ADMINISTRATION DE PETITS FRAGMENTS D'ACIDE NUCLEIQUES

P. COUVREUR Professeur à l'Université Paris-Sud Professeur au Collège de France Chaire d'Innovation Technologique 2009-2010

THERAPIE GENIQUE: SOIT ETEINDRE UN GENE (CANCEREUX/VIRAL) SOIT REMPLACER UN GENE MANQUANT

ODN AND siRNA MECHANISM

de Martymprey et al, European Journal of Pharmaceutics and Biopharmaceutics 71, 490-504 (2009)

siRNA mecanism

COMMENT ADMINISTRER L'INDELIVRABLE ?

Degradation de ODN Dans sérum (10%)

Pénétration intracellulaire

NANOVECTEURS POUR LA DELIVRANCE DES ODN ET siRNA

STRUCTURE OF THE DIFFERENT NANOCARRIERS

de Martymprey et al, European Journal of Pharmaceutics and Biopharmaceutics 71, 490-504 (2009)

CHEMICAL STRUCTURE OF POLYMERS USED FOR ODN OR siRNA DELIVERY

PTMAEMA

Negative

Alginate

Neutral

PACA

PLGA

PEG

HO

Pluronic

POLYION COMPLEX MICELLES

ASSOCIATION OF siRNA WITH POLYMER MICELLES

de Martymprey et al, European Journal of Pharmaceutics and Biopharmaceutics 71, 490-504 (2009)

NANOPLEXES OF PACA/CHITOSAN AND siRNA LOADING

Nanoplex

-10

-20

Mass ratio siRNA/nanoparticles

PACA NANOCAPSULE FORMATION

G. Lambert et al., BBRC, 2001 N.Toub et al., Pharm. Res, 23, 892-900, 2006

NANOCAPSULE WITH AN AQUEOUS CORE AS A NANOCARRIER FOR NUCLEIC ACIDS

G. Lambert et al., Pharm. Research, 2000
G. Lambert et al., Int. J. Pharm., 2001
G. Lambert et al., Advanced Drug Delivery Reviews, 47, 99-112, 2001
G. Lambert et al., BBRC, 2001
A. Maksimenko et al., Pharm. Research, 2003

ATOMIC FORCE MICROSCOPY OF CHITOSAN/siRNA NANOPARTICLES AT DIFFERENT N/P RATIO

Kenneth A et al, Molecular Therapy, 14, 476-484 (2006)

SIZE INCREASES WITH N:P RATIO !

[A] N:P 71 and [B] N:P 6 (chitosan concentration: 250 μ g/ml)

[C] N:P 285 and [D] N:P 23 (chitosan concentration 1 mg/ml)

RESISTANCE TO DNA DIGESTION

Protection against 3'exo-nucleases

DNAse DIGESTION

Remaining amount of ODN (%)

PIC micelle (ester linkage)

STABILITY OF ODN AND ODN NANOCAPSULES IN DMEM MEDIUM CONTAINING 10 % SERUM

G. Lambert et al., BBRC, 2001

INTERACTION AVEC LA MEMBRANE CELLULAIRE

INTERACTION WITH THE CELL MEMBRANE

EFFECTS OF NANOPARTICLES SURFACE GROUPS ON ENDOTHELIAL CELL MODEL

C. Peetla, V. Labhasetwar, Molecular Pharmaceutics, 5, 418-429 (2007)

- Polystyrene nanoparticle size = 60 nm.
- blue, aminated; red, carboxylated; green, plain; black, water control without NPs.

INTRACELLULAR DNA DELIVERY

N/P ratio influences intracellular penetration

CHITOSAN-IL5 ODN POLYPLEXES

ODN IN NANOCAPSULES: INTRACELLULAR DISTRIBUTION

FITC-ODN free

FITC-ODN in **NC**

ENDO-LYSOSOMAL ESCAPE

INTERACTION WITH THE CELL MEMBRANE

CELL CAPTURE OF POLYDIMETHYLAMINOETHYLMETACRYLATE p(DMAEMA) OCCURS THROUGH EARLY ENDOSOMES

R A Jones et al, J Controlled Release, 96, 379-391 (2004)

Green EEA1 immunofluorescence: a marker of early endosomes

Red fluorescence associated with p(DMAEMA-*co*-AEMA)-biotine Biotinylated p(DMAEMA-co-AEMA) reacts with streptavidin-Alexa 633

overlay image of (a) and (b) showing pixels with both green and red fluorescence in white

DETERMINATION OF LYSOSOMAL MEMBRANE INTEGRITY BY CALCEIN ASSAY

CELL UPTAKE OF CHITOSAN/siRNA NANOPARTICLES

Kenneth A et al, Molecular Therapy, 14, 476-484 (2006)

NIH 3T3 cells. Fluorescence microscopy was used to visualize cellular uptake and translocation of Cy5-labeled siRNA (red)

1h: punctuated fluorescence

4h: more diffuse fluorescence

24h: fluorescence througout the whole cytoplasm

ENDO-LYSOSOMAL DISRUPTION THROUGH « PROTON SPONGE » EFFECT

Copyright © 2005 Nature Publishing Group Nature Reviews | Drug Discovery

INHIBITION DE LA MULTIPLICATION VIRALE PAR LIPOSOMES pH-SENSIBLES

PHARMACOLOGICAL ACTIVITY

Anticancer activity

IN VIVO STUDIES OF NANODEVICES CONTAINING ANTICANCER siRNA

de Martymprey et al, European Journal of Pharmaceutics and Biopharmaceutics 71, 490-504 (2009)

Table 3

In vivo studies of RNAi based treatment vectorized with nanocarriers.

System type	Composition	Application	Nucleic acid dose	Reference
Polyplexes	jetPEI, anti-HER-2 siRNA	Human ovarian cancer Intra-peritoneal	2.4 mg/kg	[111]
	jetPEI, anti-PTN siRNA	Human glioblastoma Intra-peritoneal Intracranial	3.6 mg/kg	[35]
	Chitosan 114 kDa, DD = 84% Anti-GFP siRNA	Pulmonary delivery in GFP transgenic mice	7.5 mg/kg	[45]
Nanoplexes	Core-shell PIHCA/chitosan Anti-RhoA and anti-RhoC siRNA	Human breast cancer Intravenous	1.5 µg/kg	[81]
	Core-shell PIHCA/chitosan Anti-EWS/Fli1 ODN	Ewing sarcoma model Intratumoral injection	1 mg/kg	[79]
	Core-shell PIBCA/chitosan Anti-ret/PTC1 siRNA	Thyroid carcinoma model Intratumoral	1 mg/kg	[82]
Nanocapsules	PIBCA siRNA	Ewing sarcoma model	1 mg/kg	[92]
	PLGA Anti-PDGFβR	Restenosis treatment Local administration	0.67 mg/kg (1 nmol)	[96]
	PIBCA Anti-EWS/Fli1 ODN	Ewing sarcoma model Intratumoral administration	9.6 mg/kg (14.4 nmol)	[90]
Micelles	PEG-ODN/PEI (2 kDa, 25 kDa) Anti-c-raf ODN	Human long carcinoma Tail vein injection	2.5 mg/kg	[103]
	PEG-siRNA/PEI (25 kDa) Anti-VEGF siRNA	Murine neuroblastoma Intravenous	2 mg/kg	[36,115]
	PEG/cyclodextrin containing polycation/siRNA	Human Ewing sarcoma Intravenous	2.5 mg/kg	[116]

^{*} For the comparison, a typical mouse weight of 20 g and a molar mass of 13,400 g mol⁻¹ where used in the calculation.

SELF-ASSEMBLED ODN-PEG HYBRID MICELLES

ANTICANCER ACTIVITY ON A2780 OVARIAN CANCER CELLS

Ji Hoon Jeong and al, J of Controlled Release, 93, 183-191, 2003

Events

IN VIVO ANTICANCER ACTIVITY OF HER-2 siRNA COMPLEXED WITH PEI

B Urban-Klein and al, Gene Therapy, 12, 461-466 (2005)

a 30 min lung brain muscle blood liver kidney tumor PEI siRNA - siRNA longer film exposure 4 h muscle kidney blood tumor brain iver lung

b

PEI-32P-labeled siRNA in organs

D' après O. Delattre

EFFECT OF ODN AND SIRNA NANOCAPSULES ON SUBCUTANEOUSLY GRAFTED EWING SARCOMA

Lambert, et al., **279**, 401-406, BBRC (2001) Maksimenko et al., Pharm. Res, **20**, 1565-1567 (2003) Toub et al., Pharm Res, **23**, 892-900 (2006)

EFFECT OF siRNA NANOCAPSULES ON SUBCUTANEOUSLY GRAFTED EWING SARCOMA

N.Toub et al., Pharm. Res, 23, 892-900, 2006

Days after first injection

EWS-Fli1ODN AND siRNA NANOCAPSULES: IN VIVO COMPARISON

Lambert et al, BBRC, 2000. Toub et al, J. Pharm Res, 2006.

NC TYPE	DOSE	FREQUENCY	CUMULATIVE DOSE	EFFICACY
NC-ODN (1)	0.55 mg	9 inj (1 inj/2dys)	5 mg/Kg	60 %
NC-siRNA (2)	0.22 mg	5 inj (1 inj/3days)	1.1 mg/Kg	90 %

CARCINOME PAPILLAIRE DE LA THYROIDE

- Fusion entre le gène *ret* (récepteur de thyrosine kinase) avec le gène *H4* (gène ubiquitaire) → oncogène de jonction
- Induit la synthèse de la protéine chimère ret/PTC1→ la cellule devient tumorale

NIH/3T3

A

B

PHENOTYPICAL FEATURES OF NIH/3T3 CELLS AND ret/PTC1 TRANSFORMED NIH/3T3 CELLS (RP1)

> H. de Martymprey et al., Nucl. Ac. Res., 36, 1-14, 2008

DESIGN OF ret/PTC1 siRNA AND shRNA

Α	ret	+	H4	
CTGCG	CAAAGCCAGCGTT	ACCATC GAGGAT	ICCAAAGTGGG	AATTCCCT
siRNA #1	CGUUA	ACCAUCGAGGAU	JCCAdAdA	
siRNA #2	UU	ACCAUCGAGGAU	JCCAAAdGdT	
siRNA #3	U	ACCAUCGAGGAU	JCCAAAGdTdG	
siRNA #4	GUU	ACCAUCGAGGAU	JCCAAdAdG	
siRNA #5	GCCAGCGUUA	ACCAUCGAGGdA	.dT	

В

siRNA #5	5' – GCCAGCGUUACCAUCGAGGdAdT – 3' 3' – dTdTCGGUCGCAAUGGUAGCUCC – 5'
siRNA Ct	5' – GCCAGÜGÜÇACCĞUCAAGGdAdG – 3' 3' – dTdTCGGUCACAGUGÇÇAGUUCC – 5'

С

Structure of shRNA1 :

CCCCCGTTACCATCGAGGATCCATTCAAGAGATGGATCCTCGATGGTAACGTTTTTGGAAA-----GG<mark>GCAATGGTAGCTCCTAGGT</mark>AAGTTCTCT<mark>ACCTAGGAGCTACCATTGC</mark>AAAAACCTTTTCGA

Structure of negative control shRNA :

ICCCCGCCAGTGTCACCGTCAAGGTTCAAGAGACCTTGACGGTGACACTGGCTTTTTGGAAA - - - - - - - - - - - - - GGCGGTCACAGTGGCAGTTCCAAGTTCTCTGGAACTGCCACTGTGACCGAAAAACCTTTTCGA

CGGTCACAGTGGCAGTTCC A G U GCCAGTGTCACCGTCAAGG U U C U C

H. de Martymprey et al., Nucl. Ac. Res., 36, 1-14, 2008

Figure 1.

IN VIVO STUDIES

H. de Martymprey et al., Nucl. Ac. Res., 36, 1-14, 2008

A Antitumor effect of siRNA formulations

TOXICOLOGICAL ASPECTS OF POLYCATIONS

Polylysine and polyethyleneimine

TOXICITY OF POLYLYSINE

P. Symonds et al., FEBS Letters, 579, 6191-6198 (2005)

mitochondrial functions

LDL release from Jurkat cells following incubation with low Mw or High Mw polylysine condensed or not with DNA

CYTOTOXICITY OF PEI POLYMERS WITH SIMILAR Mw BUT DIFFERENT DEGREES OF BRANCHING

TRANSFECTION EFFICIENCY OF PEI WITH DIFFERENT BRANCHING

D. Fischer et al., Bioconjugate Chem, 13, 1124-1133, 2002

Increasing branching increases transfection efficacy as well as cytotoxicity

VIVE LA GALENIQUE !

 « La manière de donner est au moins aussi important que ce que l'on donne »
 (Molière, L'Avare)

