Figure 1-Figure 3 show the results from a numerical simulation of the preceding model, 

revealing how optimal policy responds to increasing target stringency.  The parameters are 

described and motivated in detail in the Appendix. The IPCC finds the climate sensitivity to a 

doubling of carbon dioxide in the atmosphere to range from 2 to 4.5 degrees centigrade; 

assuming damages are mostly temperature related, this factor introduces an uncertainty of 

roughly +/- 50% around a stock target. Plausible projections of emissions lead to a range of 

cumulative abatement targets between 200 and 900 Gigatons of carbon (GtC) for this century. 

We assume that a backstop is initially available at US$420/ton of carbon, approximating the cost 

of photovoltaic power, with a capacity constraint of 300 GtC in the second period. The key point 

of this exercise is to highlight the role of the changing slope in the marginal abatement cost 

function as the backstop enters into play and then reaches its capacity limits. 

First, as the target becomes more stringent, conventional abatement in both periods 

increases initially and then declines as backstop use in the second period increases. This decline 
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occurs because R&D shifts from the conventional technology to the backstop, changing the 

relative marginal abatement costs. However, after the backstop reaches its capacity constraint of 

300 GtC, reliance on the conventional technology increases again. 

 

 

 

Figure 1:  Abatement by Type as a Function of Target Stringency 
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Next, Figure 2 shows that conventional R&D is crowded out as more stringent targets 

make R&D in the backstop technology more important. After investment in backstop R&D 

begins, the profitability of conventional R&D falls—until backstop capacity is reached, at which 

point R&D in conventional technology becomes more attractive again. The patterns for R&D in 

each technology are similar to those of abatement for each respective technology. 
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Figure 2: Investment Mix ($) with Different Climate Target Stringency (GtC) 
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These sensitivity analyses give indications of the effects of uncertainty, which are 

illustrated in Figure 3. Suppose, first, that the expected target is 400 Gt C, the cusp at which the 

backstop would be needed. As uncertainty broadens the range of potential targets from that point 

(by increasing the standard deviation of the target estimate), more scenarios incorporate the 

backstop, raising the expected gain from backstop R&D (see the lower, solid line in Figure 3). 

Meanwhile, the expected returns to conventional R&D decrease because costs are capped by the 

backstop and fall as low-target scenarios become more probable. However, if the simulation 

starts with an expected target of 620, then uncertainty has the opposite effect: increasing the 

spread of possible targets means lowering the expected value of the backstop (because its 

capacity is maxed out in more situations) and raising the expected value of lowering 

conventional technology costs (see the upper, dashed line in Figure 3). For an even larger range 
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of uncertainty, the effects may be somewhat ambiguous because each cost curve has convex and 

concave components. 

Figure 3:  Effect of Target Uncertainty on Backstop R&D 
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Discussion: Prudence in Climate Policy Modeling 

In this paper, we have focused on the effects of uncertainty about the severity of climate 

change on the benefits of early abatement and of R&D investment. We have shown that the 

effects depend on several factors, including the shape of the cumulative marginal abatement cost 

curve, or “prudence.”  When that curve is convex, an increase in benefit uncertainty implies the 

need for more early abatement, whereas with a concave MAC curve, uncertainty shifts the focus 

somewhat away from early action. We find that the extent of prudence is shaped by the 

characteristics of the technologies and their response to R&D; this aspect of prudence has been 

ignored in previous studies, in which the utility function is generally fixed. In the climate policy 

case, the national or societal marginal abatement cost curve represents a sequence of 
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technological options. Backstop technologies can flatten out the curve and R&D that lowers 

those costs further changes the shape of the curve over the relevant range of potential abatement 

requirements. Prudence thus interacts with R&D, shaping the optimal portfolio of investments; 

those investments, in turn, shape the extent of prudence and the desirability of early action. Thus, 

given the vast uncertainty in the emissions targets needed for climate stability, key empirical 

questions for climate policy aim at revealing the true shape of the future marginal abatement cost 

curve and the technological options that compose it. 

In climate policy modeling, however, little attention seems to have been paid to the third 

derivatives of the cost function. Most economic models addressing the R&D and abatement path 

question start with a particular functional form and derive results from it. Few economic models, 

if any, actually combine R&D with a diversity of technological options. 

To interpret climate policy model predictions, one must understand how they incorporate 

carbon-free backstop technologies, determine long-run marginal abatement costs, and allow for 

technological change (see Edenhofer et al. 2006).  The assumption of a true (nonscarce) backstop 

technology, producing a concave marginal abatement cost curve, is a more common approach for 

partial equilibrium models. In contrast, like the vast majority of the top-down climate models, 

general equilibrium models primarily evaluate a host of energy substitution options, including 

mix shifting and output substitution. However, the typical specifications using nested constant 

elasticity of substitution (CES) functions—even those with a carbon-free technology—

necessarily imply convex marginal abatement costs. That is because the functional form assumes 

that some fossil energy sources are always desired, no matter how expensive they become, 
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implying that removing carbon from the economy becomes increasingly costly.4  In a meta-

analysis of several major climate models, Fischer and Morgenstern (2006) find the marginal 

abatement costs (as a percentage from baseline) to be basically linear, which does imply convex 

marginal costs in terms of levels. However, only one of these models included a backstop 

technology, and the range of abatement may not have been stringent enough to evaluate 

significant curvature.   

Indeed, few energy–economy models allow for the wholesale replacement of one 

technology with another. Those that do allow carbon-free technologies to enter as perfect 

substitutes for other energy sources employ techniques to slow their penetration, such as 

additional fixed factors of production or capacity growth constraints, resulting in MAC that are 

highly convex in the GHG concentration target.5   

As a result of these techniques, convexity seems the dominant shape of the effective 

marginal abatement cost curves in most models.  Furthermore, when technology-specific change 

is incorporated, it typically manifests itself as a percentage reduction in costs of that technology, 

which effectively lowers the slope of that technology’s supply curve.6  Therefore, we would 

expect most model results to show that target uncertainty should lead to more early action and 

more R&D in the relevant technologies.  The question is, how accurate are the assumptions 

needed to close these models and allow for the reasonable computation of solutions? 

                                                 
4 In other words, if carbon-free technologies are assured a market niche even when they are more expensive, then 
coal and other fossil technologies also are assured a niche in the future, even when they become more expensive. 
5 Examples include the EPPA model, MERGE, and most bottom-up models. 
6 Some climate models assume technology lowers emissions intensity, or that knowledge substitutes for polluting 
factors in production, which can lead marginal abatement costs to rise at some point.  See review by Baker and 
Shittu (2008). 
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Unfortunately, the true shape of these curves in the relevant range cannot easily be 

resolved by empirical studies because that range lies well outside what has historically been 

observed.  In terms of true backstop technologies, the most-discussed candidates are carbon 

capture and storage (CCS), nuclear, and solar.  Each have the possibility of being utilized at large 

scales, though location (and risk management) could be constraining factors.7  Solar energy is 

particularly large in comparison to societal needs; current world energy use of commercial fuel is 

roughly 450 EJ/year, whereas the solar energy flow to Earth is 5.4 million EJ/year (World 

Energy Council 2007). Of course, a question that looms large for the more radical technologies is 

not just their ultimate capacities, but how rapidly these capacities can be tapped.  Given the 

importance of backstop technologies, scientists and economists alike should pay greater attention 

to understanding and estimating the future costs and capacities. Climate policy modelers should 

heed these studies and consider how well their models are able to represent the dramatic shifts in 

energy technologies that some all-too-possible scenarios will require.  
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Appendix 

Linear Marginal Abatement Costs and Slope Uncertainty 

Suppose that 2ˆ( ) ( ) / 2B b T a T Tε= + − − , where T̂  is a pivot point. Then 

ˆ( )TB b a T Tε= + − − , ,TTB a= − 1TB ε = , and 0TT T T TB B Bε ε εε= = = . Consequently, part (iii) is 

zero as well, and (10) reduces to ( ) ( )2

2, /( )TT TTTT a C a CεΨ = + , in which case the sign depends 

on that of TTTC . Suppose, instead, that the uncertain component is the slope, not the level, of 

marginal benefits from abatement; in other words, 2
0

ˆ ˆ( ) ( )( ) / 2B B b T T a T Tε= + − − + − . Then 

ˆ( )( )TB b a T Tε= − + − , ( ),TTB a ε= − + 0TTTB = , 1TT T TB Bε ε= = − , ˆ
TB T Tε = − , and 0TB εε = . 

Consequently, evaluating at T T= , 

2ˆ 2
ˆ( )

TTT TT
TT TT TT

T T a
C C

C B C a T T

ε
ε

    − +Ψ = +     − + + −    
.  If the 

pivot point occurs at the expected level of total abatement (i.e., ̂T T= ), the expression reduces to 

zero, meaning slope uncertainty per se does not affect early abatement.  However, if the pivot 

point is elsewhere, then there is effectively a combination of slope and intercept uncertainty, and 

the sign of part (iii) depends on the distance between that pivot point and T . 

Numerical Model Specifications 

In this section, we present the model on which the figures and simulations in the text are 

based.  We consider two technologies, each with linear marginal abatement costs (MAC). The 

conventional technology has upward sloping MAC, whereas the carbon-free backstop 

technology has flat MAC, but may be limited in its ultimate capacity. We consider the case of 
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target (threshold) uncertainty, as opposed to uncertainty about some downward-sloping marginal 

benefits function.  

The simulation model is intended to illustrate the theoretical section and is not intended 

as a “scenario.” The simplifications involved in modeling the future as two 50-year periods and 

all technologies collapsed into one conventional and one backstop make it inappropriate to strive 

for any precision; nevertheless, we use representative values as far as possible. 

Let a denote the conventional technology and b the backstop technology. Consider the 

case of linear MAC that are shifted by research and development (R&D) investment: 

 2( , ) ( )
2

a
a tKa a a a

t t t

c
c A K e Aρ−=  ( .14) 

In this case, R&D pivots the MAC curve downward, lowering costs of achieving any 

given level of abatement by ρ percent.  By this assumption, R&D lowers marginal costs and 

flattens the conventional MAC curve, which the text notes is a determining factor in the results. 

For the backstop technology, ( , )
b

bKb b b b
t tc A K e Aρ χ−= , with the additional constraint that 

the backstop has a maximum capacity ˆb b
t tA A≤ .  We consider cases in which the backstop is 

uneconomic or infeasible in the first period, so 1 1
aT A= . 

For R&D investment costs, we assume a simple quadratic function for technology i, 

implying linear marginal investment costs 2( ) ( )i i i i
if K K s K= +  . 

For modeling simplicity, we consider the case of an uncertain target due to an uncertain 

catastrophic threshold T%  resulting in a vertical marginal benefit curve. In the second period, 

uncertainty is resolved, and the total abatement target is determined by this threshold. Let p 
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reflect the shadow value of carbon abatement at that threshold. That price is, in turn, determined 

by the equilibrium conditions at the optimum. 

Substituting our functional forms into the first-order condition (Eq. 2 in the main text), 

we get 

 2 2, 0
aK a ae cA p Aρ− = >  ( .15) 

and 

 

2 2

2

2 2

ˆ, 0
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e p A A

e p A
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−

= > >
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 (A.21) 

Let 2 2( )*
2 /

a b
a bK KA e cρ ρ χ−=  be the level of abatement at which it is cheaper to switch to the 

backstop technology for further abatement. In this case, in the second period, we can express 

abatement by each technology as a function of the total target for that period, 2 1T T T= − : 

 

*
2 2 2 2

*
2 2 2

ˆmax min[ , ],

ˆmin max[0, ],

a b

b b

A T A T A

A T A A

 = − 

 = − 

 (A.22) 

Then, the first-order conditions for the social planner reduce to  

 { }2
1 2

a
aKa aA E e Aρδ −=  
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With these five equations, and a distribution of T, we solve the system for 

1 2 2 2 2, , , ,a a b a bA A A K K . 
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Simulation Parameters 

Recognizing the limitations of this simplified model, we still attempt to parameterize it 

with values representative of the greenhouse gas abatement challenge.  

The target value for emissions reductions, T, takes values between 200 and 900 gigatons 

carbon (GtC). Current emissions are around 7 GtC, and a linear interpolation of business-as-

usual (“BAU”) emissions data from Marland et al. (2003) would give close to 20 GtC/year, or 

1300 GtC total emissions by 2100, which also corresponds to the median post SRES scenario of 

the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report. Stabilization 

scenarios from Azar (2006) based on Wigley et al. (1996) and the IPCC indicate that, to reach 

targets of 550, 450, or 350 parts per million (ppm), emissions would have to stabilize, falling to 4 

or almost 0 GtC/year by 2100. In our simulation, we consider two 50-year periods that together 

comprise this century. During this period, the total abatement necessary (compared with the 

BAU mentioned) is estimated by integrating under the emissions curves, which gives a total of 

400, 630, and 1,000 GtC aggregate emissions reductions for 2000–2100 to meet the targets of 

550, 450, and 350 ppm, respectively. Many authors focus on 550 or 450 ppm, thus the range of 

values analyzed for our target of 200 to 900 GtC covers the range generally discussed, such as in 

the Stern Review (2007). 

The discount factor between the two periods was set to 50 percent (δ = 0.5), 

corresponding to a discount rate of just under 1.5 percent per year.8  Several other parameters 

were calibrated to give realistic marginal abatement cost figures, in line with those used in 

                                                 
8 This is low but can be motivated by the arbitrary 100 year cutoff. It also corresponds well to the discount rate in 
the Stern Review where the pure rate of time preference of 0.1% combines with a unitary marginal elasticity of 
income and per capita growth rates to give a discount rate of 1.4%, Stern (2006)  
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Survey of Energy Resources (World Energy Council 2007). The cost parameters were set at c = 

1.6 10-9 $/ton2 in the conventional abatement function and χ = $420/ton C for the backstop 

technology, which is assumed to have a capacity constraint of 300 GtC in the second period 

(2050–2100). The cost parameter χ, shows the baseline abatement cost for the backstop 

technology in the year 2050 before the cost-saving effect of R&D. This number might appear 

high but the model is intended to deal with abatement that leads to the equivalent of emission 

reductions in the order of 80 – 100% in the year 2100. A backstop abatement cost of 420 $/ton C 

corresponds to a 0.06 $/KWh which is a common figure for photovoltaic power, see for instance 

Chakravorty et al (1997) or UNDP (2004). 0.06 $/KWh corresponds to 700 $/ton of C 

equivalent. The current price of oil is approximately 380 $/ton C and hence the solar backstop 

would imply a price increase of 420 $/TC). The parameter c is calibrated so as to give an 

illustrative mix of backstop and conventional abatement. Depending on the exact investments in 

R&D, the backstop becomes profitable after about 130 GtC of conventional abatement in the 

first period and 260 GtC of conventional abatement in the second one. 

For both types of technologies, costs can be reduced by investments in R&D as described 

above. The parameters were calibrated to give a cost of R&D that is roughly equivalent to a 

range of values corresponding to between one and ten times the annual cost of R&D by member 

countries to the International Energy Agency (IEA) in 1980. The parameters were 0.0003 for aρ  

and 0.000306 for bρ ; 0.03 for sa and 0.01 for sb. The cost of R&D in the IEA in 1980 was 15 

Billion $ according to OECD (2006). Finally, the probability distribution for the target abatement 

is a normal distribution with a standard deviation of 125 GtC. The distribution is truncated to 

preclude negative targets and ensure a symmetric distribution. 


