Technological Leadership and Innovation Policy in the World Economy

Ufuk Akcigit University of Pennsylvania & NBER **Sina T. Ates** University of Pennsylvania

Giammario Impullitti

Nottingham University

Nottingham - 10/21/2013

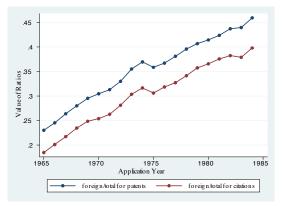
International Technology Competition

Motivation

- Innovations and technological progress are engines of US economic growth and economic leadership in the world.
- However, concerns are rising that the US is losing its leading position through foreign competition.
- Politicians and policy-makers seek for ways to support both public and private R&D.
- Do R&D policies really work? Do they increase US' competitiveness?

Motivating Questions

- Q What are the dynamics of international technology competition?
- Q What are the trade-offs and welfare effects of R&D policies? q How do R&D policies affect a country's competitiveness?
- Q What are the gains/losses from openness? Should a country simply close its borders instead of subsidizing R&D?


To Answer These Questions...

- Need for quantitative analysis with a structural model to understand counterfactuals.
- We analyse an episode of the US economy with aggressive R&D policy changes (80s).

EMPIRICAL FACTS

Fact I: Catching-up until mid-80s Total Patents (US versus CA + ES + FR + GR + IT + JP + UK)

Figure: Ratio of patents registered in the US: foreign/ total, 1965-1985

US losing its leading position.

Akcigit, Ates, and Impullitti

Fact I: Catching-up until mid-80s Patent by Sectors

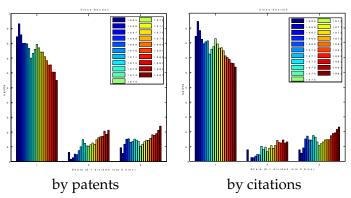


Figure: Proportion of sectors led by the US, 1965-1985

... which results in a declining trend in the share of sectors where US dominates.

Akcigit, Ates, and Impullitti

International Technology Competition

 \Rightarrow

\implies

R&D Investment

 \Rightarrow

R&D Investment

\Rightarrow

Innovation/Patenting

 \Rightarrow

R&D Investment

\Rightarrow

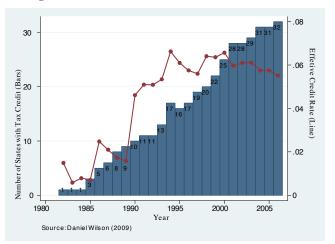
Innovation/Patenting

\Rightarrow

Import/Export

Fact II: R&D Tax Credit Policy in the US

At the **federal** level:


- The Economic Recovery Tax Act of 1981, 1981-85
- 2 The Tax Reform Act of 1986, 1986-88

At the **state** level:

• Started with Minnesota in 1982.

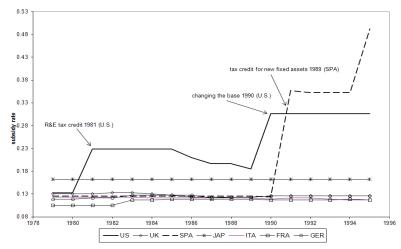
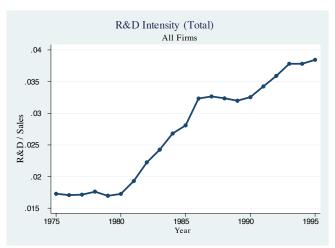

Fact II: State Level Credits in the US

Figure: State level evolution of R&D tax credits

Fact II: Federal-level tax credit in the US

Figure. R&D Tax Credit: Cross-Country Comparison

Akcigit, Ates, and Impullitti


International Technology Competition

Nottingham - 10/21/2013

14 / 64

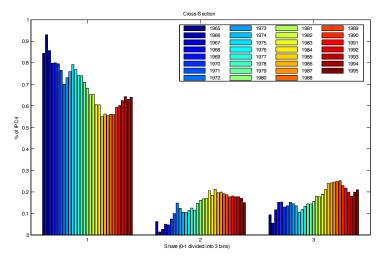

Fact III: R&D Investment

Figure: Total R&D to Sales Ratio (Compustat Firms), 1965-95

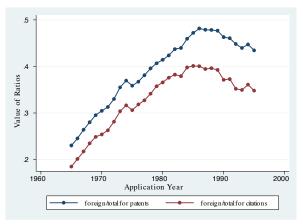

Fact IV: Reversal of Convergence Process

Figure: Proportion of sectors with the US leadership

Fact IV: Reversal of Convergence Process

Figure: Ratio of patents and associated citations registered in the US by foreigners over the total, 1965-1995

Fact V: GDP Patterns

Figure: Real GDP per capita - relative to the US, 1960-2010

Cross Sectional Relationship

• Exploit state-level variation in R&D policies across states.

Time Series vs Cross Sectional Relationship

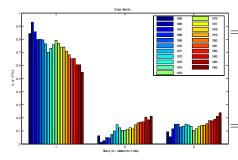
Effect of R&D Tax Credits on Innovative Activity

Dep. Var.:	$\frac{\ln\left(R\&D_t\right)}{(1)}$	$ln(Patents_t)$	
$\ln(State\ credit_t)$	3.153 (10.92) ^{***}	2.948 (10.93) ^{***}	
Year Dummy	Yes	Yes	
Firm Dummy	Yes	Yes	

$\ln Y_{jst} = const. + \ln Y_{jst-1} + \ln SC_{st} + \psi_j + \psi_t + u_t$

MODEL

Modeling Cross-Country Technological Convergence


- Endogenous growth model with **Step-by-Step innovation** (Aghion, Harris, Howit and Vickers, 2001) fully **General Equilibrium** (Acemoglu and Akcigit, 2011)
- New features:
 - 1) **Two countries**, $c \in \{A, B\}$, Free Trade and **Costly Trade** scenarios
 - 2) **Transitional dynamics** → Technology-driven cross-country convergence process
 - 3) Role of **R&D Tax Credit** in shaping convergence process
 - Quantitative analysis → tie model to data → counterfactual (evaluating Stage-Dependent R&D taxation)

Model in a nutshell

- Two countries, same technology and preferences
- **Final good** → produced with Intermediate Goods (traded) and Labor
- Continuum of **intermediate goods**: in each sector 2 firms (one domestic one foreign) compete for global leadership
- **Innovation**: each firms invest resources to improve quality and get global leadership
- Innovation random \rightarrow **distribution of leadership** \rightarrow cross-country income distribution
- International knowledge spillovers → leadership (and income) convergence

Quantitative Analysis

Moments

Moment	Target	Estimate
GDP. Growth US	2.16%	2.14%
GDP. Growth Foreign	2.35%	2.24%
R&D Intensity US	1.86%	2.08%
R&D Intensity Foreign	2.07%	2.11%

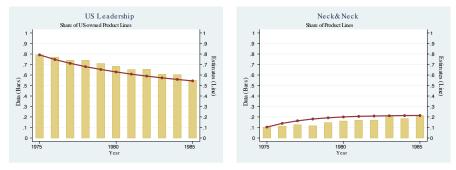

Parameters

Table: Parameter Values

Internally Calibrated			Extern	ally Calibrated	
α_A	57.68	β	0.973	r	2.25%
α_B	108.07	η	$1.785 \cdot 10^{3}$	$ au_{75}^A$	17.6%
γ_A	1.954	κ	$1.174 \cdot 10^{3}$	$ au_{75}^A au_{75}^B$	14.0%
γ_B	2.281	\bar{q}_{1A}	7.10^{-4}		
λ	1.148	\bar{q}_{-1A}	0.053		

Evolution of Sector Shares

Figure: Calibration Results, Shares of US-owned and Neck&Neck Product Lines

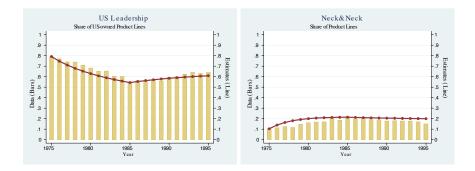
The model is able to capture the adverse patten of leadership for the US firms, as well as the change in neck&neck sectors, in the relevant time range 1975-85.

Akcigit, Ates, and Impullitti

International Technology Competition

Validation Tests

Validation Test I: Leadership Response to Policy


• Replicate the policy change in the data:

$$\tau^{A}_{75-85}$$
 17.6% \rightarrow τ^{A}_{86-95} 26.3%
 τ^{B}_{75-85} 14.0% \rightarrow τ^{B}_{86-95} 14.7%

Quantitative Analysis Val

Validation Tests

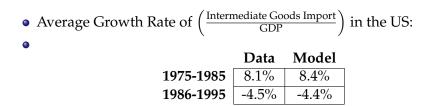
Validation Test I: Leadership Response to Policy

Quantitative Analysis Va

Validation Tests

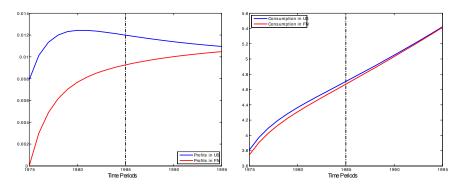
Validation Test II: Elasticity of R&D wrt Subsidy

• R&D Elasticity


 $\frac{d \log{(\text{R\&D})}}{d \log{(\text{Subsidy})}} \approx 2.88$

• Compare it to the regression estimate with state credit. 3.15.

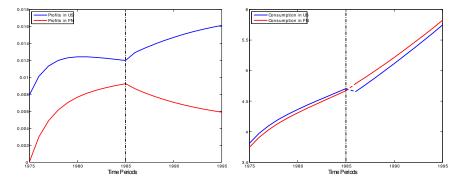
Validation Test III: Trade Patterns


• Average Growth Rate of $\left(\frac{\text{Intermediate Goods Import}}{\text{GDP}}\right)$ in the US:

Validation Test III: Trade Patterns

Counterfactuals

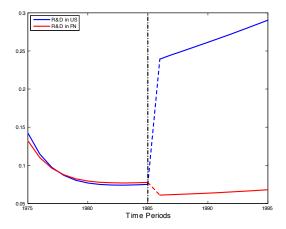
Evolution of the Economies



• The second decade reflects the hypothetical case of no policy change in 1985.

56 / 64

Analysis 1: R&D Tax Credit Policy


Figure: Profits and Consumption with Policy Change in 1985, 1975-95

- Reversal of convergence
- Initial drop in consumption due to the jump in R&D expenditure.

Analysis 1: R&D Tax Credit Policy R&D Expenditures

Figure: R&D Expenditure with Policy Change in 1985, 1975-95

Analysis 1: R&D Tax Credit Policy Welfare Comparisons

• What is the welfare impact of the policy change in consumption equivalent terms?

Gain 1985-2010 8.49%

Income Growth Decomposition

- **Quality Improvement**: Changes in average quality due to higher innovation intensity, abstracting from ownership changes.
- **Business Stealing**: Changes in the rate of seizing product line leadership, and thus collecting more profits in total, due to increasing innovation intensity.

Table: Income Growth Decomposition, 1985-1995							
	w/o Policy	only Quality	w/Policy	Business	Quality		
8A	1.17%	1.22%	1.43%	81%	19%		
g_B	1.31%	2.00%	1.76%	-53%	153%		

Analysis 2: Openness to International Markets

 $rV_{1A}(q) = \max_{x_{1A}} \left\{ \begin{array}{l} 2\pi q - q\alpha_A x_{1A}^{\gamma_A} + x_{1A} \left[V_{1A} \left(\lambda q \right) - V_{1A} \left(q \right) \right] \\ + x_{-1B} \left[V_{0A} \left(q \right) - V_{1A} \left(q \right) \right] \end{array} \right\}$ $rV_{0A}(q) = \max_{x_{0A}} \left\{ \begin{array}{l} -q\alpha_A x_{0A}^{\gamma_A} + x_{0A} \left[V_{1A} \left(\lambda q \right) - V_{0A} \left(q \right) \right] \\ + x_{0B} \left[V_{-1A} \left(q \right) - V_{0A} \left(q \right) \right] \end{array} \right\}$ $rV_A(q) = \max_{x_A} \left\{ \pi q - q\alpha_A x_A^{\gamma_A} + x_A \left[V_A \left(\lambda q \right) - V_A \left(q \right) \right] \right\}$

• (*i*) Market size (*ii*) Business stealing (*iii*) Spillovers (*iv*) Escape competition

Analysis 2: Openness to International Markets

• What is the welfare impact of openness in consumption equivalent terms?

Gain 1985-2010 11.32%

• 60% of this gain is coming from market size effect.

What we are adding now...

- Free-entry
- Concave utility
- Exploit state level variation in technology catch-up

Conclusion

- Convergence in innovative activity: Sectors with leadership from 79% in 1975 to 55% in 1985
- Effect of R&D subsidies: back to 71% in 10 years (45% otherwise)
- Income growth mainly by business stealing: 81% of income growth increase.
- Welfare gain from policy response: 8.5% in from 1985 to 2010
- Welfare gain from openness: 11.3% in from 1985 to 2010