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Abstract 

 
From time to time, something occurs which is outside the range of normal 
expectations. We will call these “tail events” in the sense that they are way out the 
tail of a probability distribution. I consider the question of the implications of tail 
events for economic policy and climate-change economics. This issue has been 
analyzed by Martin Weitzman, who proposed a Dismal Theorem. The general idea 
is that, under limited conditions concerning the structure of uncertainty and risk 
aversion, society has an indefinitely large expected loss from high-consequence, 
low-probability events. Under such conditions, standard economic tools such as 
cost-benefit analysis cannot be applied. The present study is intended to put the 
Dismal Theorem in context and examine the range of its relevance, with an 
application to catastrophic climate change. I conclude that tail events are sometimes 
of extreme importance, and we must be extremely careful to include them in 
situations of deep uncertainty. However, we conclude that no loaded gun of strong 
tail dominance has been uncovered to date. 
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 I.   Climate Policy in the Age of Tail Events 

 In an earlier era, climate policy was a straightforward exercise in weighing costs 
and benefits of mitigation in light of the economic costs of reducing emissions and 
the lower economic damages from reduced concentrations of greenhouse gases 
(GHGs). Most analyses in this framework called for modest near-term reductions in 
emissions, followed by increasingly tight controls in the decades to come. In this 
view, the science and policy could improve sharpen our estimates as there was no 
great urgency in terms of either the damages of sharp discontinuities. 

 Three developments in the natural and social sciences have upended the earlier 
relatively relaxed stance on climate policy. The first was the argument in The Stern 
Review that societies must take a longer view than was customary. This approach 
argued for a near-zero rate of pure time preference because of the very long 
duration of impacts of today’s emissions. 

 A second development was the change in the view of climate change from one 
of gradual and smooth changes in the impacts to one with potentially abrupt climate 
change and sharp irreversible tipping points. This view emphasized the importance 
of potential thresholds or potentially catastrophic impacts. Important examples that 
have been discussed are reversal of the Atlantic thermohaline circulation, 
disintegration of the Greenland and West Antarctic Ice Sheets, shifts in monsoonal 
patterns, and die-off of the Amazon rain forests. Little economic analysis of these 
tipping points has taken place. 

 The third change has been the increasing concern with the potential of “tail 
events” in the impacts of climate change. This paper deals with the third of these 
issues. I focus in particular on the implications of the combination of outcomes that 
are potentially catastrophic in nature and have “fat tails.” The combination of these 
two circumstances may lead to situations in which our standard analyses need to be 
modified or even break down. In the extreme case, the combination of fat tails and 
unlimited exposure implies that the expected loss from certain risks such as climate 
change is infinite. 

 The plan of the present study is as follows. We begin in the first section with a 
discussion of tail events along with a definition of tail dominance. We provide an 
overview of the basic analysis underlying Weitzman’s Dismal Theorem, and then 
provide a simplified heuristic example in which the basic structure is easily seen. We 
put the analysis in the context of policy decisions and note that the usual version of 
the Dismal Theorem actually contains no policy decisions. 

 The subsequent section sketches the critical assumptions underlying strong tail 
dominance as exemplified by the Dismal Theorem. It shows that two central 



 

- 3 - 

 

assumptions are unboundedness of both the uncertain variable and the marginal 
utility of consumption as consumption approaches zero. 

 The final section explores in greater depth the question of tail dominance in the 
important case of climate change. This example is motivated both because of its 
importance in current policy discussions and because it is the policy example that 
Weitzman explores in his analysis. We first examine the question of whether we can 
establish upper bounds on the critical uncertain variable, the temperature sensitivity 
coefficient (TSC) that Weitzman analyzes. We indicate that using paleoclimatic data, 
a secure although relatively high upper bound can be determined. We also explore 
the distribution of consumption declines using the analog of consumption 
“disasters” in economic history. Using two different databases, we find that 
consumption disasters appear not to have a tail that is sufficiently fat to trigger the 
Dismal Theorem. 

 We conclude that a loaded gun of strong tail dominance has not been 
discovered to date. At the same time, the results of the Dismal Theorem are 
sufficiently powerful to serve as a reminder that we must constantly be alert to this 
possibility. Perhaps climate change is not the Dismal event, but there is a sufficiently 
large number of other high-consequence, low-probability events that we need to pay 
careful attention to tail events. 

A. Tail Events and the Dismal Theorem 
 

 A tail event is an outcome which, from the perspective of the frequency of 
historical events or perhaps only from intuition, should happen only once in a 
thousand or million or centillion years. Momentous tail events were the detonation 
of the first atomic weapon over Hiroshima in 1945, the sharp rise in oil prices in 
1973, the 23 percent fall in stock prices in October 19, 1987, the destruction of the 
World Trade Towers in 2001, and the collapse of the world financial system in 2007-
08. 

 Statisticians have known for a long time that events with “fat tailed” 
distributions may behave in an unintuitive way.1 Relatively little work has 
                                                 

1  There is no generally accepted definition of the term “fat tails,” also sometimes called 
“heavy tails.” (1) One set of definitions divides distributions into three classes. A thin-tailed 
distribution has a finite domain (such as the uniform), a medium-tailed distribution has 
exponentially declining tails (such as the normal), and a fat-tailed distribution has power-
law tails (such as the Pareto distribution). See Eugene F. Schuster, ”Classification of 
Probability Laws by Tail Behavior,” Journal of the American Statistical Association, Vol. 79, No. 
388, Dec., 1984, pp. 936-939.  (2) Weitzman proposes a new definition, that a fat-tailed 
distribution is one whose moment generating function is infinite. As we will see below, this 
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examined the implications of fat tails for economic modeling and policy. In a recent 
series of papers, Martin Weitzman has proposed a dramatically different conclusion 
from standard analysis in what he has called the Dismal Theorem. This result holds 
that under certain circumstances the expected value of utility or marginal utility 
does not exist and we therefore cannot apply our standard analysis. The 
circumstances that Weitzman proposes are ones with fat tails and with strong risk 
aversion. 

 He summarizes the basic point as well as its application to climate change as 
follows: “The burden of proof in climate-change CBA {cost-benefit analysis} is 
presumptively upon whoever calculates expected discounted utilities without 
considering that structural uncertainty might matter more than discounting or pure 
risk. Such a middle-of-the-distribution modeler should be prepared to explain why 
the bad fat tail of the posterior-predictive PDF is not empirically relevant and does 
not play a very significant – perhaps even decisive – role in climate-change CBA.”2  

 The presence of consequential tail events is potentially of great importance for 
both economic modeling and for economic analyses of climate change. The purpose 
of this note is to put tail events and the Dismal Theorem in context and analyze the 
range of their applicability. I conclude that Weitzman raises important issues about 
the selection of distributions in the analysis of decision-making under uncertainty. 
However, the assumptions underlying the theorems are very strong, so the broad 
claim to have reversed the burden of proof on the use of expected utility analysis 
needs to be qualified. 

B. Some preliminaries on of tail dominance 
 

The Dismal Theorem is basically about the way that tail events can dominate 
our analysis. We can describe the analysis here is slightly different terms that can be 
described as “tail dominance.” We can classify problems into three classes: 

                                                                                                                                                       

is also the condition for the Dismal Theorem, so it is tautological. We will also see that 
within a class of distributions the condition will depend on incidental parameters such as 
the degrees of freedom. 

2 There are multiple iterations on the Dismal Theorem. These quotations are from Martin L. 
Weitzman, “On Modeling and Interpreting the Economics of Catastrophic Climate Change,” 
The Review of Economics and Statistics, February 2009, Vol. 91, No. 1: 1–19. I am grateful for 
comments on these issues from William Brainard, Gary Yohe, Richard Tol, and Martin 
Weitzman. Version is paris_051110.docx. 
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• Tail irrelevance. Certain problems are ones in which the distribution of the 
random variable makes no (or little) difference to the policy or the outcome. 
For example, some problems are characterized as ones in which certainty 
equivalence applies. In these, clearly the tails are irrelevant. 
 

• Weak tail dominance. A second class of cases is one where the outcomes are 
strongly affected by the tails of the distributions. For example, it might be the 
case that the outcome is strongly affected by the tails of the distribution, but 
the answer converges as we continue to look at more unlikely events. 
 

• Strong tail dominance. A final class of cases is one where there the outcome 
does not converge as we continue to look at more and more extreme events. 
In other words, the optimal policy or the outcome does not exist (say because 
it is unbounded).  
 

 I take a concrete example to show the point. Suppose we are looking at the 
earthquakes and need to consider what “size” earthquakes to plan for in our 
building codes. We cannot consider every possible outcome, so we might consider a 
rule of thumb that considers the “100-year earthquake.” That is, we consider 
earthquakes that are likely to occur with at least a 1 percent per year probability, but 
we ignore the 100+ year earthquakes as too remote to worry about.  

 Suppose that an analysis reveals that this 100-year policy leads to a certain rule 
on setback from the fault – perhaps no structures would be allowed closer than 100 
meters. The question is, how do our decisions change as we move out the tails? Do 
the tails dominate our decisions? To examine tail dominance, we decide to repeat the 
analysis with earthquake frequency cutoffs of 0.1 percent per year, 0.01 percent per 
year, 0.001 percent per year, and so on. In many cases, the analysis does not differ 
markedly as we move to more remote events. The reason is that, while earthquakes 
are more costly, they are not sufficiently costly to revise the outcomes substantially.  

 Under the Dismal Theorem, which I call strong tail dominance, the results 
would be completely different. As we move to higher cutoffs, our best policy 
continues to change. So perhaps we find that we should build further from the fault 
by 200 meters, 400 meters, 1000 meters, etc. We see that there is in reality no optimal 
policy because the policy continues to change as we move further out the tail. And 
we must consider the entire distribution, not just the most likely events. 

 Weaker tail dominance would occur when the tail have a significant impact 
on our policies. It might be that the optimal decisions converge as we move out the 
tails, but they converge slowly so that the tail is an important part of the decision 
outcome. So, weak tail dominance means that tails matter; strong tail dominance (as 



in the Dismal Theorem) means that there is no convergence as the optimal policy 
changes the further we move out the tail. 

C. Analytics of Strong Tail Dominance and the Dismal Theorem 
 

 An early example of the implications of strong tail dominance was derived by 
John Geweke.3 Geweke was concerned about the use of constant relative risk 
aversion (CRRA) utility in the context of Bayesian learning in economic-growth 
models. Recall that a CRRA utility function is of the form 

 where c is a measure of consumption and1( ) / (1 ), for 1,α α α−= −U c c ≠ α  is the 
elasticity of the marginal utility of consumption [ ( ) ln( ), when 1α= =U c ]. Weitzman 
usually takes the elasticity to be 

c
1α > , and I will follow that convention in this 

discussion. A central assumption in both Geweke’s and in Weitzman’s analyses is 
that consumption has a structural uncertainty that is lognormally distributed: 

(1) ln( )c c ε≈ +  

where 2(0, ),  with mean  and standard deviation .Nε σ μ≈ σ  

 Geweke provided a number of examples of expected utility in which expected 
utility would exist (be finite) or would be unbounded depending upon the value of 
α  and the probability distribution of consumption. For example, if consumption is 
lognormally distributed with known mean and variance, then expected utility exists 
(is finite) for all α . A degenerate case comes when consumption is log-normally 
distributed with unknown mean and unknown variance, and when the parameters 
of the distribution are derived from Bayesian updating. In this case, the distribution 
of the parameters is a normal-gamma distribution and the expected utility is 
unbounded (negative infinity) for 1α ≠ . This example is of particular interest 
because the sampling distribution for the standard deviation of a normal 
distribution is a t-distribution, which is in the gamma family. The existence of 
expected utility is “fragile” with respect to changes in the distributions of random 
variables or changes in prior information. Fragile in this context denotes that with 
CRRA the expected utility exists with some distributions but not for others. 

                                                 

3 John Geweke, “A note on some limitations of CRRA utility,” Economic Letters, 71, 2001, 
341–345. 
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D. A simplified version of the Dismal Theorem 
 

 We can get similar results to the Geweke-Weitzman analysis by simplifying the 
analysis as follows.4 For the utility function, we retain the CRRA utility function. 
Recall that in the CRRA framework, the utility function is 1( ) / (1 )α α−≈ −U c c  (we 
work always with α > 1). A high value of α signifies high risk-aversion or inequality-
aversion. For the probability distribution, we work with the Pareto distribution (as 
least in the tail), this being the archetypal fat-tailed distribution. We assume that 1/c 
has a Pareto distribution; that is, we look at tail events in declines in consumption. 
For small c, this implies that ( ) , 0≈ >kf c c k . Note in this context that a low value of k 
signifies a distribution with a fatter tail.  

Define the conditional utility at consumption level c (which denotes the 
probability times utility) as ( ) ( ) ( ) V c f c U c= .  For this specification, 

( ) ( ) ( ) 1 1 α α− + −− = −k kc= ≈V c f c U c c c .  The question is what happens to the 
conditional utility as c tends to zero. The expected utility [the integral of V(c)] over 
the interval between zero and some positive level of consumption, c , converges to a 
finite number as if and only if 0c → 2k 0α+ − > . (An alternative approach would be 
to consider approach to some catastrophic minimum consumption level, but that 
raises no new issues.) 

Weitzman works with conditional marginal utility. The conditional marginal 
utility is defined as ( ) ( ) ( ) CMU c f c U' c=

0c →
. Expected marginal utility [the integral of 

CMU(c)] is bounded as if and only if 1 0k  .α+ − >   

We can take for illustrative purposes an example where α = 2.5 and k = 1.5. In 
this case, the conditional utility is 1 2.5 1.5 2( ) .− +≈ − = −V c c c−

                                                

 A minimal amount of 
calculation will show that this combination of parameters leads to bounded 
expected utility and bounded expected marginal utility. On the other hand, assume 
that α = 3.5 and k = 1, in which case the conditional utility is 
For this case, both expected utility and expected marginal utility are unbounded. 

1 3. 5 1 1. 5( ) .− + −≈ =V c c c

The intuition behind these results is straightforward: The Dismal Theorem 
holds if the distribution is not only fat tailed but very fait tailed (meaning that k is 

 

4 Weitzman usually works with the expected value of marginal utility, while we focus on 
the expected value of utility. The parameter conditions for divergence are slightly different 
for the two, but the general insights are the same. 
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small), or if the utility function shows not only risk aversion but very high risk-
aversion (meaning that α is large).  

While this example simplifies the logic of the argument, it shows some 
important points. It shows that fat tails per se are not sufficient to lead to unbounded 
expected utility or expected marginal utility. Moreover, the question of boundedness 
depends upon both the parameters of the utility function and the parameters of the 
preference function. Note as well that this example involves the distribution of the 
level of consumption, whereas Weitzman’s analysis involves the distribution of the 
log of consumption, so there is yet another important assumption involving what 
variable the fat-tailed distribution applies to.  

E. The Role of Policy in Tail Events 

Implicit in the Dismal Theorem is that the results of policies may have 
unbounded utility or expected utility. Recall Weitzman’s argument that cost-benefit 
analyses “coming out of a thin-tail-based model remains under a very dark cloud” 
until the tail issues are resolved. In fact, there is no cost-benefit analysis in the 
analysis underlying the Dismal Theorem, and indeed there are no policies. How 
might we extend the analysis to the questions of policy? 

Policy as a binary variable 

 One interpretation of the Dismal Theorem is that there are potentially 
disastrous effects of continuing business as usual in the face of global warming. To 
put this point analytically, assume that climate-change policy is represented by a 
policy variable Z. An effective policy will be interpreted as preventing climate 
change, so the policy variable is set at one (Z = 1). An ineffective policy will allow 
business as usual, so the policy variable is set at zero (Z = 0). Using this convention, 
we can rewrite Weitzman’s model as a variant of equation (1) by adding the explicit 
policy variable: 

(2) ln( ) ( ) ( 1)c c Z Zε μ≈ + + −  
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In Weitzman’s climate-change analysis, μ  is the critical uncertain parameter, which 
is a generalized temperature sensitivity coefficient , TSC. If policy is effective, then 
Z = 1 and μ(Z-1) = 0, while if policy is ineffective, then Z ≠ 1 and μ(Z-1) ≠ 0. In this 
framework, Z is the policy variable and μ is an uncertain policy multiplier. 

Weitzman assumes that μ is distributed as 2(  , ).N μμ μ σ≈  If the underlying 
distribution of μ is normal, the estimated policy multiplier (call it μ̂ ) has a t-
distribution, which is fat-tailed in Weitzman’s framework. This implies that that the 
expected utility for the CRRA utility function is unbounded (negative infinity). This 
arises because the policy multiplier μ has the t-distribution. 



Policy as a continuous variable 

In most cases, and certainly for climate-change, policy is a continuous and 
even multi-dimensional variable. This genuinely complicates the analysis. We can 
write the expected value of policy as follows: 

(3)      
( ) [ ][ ( ; )] ( , ), ( ; )

μ
μ μ μ= ∫V Z f T Z U c Z T T Z d

 

In this formulation, f  is the distribution of climatic outcomes given policy and the 
uncertain parameter, and U is utility, which is a function of consumption and 
climatic outcomes. The cost-benefit optimum comes where (3) is maximized with 
respect to the policy Z, call it V’(Z*)=0, for the optimal policy Z*. There is no 
particular relationship between tail dominance for the expected utility in V(Z) and 
tail dominance in the optimal policy equation, V’(Z*)=0. It might well be the case 
that the policy equation has weak tail dominance even though the expected value 
has strong tail dominance. For example, if the outcome of asteroids displays strong 
tail dominance but no policy exists that can prevent the very worst outcomes, then 
the policy equation shows tail irrelevance. If policy enters into (3) in a separable 
fashion, then the uncertainties about the TSC would cancel out in the cost-benefit 
analysis. In any case, when we introduce policies, the analysis underlying the 
Dismal Theorem no longer applies directly. 

 

II. Some Key features of Tail Dominance 

A. Key features of strong tail dominance 
 

The Dismal Theorem of strong tail dominance depends upon some special 
assumptions. First, it is necessary that the value of the utility function tends to 
minus infinity (or to plus infinity for marginal utility) as consumption tends to zero. 
This first condition holds for all CRRA utility functions with 1α > , but not for all 
utility functions with risk aversion. Second, it is necessary that the (posterior) 
probability distribution of consumption has fat tails. The fat tails for the distribution 
of consumption means that the probability associated with low values of 
consumption declines less rapidly than the marginal utility of consumption 
increases. We discuss these questions in turn.  
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B. Utility with near-zero consumption 
 

 We first discuss some problems that arise with CRRA for near-zero 
consumption. The CRRA functions that Weitzman analyzes (with 1α > ) assume that 
zero consumption has utility of minus negative infinity (and unbounded positive 
marginal utility) as consumption goes to zero. This has the unattractive and 
unrealistic feature that societies would pay unlimited amounts to prevent an 
infinitesimal probability of zero consumption. For example, assume that there is a 
very, very tiny probability that a killer asteroid might hit Earth, and further assume 
that we can deflect that asteroid for an expenditure of $10 trillion. The CRRA utility 
function implies that we would spend the $10 trillion no matter how small was the 
probability. Even if the probability were 10-10, 10-20, or even 10-1,000,000, we would 
spend a large fraction of world income to avoid these infinitesimally small outcomes 
(short of going extinct to prevent extinction). 

 An alternative would be to assume that near-zero consumption is extremely but 
not infinitely undesirable. This is analogous in the health literature to assuming that 
the value of avoiding an individual’s statistical death is finite. To be realistic, 
societies tolerate a tiny probability of zero consumption if preventing zero 
consumption is ruinously expensive. 

C. Fat tails and the distribution of parameters 
 

 The second crucial condition for the Dismal Theorem is that the probability 
distribution of consumption has “fat tails” as consumption approaches zero. 
Recalling equation (2) above, Weitzman derives this by assuming a very specific 
functional form for the distribution of consumption. The condition is that the 
structural distribution of consumption is lognormal, the uncertain policy multiplier 
is normally distributed, and knowledge about the distribution of the policy 
multiplier is attained through sampling or Bayesian learning.5 

 However, the results are not robust to minor changes in specifications. For 
example, a finite upper limit might be placed on the uncertain parameter, perhaps, 
in Weitzman’s example of the temperature sensitivity coefficient, from fundamental 

                                                 

5 Weitzman’s analysis contains a discussion of a Bayesian analysis of the Dismal Theorem. 
He relies on the application of a “non-dogmatic prior distribution” in the form of a 
generalized power law, ( ) kp μ μ −∝ [using the notation of equation (2)] with a limiting 
argument as k → ∞. I believe that the results can be obtained using an improper infinite 
uniform prior, which provides the same intuition as the classical discussion in the text.     
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physics.6  Alternatively, the underlying distribution of the uncertain parameter 
might be a distribution that, with sampling, leads to a distribution of t has with thin 
tails. There is little reason to think that the particular distribution used in the 
analysis is the correct one. 

 The statistical approach in equation (2) proceeds in the absence of any prior 
information. This is not the way that most natural or social scientists derive their 
subjective distributions about the key parameters of important questions such as 
those regarding climate change, monetary policy, or tax policy. In doing statistical 
estimates of the radius of the universe, physicists might require that the parameter 
be non-negative. In the case of the temperature sensitivity, most of current 
knowledge comes from the application of physical principles, and until recently, 
none of scientists’ judgments on the temperature sensitivity coefficient came from 
sampling of historical data. In general, subjective distributions on scientific 
parameters are derived from time series, expert opinion, statistical analyses, theory, 
and similar sources. There would seem little reason to force this complex process 
into the straightjacket of the model in equation (2). 

III. Empirical Issues in the Application to Climate Change 

 The Dismal Theorem of strong tail dominance is a useful reminder that analysts 
should think carefully about the distribution functions of parameters when 
undertaking an analysis of uncertainties. In particular, the counterintuitive nature of 
fat-tailed distributions, where “23-sigma” events can happen in historical time, 
needs to be part of any serious analysis of risk. The events in financial markets of 
1987, 1998, and 2008 are useful reminders of that important and oft-neglected point. 
The question addressed here is, how strong is the evidence for strong tail dominance 
as a general rule and in particular to climate change.  

A. Estimates of the temperature-sensitivity coefficient (TSC) 
 

 The central example in Weitzman’s exposition of the Dismal Theorem is the 
example of the temperature sensitivity coefficient. To begin with, he assumes that 
the TSC enters in a multiplicative way as shown in equation (2). For our purpose, we 
can rewrite equation (2) as:  

= + ×2200 2200(3) ln( ) ln( ) (c c TSC f Z)

                                                

 

 

6 This point is shown rigorously in Christopher J. Costello, Michael G. Neubert, Stephen A. 
Polasky, Andrew R. Solow, “Bounded Uncertainty and Climate Change Economics,” 
Proceedings of the National Academy of Sciences, May 4, 2010, vol. 107, no. 18, pp. 8108-8110. 
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 This equation relates the log of consumption two hundred years in the future 
(which is the date that Weitzman identifies) to a base value and the product of the 
TSC and f(Z). I interpret Z as a climate-change policy variable in which f(Z) = 0 when 
effective climate change policies are taken (perhaps zero net carbon emissions over 
the next two centuries), and f(Z) = 1 for a business-as-usual case of rapid growth in 
carbon emissions over the next two centuries. Weitzman does not introduce an 
explicit policy variable such as Z, but it is implicit in the analysis and discussion of 
policy and models. 

 Weitzman’s estimates of the temperature sensitivity coefficient (TSC) 

 The central empirical component of Weitzman’s analysis is that the posterior 
distribution of TSC is extremely dispersed. I quote Weitzman’s analysis of this issue 
at length:7 

 In this paper I am mostly concerned with the roughly 15% of those TSC1 “values 
substantially higher than 4.5 °C” which “cannot be excluded” {by the IPCC Fourth 
Assessment’s Summary}. A grand total of twenty-two peer-reviewed studies of climate 
sensitivity published recently in reputable scientific journals and encompassing a wide 
variety of methodologies (along with 22 imputed PDFs of TSC1) lie indirectly behind 
the above-quoted IPCC-AR4 (2007) summary statement. These 22 recent scientific 
studies cited by IPCC-AR4 are compiled in Table 9.3 and Box 10.2. It might be argued 
that these 22 studies are of uneven reliability and their complicatedly-related PDFs 
cannot easily be combined, but for the simplistic purposes of this illustrative example I 
do not perform any kind of formal Bayesian model-averaging or meta-analysis (or 
even engage in informal cherry picking). Instead I just naively assume that all 22 
studies have equal credibility and for my purposes here their PDFs can be 
simplistically aggregated. The upper 5% probability level averaged over all 22 climate-
sensitivity studies cited in IPCC-AR4 (2007) is °7 C while the median is 6.4 °C, which I 
take as signifying approximately that P[TSC1 > 7 °C] ≈ 5%. Glancing at Table 9.3 and 
Box 10.2 of IPCC-AR4, it is apparent that the upper tails of these 22 PDFs tend to be 
sufficiently long and fat that one is allowed from a simplistically-aggregated PDF of 
these 22 studies the rough approximation P[TSC1 > 10 °C] ≈ 1%. 

 Instead of TSC1, which stands for climate sensitivity narrowly defined, I work 
throughout the rest of this paper with TSC2, which (abusing scientific terminology 
somewhat here) stands for a more abstract “generalized climate-sensitivity-like scaling 
parameter” that includes heat-induced feedbacks on the forcing from the above-
mentioned releases of naturally-sequestered GHGs, increased respiration of soil 
microbes, climate-stressed forests, and other weakening of natural carbon sinks. 
Without further ado I just assume for purposes of this simplistic example that P[TSC2 > 

 

7 Weitzman, op. cit., pp. 5, 7. Note that I have for convenience of exposition changed 
Weitzman’s S1 and S2 to TSC1 and TSC2 to conform to the notation used here. 



10 °C] ≈ 5% and P[TSC2 > 20 °C] ≈ 1%, implying that anthropogenic doubling of CO2-e 
eventually causes P[ΔT > 10 °C] ≈ 5% and P[ΔT > 20 °C] ≈ 1%, which I take as my base-
case tail estimates in what follows. 

 Many people would agree that a 5 percent chance of a 10 °C change, or a 1 
percent chance of a 20 °C change, would be a dangerous prospect for human 
societies. However, the procedures used to derive these numbers are flawed. I first 
review the technique used by Weitzman to derive the TSC and then show an 
alternative method. 

 Weitzman’s estimates are in the spirit of a meta-analysis of existing statistical 
studies of the TSC. The problem with his procedure is the following. If we have 
studies with any statistical independence, then we would never take the average of 
the 95th or the 99th percentile as the appropriate estimate of those percentiles of the 
underlying distribution. Those numbers might be reasonable estimates of the 95th or 
the 99th percentile of the next study, but they are not good estimates of the 
percentiles of the underlying distribution. The appropriate procedure is to start with 
the underlying distributions, then combine them into a meta-distribution, and 
calculate the percentiles from the combined distribution. 8 The Weitzman procedure 
will be correct only if the studies are drawn from exactly the same data, so that the 
distributions have a perfect correlation. This is clearly not the case, as an 
examination of the sources, methods, and the distributions makes clear. 9 

 An example will make the point. Suppose we want to estimate the 95th 
percentile of the estimated mean for a random normal variable, Y, for which we 
have 10,010 independent observations. We divide the observations into group A 
with the first 10 observations and group B with the next 10,000 observations. If we 
take 10,010 random draws of Y assuming (0,1),Y N≈ then the 95th percentile of the 
estimated mean for the first group is 0.699, while the 95th percentile for the second 
group is 0.01956. Under the Weitzman procedure, we would average these to get an 

                                                 

8 One key to the problem with this procedure is the treatment of the Gregory et al. study. 
That study reports a 95th percentile of ∞, which is probably because of low power at the 
upper end. If this were included, then under Weitzman’s procedure, the 95th percentile 
would also be ∞.   

9  A problem involves Weitzman’s procedure of moving from TSC1 to TSC2. Recall that the 
latter concept involves Weitzman’s idea that the sensitivity may be much larger when other 
feedback mechanisms are included. While there can be little doubt that the current climate 
models do not capture all possible effects, Weitzman has provided no empirical foundation 
for his doubling of the TSC percentiles, nor has he considered the time scale on which these 
further feedbacks would occur. 
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overall standard deviation of 0.359. The correct answer is to combine the two, which 
yields a 95th percentile of the estimated mean of 0.01955. 

 Alternative Estimates of the TSC 

 If we were concerned about the distribution of the TSC, we would first look to 
alternative sources of estimates. There are three sources that provide independent 
and scientifically respectable sources: models, time-series estimates, and 
paleoclimatic data. 

1. The approach that is most commonly used is to examine the ensemble of 
climate models. Table 1 shows the results of a compilation of 18 ocean 
atmospheric general circulation models (OAGCMs) as compiled by the 
IPCC-AR4. These have similar analytical structures but have many 
differences in resolution and parameterization. This approach yields a mean 
TSC of 3.2 per CO2-e doubling with a standard deviation across models of 
0.7 °C. 
 

2. A second approach uses time series data from the historical record. The 
second group of estimates in Table 1 show estimates of the transient TSC 
(the temperature increase when CO2 concentrations double after a 70-year 
steady increase). These are consistent with the climate models. 

 
3. A completely different approach is to put an upper bound on the TSC. This 

approach has apparently not been used, so I will sketch the method. We 
have relatively plentiful data from ice cores on historical CO2 concentrations 
and temperature proxies (generally oxygen isotopes). It is well known that 
these show a very strong correlation, and this has sometimes been 
interpreted as proving the validity of the greenhouse effect. Unfortunately, 
there are positive feedbacks from temperature to CO2 emissions and 
concentrations, so it is not possible to infer the structural relationship 
without further data. However, we can use the data to infer an upper bound 
on the TSC. Assume that the temperature- CO2 relationship is 
T(t) = λ + α ln[CO2(t)] + u(t), while CO2 is also driven by temperature, with 
a relationship of the form ln[CO2(t)] = μ + γ T(t) + ε(t). We are concerned 
about the distribution of α, which is the linearized TSC. Some algebra shows 
that a least squares estimate of the temperature equation yields a coefficient 
which is given by  
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This will provide an unbiased estimate of the TSC if there is no feedback 
γ =( 0) , or if all the shocks come in the CO2 equation. The important point 

here is that all the terms in the equation are presumptively positive, so the 
OLS estimate of α will be larger than the structural parameter. The last row 
of Table 1 shows an estimate of the coefficient in the OLS using data from 
the last 400,000 years from the Vostok ice core. The estimated coefficient is 
12.95 (+ 0.40). This applies to Vostok and is likely to have high-latitude 
amplification, I have reduced the estimate by a factor of 1.2 for the number 
in Table 1 based on the results of AR4 (p. 764). 
 

 The estimates in Table 1 show that there is indeed great uncertainty about the 
TSC. The upper bound from the econometric Vostok estimate is uncomfortably high, 
but it is very well determined statistically and would seem a secure upper bound in 
the context of the Dismal Theorem. So whatever distribution we impose on the TSC, 
we should probably [sic] truncate it at around a value of 12 °C per CO2-e doubling. 
Drawing on the results in Costello et al., this then rules out strong tail dominance. 

B. The Distribution of Consumption Declines  
  

 The Dismal Theorem concerns evaluating situations where consumption 
approaches “zero.” From an empirical point of view, it would seem extremely 
difficult to determine a reliable probability distribution for the decline in 
consumption. In the case of climate change, for example, there are severe difficulties 
in estimating even the central values. Impact analyses are extremely crude and 
generally apply to high-income countries and to global mean temperature increases 
up to 2½ °C, with few studies of impacts above that level.10 Determining tail 
behavior is even more difficult because it requires understanding the distribution of 
extreme outcomes for climate change as well as economic response and would 
involve projecting these well outside the range of current experience or estimates.  

                                                 

10 See the survey by Tol which covers most comprehensive surveys (Richard Tol, “The 
Economic Effects of Climate Change,” Journal of Economic Perspectives, 23(2): 29–51). The 
recent IPCC report did not even attempt to provide a comprehensive estimate of impacts. 
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 From the point of view of determining the importance of tail events and the 
applicability of the Dismal Theorem, the key issue is whether the tail distribution of 
consumption changes is fat or thin. One useful approach would be to examine the 
history of extreme consumption changes in economic history. Output shocks come 
from a wide variety of sources including international and civil wars, trade shocks, 
revolutions, regime changes, droughts, and similar events. While climate shocks are 
different from other extreme shocks, they raise similar issues of social response, 
adaptability to extreme stress, availability of international trade and aid, and resort 
to conflict under conditions of economic stress. These are also useful analog because 
it is difficult to see how climate-induced economic impacts could compete with 
World War II, genocides, and prolonged civil strife in its economic stress. 

 For this purpose, I examined two data sources to determine both the frequency 
of extreme output shocks and the shape of the tail of the distribution. The first 
source of data is the study by Emi Nakamura, Jon Steinsson, Robert Barro, and Jose 
Ursua (NSBU) on the frequency of extreme events. This study looks at the 
prevalence of extreme consumption shocks of 24 relatively developed countries over 
the last century.11 Their definition of disaster is relatively complicated, but it 
involves an average cumulative consumption decline of 30 percent from peak to 
trough. They find a probability of entering a disaster is 1.7% per year and that 
disasters last on average for 6.5 years.  

 A more useful source for the climate-change analog is the history of all 
countries. For this purpose, I collected data for 188 countries for the period 1950-
2007 from the Penn World Table 6.3. I then examined declines in per capita output 
over different 10-year periods (although different lengths of time produced similar 
results). The idea is that a major shock from war, depression, drought, or other 
calamities would typically last in the order of a decade. This exercise produced 6543 
(overlapping) observations. 

 If we define disasters in a similar way to NSBU as ones with peak-to-trough 
declines of at least 15 percent, this produces a mean output decline of 30 percent in 
output disasters. By this definition, we find that the number of episodes is 11 
percent of all periods for the sample of countries. That is to say, 11 percent of years 
of all countries were ones that belonged to periods in which cumulative output 
declines were at least 15 percent. This number is almost ten times higher than those 
in NSBU because the larger sample includes developing countries. Moreover, major 
economic declines of more than 50 percent occurred in 1.1 percent of country-years.  

 

11 Emi Nakamura, Jon Steinsson, Robert Barro, Jose Ursua, “Crises and Recoveries in an 
Empirical Model of Consumption Disasters,” January 31, 2010. 



 Table 2 shows the largest output disasters in the sample along with a rough 
attribution to the major cause of the disaster. Wars and commodity price turmoil are 
heavily represented in the table of top disasters. Table 3 shows 25 of the largest 
natural disasters of the same period and shows how they fit into the rank of 
economic disasters. Only 1 of the natural disasters is in a top economic disaster 
(Iran), but that is likely to be a result of revolution.  

 We also examined the distribution of output declines to measure the tail 
properties of the distribution. Figure 1 shows the tail of the distribution (for the 
observations with output declines more than 15 logarithmic percent). The Pareto 
estimates from this sample have an estimated exponent of 3.7 to 4.5 depending upon 
the lower threshold of the consumption decline. For the entire disaster sample, the 
Pareto parameter is 4.22 (+ 0.16).12 For “super-disasters” with output declines of 
more than 70 percent (which include the wiggly tail on the tail in Figure 1), the 
Pareto parameter is 2.36 (+ 0.75).13 

 We used two different procedures to determine the robustness of the estimates 
of the Pareto parameter. Using the PWT sample just described, we examined a set of 
disasters that look at the largest declines for countries for all periods between 5 and 
25 years. The Pareto parameter for this sample looking at the largest 30 disasters is 
2.31 (+ 0.43). We also looked at the largest 50 disasters in the NSBU data set. These 
produced a Pareto parameter of 3.87 (+ 0.55).  

 This excursion into the incidence of economic disasters suggests that they are 
actually relatively frequent in recent history, particularly in poor countries. The 
distribution of these events does not suggest that the tail is sufficiently fat to satisfy 
the Dismal Theorem, however. We suggested above that the condition for the 
expected marginal utility to be bounded is 1  .α+ >k  With a Pareto parameter of 
k = 3, unbounded expected marginal utility would require a coefficient of relative 
risk aversion of at least 4. While nothing can be ruled out, this seems to require a risk 
aversion that is beyond the level normally observed. 

 

                                                 

12 Estimates of the Pareto parameter are based on Mette Rytgaard, “Estimation In The Pareto 
Distribution, Astin Bulletin, Vol. 20, No. 2, pp. 201-216. 

13 Note that this approach will underestimate the standard errors because we use 
overlapping samples of years. The observations in little tail to the left are all data for Liberia 
during its economic disaster.  

 

- 17 - 

 



 

- 18 - 

 

IV. Tentative Conclusions 

 We have examined the conditions under which tail behavior is likely to 
dominate economic outcomes or policies. Tail dominance occurs when outcomes or 
policies are not robust to including an increasingly large domain of uncertain 
outcomes. In the extreme case contemplated by Weitzman’s Dismal Theorem, tail 
dominance is so strong that no outcome or policy exists in the sense that the 
expected value of output does not converge as the domain is increased. 

 I have examined a simplified version of the conditions for strong tail 
dominance in which preferences are constant relative risk aversion and 
consumption is distributed as a Pareto distribution. I showed that the Dismal 
Theorem of strong tail dominance holds when the rate of relative risk aversion is 
greater than one plus the Pareto parameter. This also requires that consumption 
must approach zero and that the marginal utility at zero consumption is 
unbounded.  

 The cases analyzed above do not correspond directly to a particular case, but 
they suggest that strong tail dominance as described by the Dismal Theorem 
requires very strong assumptions. In the case of climate change, it would appear 
that we can bound the temperature sensitivity coefficient on the basis of 
paleoclimatic data. The distribution of economic catastrophes over the last six 
decades indicates that there are indeed severe and frequent output declines, but the 
tail of the declines is not sufficiently fat to trigger strong tail dominance. 

 Even though the loaded gun of strong tail dominance has not been uncovered 
to date, the results of the Dismal Theorem are sufficiently powerful to serve as a 
reminder that we must constantly be alert to this possibility. Perhaps climate change 
is not the Dismal event, but there are a sufficiently large number of other 
possibilities from exotic events such asteroids and robotic enslavement to more 
mundane events such as earthquakes and financial meltdowns to motivate careful 
attention to tail events. 
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 Figure 1. Cumulative distribution of consumption declines 

Consumption ratio is logarithmic scale. The slope is the Pareto parameter described 
in the text. Sample is only consumption disasters. The Pareto parameter for this 
sample is 4.22 (+ 0.16). 
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Approach Transient Equilibrium

Climate models (1)
Mean 1.77                    3.20                   
Standard deviation 0.37                    0.73                   

Time series estimates
20th century instrumental record (2)

Mean 1.3 ‐ 2.0

Paleoclimate of Vostok CO2  and temperature record

Upper limit of TSC (3)
Mean 10.79                 
Standard deviation 0.33                   

(1) 18 climate models reviewed in IPCC, Fourth Assessment Report, Science  (FAR), p. 631.
(2) Model estimates based on 20th century observed temperatures (FAR, p. 724)
(3) This is upper bound based on reduced form estimate. For explanation, see text.

Table 1. Alternative estimates of Transient and Equilibrium 
Temperature Sensitivity Coefficient (TSC)
Note that the transient TSC is the response in mean temperature increase 
for a 1 percent per year increase in CO2 concentrations centered on the year
 at which doubling occurs.  (See IPCC FAR, Science, p. 629)
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  Country Output decline Peak year Trough year         Source

Liberia 89.4                   1984 1994 Wars

Dem. Rep. Congo 72.3                   1990 2000 Wars

Iraq 70.6                   1981 1991 Wars

Afghanistan 70.0                   1984 1994 Wars

Kuwait 67.0                   1972 1982 Oil market

Libya 66.2                   1980 1990 Oil market

Sierra Leone 60.7                   1989 1999 Wars

Lebanon 56.0                   1987 1997 War 

Equatorial Guinea 55.3                   1977 1987 Wars

Iran 54.6                   1976 1986 Revolution

Saudi Arabia 54.4                   1977 1987 Oil market

Brunei 51.5                   1979 1989 Oil market

United Arab Emirates 50.2                   1977 1987 Oil market

Guyana 49.0                   1976 1986 Economic plagues

Cambodia 48.8                   1970 1980 Wars

Qatar 47.3                   1976 1986 Oil market

Nicaragua 47.3                   1983 1993 Economic plagues

Zambia 46.4                   1974 1984 Wars

Montenegro 46.2                   1990 2000 Wars

Bahrain 43.6                   1977 1987 Oil market

Table 2. Top economic disasters among all countries, 1950-2008 

This shows the top 20 economic disasters in the post-World-War II period. An 
economic disaster is defined as a period in which per capita output fell by more than 
15 logarithmic percentage points in a ten-year period. Note that the output-decline 
figures are arithmetic declines in real GDP per capita. Data from Penn World Tables, 
version 6.3. Sources are attributed by the author. 
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Percentile 
10‐year of economic disasters

Country  Year  Disaster  Killed  growth rate Rank of all periods [low is worst]
China  1959  Flood  2,000,000               0.06 1860 28.4                                        
Ethiopia  1972  Famine  600,000                  ‐0.16 658 10.1                                        
India  1967  Drought  500,000                  0.21 3484 53.2                                        
India  1966  Drought  500,000                  0.24 3878 59.3                                        
India  1965  Drought  500,000                  0.18 3153 48.2                                        
Ethiopia  1984  Drought  300,000                  ‐0.09 945 14.4                                        
Bangladesh  1970  Cycl.Hurr.Typh  300,000                  ‐0.10 867 13.3                                        
China  1976  Earthquake  242,000                  0.58 6081 92.9                                        
Ethiopia  1974  Drought  200,000                  ‐0.16 665 10.2                                        
Sudan  1984  Drought  150,000                  0.10 2254 34.4                                        
Bangladesh  1991  Cycl.Hurr.Typh  138,866                  0.12 2468 37.7                                        
Mozambique  1985  Drought  100,000                  ‐0.08 968 14.8                                        
Ethiopia  1973  Drought  100,000                  ‐0.07 1029 15.7                                        
Peru  1970  Earthquake  66,794                     0.38 5176 79.1                                        
Sudan  1974  Drought  62,500                     0.06 1866 28.5                                        
Sudan  1973  Drought  62,500                     ‐0.27 400 6.1                                           
Ethiopia  1972  Drought  62,500                     ‐0.08 995 15.2                                        
Iran  1990  Earthquake  36,000                     0.35 4961 75.8                                        
Bangladesh  1965  Cycl.Hurr.Typh  36,000                     ‐0.11 861 13.2                                        
China  1954  Flood  30,000                     0.19 3185 48.7                                        
Bangladesh  1974  Flood  28,700                     0.12 2482 37.9                                        
Guatemala  1976  Earthquake  23,000                     ‐0.05 1125 17.2                                        
Colombia  1985  Volcano  21,800                     0.22 3587 54.8                                        
Iran 1978  Earthquake  20,000                     ‐0.48 168 2.6                                           
China  1974  Earthquake  20,000                     0.54 5951 91.0                                          

Table 3. Top natural disasters of 1950-2007 and their economic consequence   

The table shows the top 25 natural disasters ranked by the number of fatalities. The 
last three columns show the 10-year growth rate following the disaster, the rank out 
of 6543 country-periods (with a low number being the worst), and the percentile 
rank (with low being worst). Only 1 natural disaster was associated with a top 
economic disaster, but that one (Iran) was due to revolution and oil-market 
disturbances. None of the natural disasters led to major economic disasters in this 
test. (Source: EM-DAT International Disaster Data Base and other.) 
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