Innovation and Top Income Inequality

Philippe Aghion (Harvard) Ufuk Akcigit (Chicago) Antonin Bergeaud (Bank of France) Richard Blundell (UCL) David Hémous (Zurich)

July 2015

Introduction

- Past decades have witnessed a sharp increase in top income inequality worldwide and particularly in developed countries
- However no consensus has been reached as to the main underlying factors behind this surge in top income inequality
- In this presentation we argue that innovation is certainly one such factor and that it also affects social mobility

Top Income Share and Patenting United States, 1963-2013

Top 1% income share VS innovation

Gini coefficient VS innovation

Aghion, Akcigit, Bergaud, Blundell, Hemous Innovation and Top Income Inequality

Theory and predictions (1)

- Simple Schumpeterian growth model where:
 - Growth results from quality-improving innovations by incumbents and potential entrants.
 - Innovations allow firms to increase their mark-ups, while reducing their labor demand
 - \longrightarrow **Prediction 1**: Innovation increases the entrepreneurial share of income at the expense of workers' share
- Incumbents can block entrant innovations through lobbying

 — Prediction 2: Entrant innovation increases top income inequality, but less so in high-lobbying states

Theory and predictions (2)

• A successful entrant replace the incumbent who inherited a firm from her parent

 \longrightarrow then the incumbent becomes a worker and the entrant becomes an entrepreneur

 \longrightarrow **Prediction 3**: Entrant innovation enhances social mobility but less so in high-lobbying states

Empirical strategy

- Our core empirical analysis is carried out at the US state level
- Our dataset covers the period 1975-2010, a time range imposed upon us by the availability of patent data
- Regressing top income inequality on innovativeness:

$$\log(y_{it}) = A + B_i + B_t + \beta_1 \log(innov_{i(t-1)}) + \beta_2 X_{it} + \varepsilon_{it}$$

Inequality data

• Data on share of income owned by the top 1% and the top 10% of income distribution are drawn from the US State-Level Income Inequality Database (Frank, 2009).

Innovation data

- The US patent office (USPTO) provides complete statistics for patents granted between the years 1975 and 2010.
 - Information on the state of residence of the patent inventor, the date of application of the patent and a link to every citing patents granted before 2010.
 - We correct for truncation bias in patent count and patent citations following Jaffe, Hall and Trajtenberg (2001).
- We use several measure of innovativeness
 - 1 number of patents
 - 2 3, 4 and 5 year windows citations counter
 - is the patent among the 5% most cited in the year by 2010?
 - total corrected citation counter
 - bas the patent been renewed?

Control variables

- Output gap to control for the business cycle
- Share of state GDP accounted for by the financial sector
- Size of the government sector
- GDP per capita
- Growth of total population

OLS regressions: top 1% and innovation

Measure of	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Inequality	Top 1%	Top 1%	Top 1 $\%$	Top 1%	Top 1%	Top 1%	Top 1%
Innovation	$patent_pc$	3YWindow	4YWindow	5YWindow	Citations	Share5	Renew
Immonation	0.027^{*}	0.029***	0.042***	0.041***	0.048***	0.024***	0.032***
Innovation	(1.89)	(3.47)	(4.58)	(4.24)	(5.78)	(4.84)	(3.15)
C dama a	-0.060	-0.062	-0.068	-0.055	-0.091*	-0.067	-0.144**
Gappe	(-0.52)	(-1.13)	(-1.21)	(-0.94)	(-1.66)	(-1.25)	(-2.06)
	, , , , , , , , , , , , , , , , , , ,		. ,	. ,	· · ·		
Demensionth	0.280	0.450	0.024	-0.174	0.068	0.007	1.018
Popgrowth	(0.37)	(0.71)	(0.04)	(-0.24)	(0.10)	(0.01)	(1.36)
				× ,			
Cl	0.013	0.020	0.024^{*}	0.026^{*}	0.024^{*}	0.022^{*}	0.018
Snarefinance	(0.57)	(1.48)	(1.74)	(1.76)	(1.87)	(1.72)	(1.28)
		. ,					
0	-1.954	-2.648**	-2.302	-2.143	-2.115	-2.149	-3.308**
Outputgap	(-1.37)	(-2.01)	(-1.64)	(-1.46)	(-1.53)	(-1.53)	(-1.98)
			× ,	× ,		× ,	× ,
0.1.	-0.070	-0.091**	-0.109**	-0.139***	-0.090**	-0.098**	-0.058
Gvtsize	(-0.76)	(-2.13)	(-2.51)	(-3.09)	(-2.16)	(-2.32)	(-1.14)
			× /	× /	× /	× /	× /
\mathbb{R}^2	0.920	0.922	0.916	0.908	0.921	0.921	0.885
Ν	1785	1632	1581	1530	1632	1632	1435

Instrumentation

First instrument

- Following Aghion et al (2004), we consider the time-varying State composition of the appropriation committees of the Senate and the House of Representatives.
- A Committee member often push towards subsidizing research education in her State, in order to increase her chances of reelection in that State.

 \rightarrow a state with one of its congressmen seating on the committee is likely to receive more funding for research education, which should increase its innovativeness in following years

	(1)	(2)	(3)	(4)	(5)	(6)
Measure of Inequality	Top 1%	Top 1%	Top 1 $\%$	Top 1%	Top 1%	Top 1%
Measure of Innovation	patent_pc	$patent_pc$	$patent_pc$	3YWindow	3YWindow	3YWindow
Innovation	0.166**	0.183^{**}	0.177^{**}	0.145^{**}	0.139^{**}	0.160^{**}
Innovation	(2.12)	(2.04)	(1.99)	(2.23)	(2.32)	(2.01)
Cdanc	-0.122	-0.135	-0.130	-0.153	-0.147*	-0.168*
Gappe	(-1.52)	(-1.61)	(-1.59)	(-1.63)	(-1.76)	(-1.67)
Popgrowth	0.728	0.778	0.758	0.735	0.703	0.813
	(1.07)	(1.15)	(1.10)	(0.99)	(0.97)	(1.03)
Sharefinance	0.022	0.024	0.023	0.041^{**}	0.039^{**}	0.044^{**}
	(1.52)	(1.57)	(1.59)	(2.08)	(2.15)	(2.12)
	a toot				1.0.10	4.0.04
Outputaan	-2.408*	-2.451^{*}	-2.434*	-1.947	-1.942	-1.961
	(-1.70)	(-1.74)	(-1.68)	(-1.23)	(-1.24)	(-1.21)
	0.100**	0.000**	0.000**	0.004	0.007	0.050
Gvtsize	-0.100**	-0.098**	-0.099**	-0.084	-0.087	-0.076
	(-2.20)	(-2.12)	(-2.20)	(-1.44)	(-1.58)	(-1.27)
	0.000***	0.000***	0.000***	0.007***	0.000***	0.000***
Highways	(2.15)	(2.11)	$(2.029^{+1.04})$	(2.02)	(2.00)	(2.80)
	(3.15)	(3.11)	(2.98)	(3.02)	(3.09)	(2.80)
	0.008**	0.008**	0.008*	0.011**	0.010**	0.011**
Military	(2.02)	(2.06)	(1.05)	(2.42)	(2.44)	(2.28)
	(2.03)	(2.00)	(1.55)	(2.43)	(2.44)	(2.20)
Lag of instrument	2 years	1 vear	2 years	2 years	1 vear	2 years
B^2	0.913	0.910	0.912	0.913	0.914	0.911
First stage F stat	27.10	21.98	21.54	18.84	21.78	13.92
N	1748	1748	1748	1598	1598	1598

IV regressions with first instrument (Appropriation Committee)

Notes: * * * pvalue < 0.01. * * pvalue < 0.05. * pvalue < 0.10.

t/z statistics in brackets, computed with robust standard errors

Instrumentation

Second instrument

Second instrument based on knowledge spillovers
 The idea is to instrument innovation in a state by the sum of
 innovation intensities in other states weighted by the relative
 innovation spillovers from these other states

	(1)	(2)	(3)	(4)	(5)	(6)
Measure of Inequality	Top 1%	Top 1%	Top 1 $\%$	Top 1%	Top 1%	Top 1%
Measure of Innovation	patent_pc	3YWindow	4YWindow	5YWindow	Citations	Share5
Imponation	0.162**	0.124^{**}	0.136^{***}	0.147^{***}	0.201^{***}	0.297^{**}
Innovation	(2.24)	(2.53)	(2.59)	(2.69)	(2.81)	(2.14)
Cdanc	-0.169*	-0.206**	-0.176*	-0.184*	-0.245^{**}	-0.280*
Gappe	(-1.80)	(-2.00)	(-1.79)	(-1.74)	(-2.23)	(-1.80)
Poparowth	0.773	0.653	0.480	0.365	0.285	0.812
1 0pg/0 000	(1.12)	(0.92)	(0.67)	(0.46)	(0.42)	(0.74)
Sharefinance	0.026^{*}	0.043**	0.043^{**}	0.050^{**}	0.054^{***}	0.092^{**}
Sharefenance	(1.82)	(2.46)	(2.39)	(2.49)	(2.74)	(2.21)
	0.405*	2 0 0 0		0.005	0.105	0 ==0
Outputgap	-2.427*	-2.000	-2.738*	-2.265	-2.105	-2.772
1 5 1	(-1.68)	(-1.27)	(-1.78)	(-1.44)	(-1.47)	(-1.31)
	0.000	0.015	0.005	0.050	0.000	0.00
Gvtsize	-0.038	-0.015	-0.035	-0.058	-0.032	0.007
	(-0.79)	(-0.24)	(-0.54)	(-0.84)	(-0.55)	(0.08)
	0.050	0.907	0.490	0.419	0.000	0.950
$Spill_Gdppc$	0.050	0.307	(0.86)	(0.82)	0.092	0.356
	(0.11)	(0.61)	(0.86)	(0.83)	(0.20)	(0.45)
- D2	0.000	0.011	0.007	0.807	0.002	0.740
n- First stage E stat	0.909	0.911	0.907	0.097	0.903	0.740
rnsi stage r stat M	20.93	20.49 1699	23.70 1591	22.03 1520	1622	4.93 1550
1N	1700	1052	1901	1990	1032	1998

IV regressions with second instrument (Spillover)

Notes: * * * pvalue < 0.01. * * pvalue < 0.05. * pvalue < 0.10.

 $\mathrm{t/z}$ statistics in brackets, computed with robust standard errors

Magnitude of the effects

 When measured by the number of patent per capita, innovativeness accounts on average for about 17% of the total increase in the top 1% income share between 1975 and 2010 according to either IV regression

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Measure of Inequality	Top 1%	Avgtop	Top 10 %	Overall Gini	G99	Atkin	Theil
Measure of Innovation	3YWindow	3YWindow	3YWindow	3YWindow	3YWindow	3YWindow	3YWindow
Innoustion	0.168^{***}	-0.037*	0.014	-0.003	-0.021	0.025	0.012
Innovation	(3.65)	(-1.81)	(1.12)	(-0.21)	(-1.43)	(1.39)	(0.34)
Cdnne	-0.148*	0.086^{***}	0.054^{**}	-0.041*	-0.055^{**}	0.125^{***}	0.400^{***}
Guppe	(-1.74)	(2.70)	(2.33)	(-1.81)	(-2.14)	(3.66)	(5.80)
Poperowth	0.121	-0.454^{**}	-0.037	-0.439^{***}	-0.641^{***}	0.220	2.136^{***}
Topgrowin	(0.18)	(-1.97)	(-0.23)	(-2.77)	(-3.59)	(0.87)	(3.91)
Sharefinance	0.039^{**}	-0.008	0.006	-0.000	-0.008	0.018^{**}	-0.000
Sharejinance	(2.50)	(-1.05)	(1.17)	(-0.01)	(-1.28)	(2.07)	(-0.02)
Outputcop	-2.065	-0.616	-0.482	-0.012	0.003	0.102	0.130
Outputgup	(-1.46)	(-1.35)	(-1.46)	(-0.03)	(0.01)	(0.18)	(0.12)
Gutsize	-0.124^{**}	-0.034	-0.077***	0.035^{**}	0.073^{***}	-0.119^{***}	-0.289^{***}
0.000.00	(-2.49)	(-1.42)	(-4.59)	(2.03)	(3.53)	(-4.65)	(-5.83)
	o o o o dukuku			o o o o tutut			
Highways	0.028***	-0.006	0.004	0.009***	0.010***	0.003	-0.002
	(3.14)	(-1.56)	(1.45)	(3.18)	(3.06)	(0.61)	(-0.23)
		0.000	0.000	0.001		0.000	0.000
Military	0.011***	-0.002	0.002	-0.001	-0.002	0.000	0.003
0	(2.75)	(-1.24)	(1.44)	(-0.88)	(-1.53)	(0.23)	(0.95)
	0.150	0.010***	0.000***		0.001***	0.000	0.050
$Spill_Gdppc$	0.153	0.810***	0.388***	0.704***	0.881***	0.268	-0.250
1 11	(0.35)	(4.37)	(2.75)	(4.98)	(5.59)	(1.33)	(-0.62)
D?	0.014	0.544	0.050	0.001	0.750	0.000	0.007
K" Einst stars E stat	0.914	0.544	0.950	0.884	0.758	0.930	0.927
rust stage r stat	25.58	25.58	25.58	25.58	25.58	25.58	25.58
IN	1598	1598	1598	1598	1598	1598	1598

IV regressions of innovation on various measure of inequality (2 instruments)

Notes: * * * pvalue < 0.01. * * pvalue < 0.05. * pvalue < 0.10.

t/z statistics in brackets, computed with robust standard errors

Innovation and Inequality Top 1% Share and Bottom 99% Gini top1 gini99 1.3 1.2 1.1 1009 20 80 40 60 innovation percentiles Source: Aghion et. al. (2015).

	(1)	(2)	(3)	(4)	(5)
Measure of Inequality	top 1%	top1%	top 1%	top1%	top 1%
Measure of innovation	patent_pc	patent_pc	patent_pc	patent_pc	patent_pc
Lag of innovativeness	1 year	2 years	3 years	4 years	5 years
Innoustion	0.184***	0.194^{***}	0.216^{***}	0.207^{***}	0.199^{***}
Innovation	(3.37)	(3.00)	(3.10)	(2.97)	(2.91)
Canna	-0.143*	-0.160*	-0.202**	-0.226^{***}	-0.245^{***}
Gappe	(-1.81)	(-1.92)	(-2.44)	(-2.60)	(-2.67)
Demenowith	0.792	0.908	1.121	1.396	1.839^{**}
Popgrowin	(1.16)	(1.18)	(1.39)	(1.64)	(2.09)
Chanafa an ac	0.024^{*}	0.027^{*}	0.030^{*}	0.028^{*}	0.024
Sharejinance	(1.70)	(1.86)	(1.94)	(1.78)	(1.53)
Outractors	-2.520*	-2.740*	-3.025^{**}	-3.708**	-4.507^{***}
Outputgap	(-1.76)	(-1.78)	(-2.03)	(-2.32)	(-2.70)
Cartaina	-0.094**	-0.064	-0.029	-0.009	-0.011
Gvisize	(-2.00)	(-1.30)	(-0.53)	(-0.16)	(-0.19)
II: Langer	0.029^{***}	0.025^{***}	0.023^{**}	0.017^{*}	0.015
Highways	(3.33)	(2.67)	(2.44)	(1.75)	(1.63)
Militari	0.009^{**}	0.009^{**}	0.010^{**}	0.009^{**}	0.007
Muitary	(2.08)	(2.20)	(2.28)	(2.06)	(1.50)
Gaill Colour	0.220	-0.039	-0.018	0.057	0.199
Spui_Gappc	(0.48)	(-0.09)	(-0.04)	(0.11)	(0.38)
\mathbb{R}^2	0.910	0.902	0.891	0.883	0.872
First stage F stat	25.48	20.59	18.12	17.59	20.10
Ν	1748	1698	1648	1598	1548

IV regressions of innovation on top 1% at various lag (2 instruments)

Notes: * * * pvalue < 0.01. * * pvalue < 0.05. * pvalue < 0.10.

t/z statistics in brackets, computed with robust standard errors

Robustness checks

- Use assignee instead of inventor to determine patent's location
- Remove patentors who patented in different state last time
- Additional controls for financial sector (average remuneration of financial employees, remove financial patents, remove states with large financial sectors)
- Allow for state specific time trends
- Control for education
- Control for oil and natural resources
- Control for the size of the computer sector or removing the associated patents
- Control for the size of the pharmaceutical sector or removing the associated patents
- Control for state marginal tax rates

Extensions

- The effect of innovativeness on social mobility
- Entrant versus incumbent innovation
- Lobbying as a dampening factor

Mobility and top 1% income share. CZ level

Measure of	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Mobility	AM25	P1-5	P2-5	AM25	P1-5	P2-5	P5
Innovation	patent_pc	$patent_pc$	$patent_pc$	$patent_pc$	$patent_pc$	$patent_pc$	$patent_pc$
Innovation	0.024***	0.108***	0.063***	0.019**	0.073**	0.046^{*}	0.022
moounon	(3.07)	(3.13)	(2.70)	(2.40)	(2.10)	(1.76)	(1.17)
Cdmma	-0.094*	-0.225	-0.204	-0.139***	-0.384*	-0.356**	-0.271**
Guppe	(-1.81)	(-1.09)	(-1.48)	(-3.33)	(-1.84)	(-2.39)	(-2.31)
Decement	0.177	0.603	0.711	0.236	0.588	0.731	0.611
Popgrowin	(0.61)	(0.55)	(0.87)	(0.76)	(0.48)	(0.84)	(0.89)
	0.000	0.002	0.001	0.000	-0.000	-0.001	-0.000
Gvtsize	(1.43)	(1.30)	(0.84)	(0.06)	(-0.19)	(-0.77)	(-0.37)
	0.600***	1.356**	1.274**	0.726***	2.067***	1.692***	1.087**
Participation Rate	(3.76)	(2.19)	(2.45)	(4.50)	(3.22)	(3.14)	(2.55)
	0.116**	0.550**	0.349**	0.096^{*}	0.417**	0.298^{*}	0.153
School Expenditure	(2.07)	(2.65)	(2.20)	(1.81)	(2.05)	(1.91)	(1.36)
				0.081	0.075	0.081	0.119
College per capita				(1.52)	(0.35)	(0.49)	(0.98)
				-0.333***	-1.566***	-1.273***	-0.677***
Employment Manuf				(-3.43)	(-4.27)	(-4.18)	(-2.86)
\mathbb{R}^2	0.201	0.182	0.163	0.243	0.215	0.211	0.160
Ν	637	645	645	546	546	546	546

Innovation and Social Mobility

Entrant vs Incumbent innovation and social mobility

Measure of	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Mobility	AM25	P1-5	P2-5	AM25	P1-5	P2-5	AM25
Innovation	patent_pc	$patent_pc$	$patent_pc$	$patent_pc$	$patent_pc$	$patent_pc$	patent_p
Innovation from Entrants	0.016**	0.058^{**}	0.038^{**}				0.018^{**}
	(2.61)	(2.39)	(2.11)				(2.61)
Innoustion from In our hort				0.007	0.032	0.020	-0.006
Innovation from Incumbent				(0.87)	(0.97)	(0.75)	(-0.64)
Chang	-0.136***	-0.381*	-0.330**	-0.136***	-0.405*	-0.340**	-0.128**
Gappe	(-3.08)	(-1.78)	(-2.11)	(-2.96)	(-1.87)	(-2.14)	(-2.83)
D	0.287	0.757	0.827	0.272	0.708	0.792	0.290
Popgrowth	(1.00)	(0.66)	(0.98)	(0.92)	(0.61)	(0.93)	(1.02)
<i>a</i> . :	0.000	-0.000	-0.001	0.000	-0.000	-0.001	0.000
Gvtsize	(0.04)	(-0.22)	(-0.80)	(0.08)	(-0.21)	(-0.76)	(0.07)
ית ייית	0.785***	2.291***	1.815***	0.758***	2.180***	1.743***	0.799**
Participation Rate	(4.61)	(3.44)	(3.25)	(4.48)	(3.30)	(3.14)	(4.71)
	0.109**	0.467**	0.322**	0.102*	0.442**	0.306^{*}	0.111**
School Expenditure	(2.09)	(2.38)	(2.04)	(1.95)	(2.24)	(1.95)	(2.10)
Claller and the	0.081*	0.068	0.090	0.075	0.036	0.071	0.084*
College per capita	(1.70)	(0.36)	(0.57)	(1.57)	(0.19)	(0.44)	(1.81)
	-0.312***	-1.508***	-1.212***	-0.366***	-1.705***	-1.341***	-0.307**
Employment Manuf	(-3.16)	(-4.12)	(-3.95)	(-3.70)	(-4.54)	(-4.34)	(-3.04)
\mathbb{R}^2	0.260	0.233	0.221	0.243	0.217	0.209	0.261
Ν	541	541	541	541	541	541	541

Measure of	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Inequality	top 1%	$\mathrm{top}1\%$	top 1%	-	-	-	-
Mobility	-	-	-	AM25	AM25	AM25	AM25
Innovation	3YWindow	3YWindow	3YWindow	patent_pc	$patent_pc$	$patent_pc$	patent_pc
Innovation	0.059***		0.153^{***}				
1111000011011	(6.06)		(3.81)				
from Entrante		0.020^{***}		0.012	0.028^{***}		
JIOIN DINIANIS		(3.71)		(1.28)	(2.72)		
from Incumbents		0.012^{*}				0.005	0.014
from meanvenus		(1.87)				(0.73)	(1.46)
	0.060***		0 074***	1			
Lobbying*Innovation	(0.48)		-0.074				
	(-9.40)	0 034***	(-10.01)				
from Entrants		(6.70)					
		(-0.13)					
from Incumbents		(-0.65)					
		(-0.00)					
Cdmma	-0.093*	-0.071	-0.200**	0.044	0.030	0.046	0.028
Gappe	(-1.65)	(-1.33)	(-2.20)	(1.66)	(0.94)	(1.68)	(0.81)
Domanouth	0.445	0.097	1.229^{*}	0.002	0.000	0.003	0.000
Τοργισωπ	(0.71)	(0.15)	(1.72)	(1.47)	(0.16)	(1.64)	(0.16)
Sharefinance	0.016	0.009	0.024	0.000	-0.003***	0.000	-0.003**
Shurejinunce	(1.21)	(0.64)	(1.58)	(0.15)	(-2.82)	(0.40)	(-2.19)
Qutnutaan	-1.930	-2.201	-2.550				
Outputgup	(-1.36)	(-1.61)	(-1.57)				
Gutsize	0.008	-0.044	0.064	-0.001	0.001	-0.001	0.001
G 003020	(0.19)	(-1.04)	(1.12)	(-0.41)	(0.78)	(-0.47)	(0.86)
Highways			0.032^{***}				
11 tynways			(3.80)				
Military			0.005				
111 0000 WI Y			(0.99)				
Snill Gdnnc			0.983^{**}				
~poo_Gappe			(2.01)				
B ²	0.925	0.925	0.922	0.107	0.079	0.100	0.049
1 st stage F-stat	-	-	11 79	_	-	-	-
N	1632	1632	1508	176	176	176	176

Innovation, Lobbying, Inequality and Mobility (State and CZ level)

Conclusion (1)

- We have analyzed the effect of innovation-led growth on top incomes and on social mobility
- We found positive and significant correlations between (entrant) innovation, top income shares and social mobility
- We found no significant effect of innovation on broader measures of inequality
- Our instrumentation at cross-state level suggested a causality from innovativeness to top income shares

Introduction

Conclusion (2)

- Our findings suggest avenues for further research on (innovation-led) growth, inequality and social mobility.
 - Use individual fiscal and patenting data to look at social mobility of inventors
 - 2 Revisit tax policy design, factoring in *innovation*
 - Go deeper into how institutions affect the relationship between innovation, top income inequality, and social mobility.

Aghion-Akcigit-Toivanen (2015)

- Probability of upward mobility is significantly higher for inventors than for non-inventors
- Upward mobility of inventors increases significantly:
 - With citation count
 - With own education
 - If firm size is smaller

Wage Income Growth (1)

Innovation and Top Income Inequality

Wage Income Growth (2)

Innovation and Top Income Inequality

Capital vs Labor Income in 1999

Innovation and Top Income Inequality

Transition Matrix

top-10=1

Table 1: Transitions 1991 to 1999

non-inventors									
1991 / 1999	top-10=0	top-10=1	Conditional Prob.						
top-10=0	88.05	4.17	4.51						
top-10=1	2.34	5.45	69.96						
inventors									
1991 / 1999	top-10=0	top-10=1	Conditional Prob.						
top-10=0	41.95	19.61	31.86						

7.60

30.84

80.23

Transition Matrix by Father's Education

Table 2: Transitions 1991 to 1999 conditional on father's education

	Father's education < 12 years										
	non-inve	entors			invent	ors					
91 / 99	top10=0	top10=1	C/Pr	91 / 99	top10=0	top10=1	C/Pr				
top10=0	86.55	5.13	5.60	top10=0	44.81	19.10	29.88				
top10=1	2.41	5.91	71.03	top10=1	6.84	29.25	81.07				
		Fathe	er's educa	ation \geq 12 y	ears						
91 / 99	0	1	C/Pr	91 / 99	top-10=0	top-10=1	C/Pr				
top10=0	88.24	4.05	4.39	top10=0	39.24	20.85	34.70				
top10=1	2.36	5.35	69.30	top10=1	8.07	31.84	79.78				

Transition Matrix by Gender

4							8	
					Female			
		non-inve	entors			invent	tors	
	91 / 99	0	1	Con Pr	91 / 99	top-10=0	top-10=1	Con Pr
	top10=0	95.73	2.02	2.07	top-10=0	67.78	11.11	14.08
	top10=1	0.87	1.38	61.33	top-10=1	1.11	20.00	94.74
					Male			
	91 / 99	0	1	Con Pr	91 / 99	top-10=0	top-10=1	Con Pr
	top10=0	84.37	5.22	5.83	top-10=0	39.37	20.76	34.53
	top10=1	3.07	7.34	70.51	top-10=1	8.35	31.52	79.06

Table 3: Transitions 1991 to 1999 conditional on gender

Transition Matrix by Age

Table 4: Transitio	ns 1991 to	1999 by age	(inventors only	y)
--------------------	------------	-------------	-----------------	----

< median age								
1991 / 1999	top-10=0	top-10=1	Conditional Prob.					
top-10=0	47.19	26.53	35.99					
top-10=1	5.10	21.17	80.56					
> median age								
1991 / 1999	091 / 1999 top-10=0		Conditional Prob.					
top-10=0	38.98	14.29	26.83					
top-10=1	9.39	37.35	79.93					

Transition Matrix by Innovation Quality

Table 5: Transitions 1991 to 1999 by quality of invention

< 20 citations						
p-10=0	top-10=1	Conditional Prob.				
43.60	17.08	28.15				
8.15	31.18	79.29				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
-10=0	top-10=1	Conditional Prob.				
5.78	38.53	51.85				
2.75	22.94	89.30				
	<pre>< 20 p-10=0 43.60 8.15 220 p-10=0 5.78 2.75</pre>					

Labor Income in 1999

Table 0: Ln(wage) in 1999							
	Logwage		top-10% in 1999				
	(1)	(2)	(3)				
patent count	-0.1132	-0.0516	-0.0331				
	0.0438	0.0326	0.0244				
	0.0098	0.1135	0.1745				
citations 1-9	0.1456	0.0594	0.0987				
	0.0664	0.0581	0.0388				
	0.0284	0.307	0.0109				
citations 10-19	0.2725	0.2375	0.1803				
	0.1358	0.1658	0.0629				
	0.0448	0.152	0.0042				
citations 20-29	0.4176	0.3975	0.2304				
	0.1483	0.1538	0.0803				
	0.0049	0.0098	0.0041				
citations 30-	0.869	0.7862	0.3313				
	0.1913	0.2038	0.0993				
	0.000	0.0001	0.0008				
polynomial in Ln(wage) in 1991	3	3	3				
controls	YES	YES	YES				
father's educ.	NO	YES	NO				
nobs	75233	13634	75262				
R-sq.	0.40	0.39	0.42				

Table 6: Ln(wage) in 1999

NOTES: numbers presented are coefficient, robust s.e., and p-value.

Controls include third order polynomial in age; a gender dummy;

a dummy for having Finnish as mother tounge; 45 field and level of educ dummies;

a dummy for being an entrepreneur in 1991; and tenure in current job in 1991.

father's educ. = 45 field and level of education dummies for the father.

Labor Income in 1999

Innovation and Top Income Inequality

Transition Matrix by Own Education

Table 6: Transitions 1991 to 1999 conditional on own education
--

education in $1991 < 16$ years								
non-inventors			inventors					
1991/1999	top-10=0	top-10=1	Con Pr	1991/1999	0	1	Con Pr	
top-10=0	95.87	1.57	1.61	0	77.05	9.84	11.32	
top-10=1	1.28	1.28	50.00	1	4.10	9.02	68.80	
education in 1991 \ge 16 years								
1991/1999	0	1	Con Pr	1991/1999	0	1	Con Pr	
top-10=0	71.91	9.57	11.75	0	37.11	21.32	36.49	
top-10=1	4.60	13.92	75.16	1	8.03	33.55	80.69	

Transition Matrix by Firm Size

Table: Transitions 1991 to 1999 conditional on firm size								
firm size in 1991 $<$ median firm size in 1991								
non-inventors			inventors					
1991/1999	top-10=0	top-10=1	Con Pr	1991/1999	0	1	Con Pr	
top-10=0	84.76	4.36	4.89	0	35.03	23.73	40.38	
top-10=1	3.21	7.67	60.50	1	5.08	36.16	87.68	
firm size in 1991 \geq median firm in size1991								
1991/1999	top-10=0	top-10=1	Con Pr	1991/1999	0	1	Con Pr	
top-10=0	89.11	4.14	4.44	0	44.54	18.72	29.59	
top-10=1	2.08	4.67	69.19	1	8.09	28.65	77.98	