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Notation

Let Ω be a bounded domain in R3 and T ∈ (0,∞). We denote
by Q the cylinder with lateral surface ST and by tT a parabolic
boundary defined by

Q = Ω× (0,T ), ST = ∂Ω× (0,T ), tT = ST ∪ (Ω̄×{t = 0}).

Let U ∈ C3(Q̄) and f ∈ C(Q̄) be given vector fields,

U : Q̄ → R3, f : Q → R3.

Let %∞ ∈ L∞(tT ) be a given nonnegative function

%∞ : tT → R+.

Let the inlet Σin ⊂ ST be defined by

Σin = {(x , t) ∈ ∂B × (0,T ) : U(x , t) · n(x) < 0},

where n is the outward normal to ∂Ω.
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Compressible NSE. Problem formulation.

Problem N-S. Find a velocity u and a density % ≥ 0 satisfying

∂t (%u) + div(%u⊗ u) +∇p(ρ)

= divS(u) + % f in Q,

∂t%+ div(%u) = 0 in Q,

u = U on tT ,

% = %∞ on Σin,

%(x ,0) = %∞(x ,0) in Ω,

where

S(u) = ∇u +∇u> + (λ− 1) div u, divS(u) = ∆u + λ∇ div u,

p(%) = %γ .
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Renormalized solution

A couple

u ∈ L2(0,T ; W 1,2(Ω)), % ∈ L∞(0,T ; Lγ(Ω))

is said to be a weak renormalized solution to Problem (N-S) if
(u, %) satisfies

The kinetic energy is bounded
%|u|2 ∈ L∞(0,T ; L1(Ω)).
The velocity satisfies the nonhomogeneous Dirichlet
boundary condition u = U on ST .

P.I. Plotnikov, Lavrentyev Institute of Hydrodynamics Kinetic equation method for compressible Navier-Stokes problems



Renormalized solution

The integral identity∫
Q

(
%u · ∂tξ + %u⊗ u : ∇ξ + p div ξ − S(u) : ∇ξ

)
dxdt

+

∫
Q
%f · ξ dxdt +

∫
Ω

(%∞U · ξ)(x ,0) dx = 0

holds for all vector fields ξ ∈ C∞(Q) equal to 0 in a
neighborhood of the lateral side ST and of the top
Ω× {t = T}.
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Renormalized solution

The integral identity∫
Q

(
ϕ(%)∂tψ + ϕ(%)u · ∇ψ + ψ(ϕ(%)− ϕ′(%)%) div u

)
dxdt

=

∫
Σin

ψϕ(%∞)U · n dΣ−
∫

Ω
(ϕ(%∞)ψ)(x ,0) dx

holds for all ψ ∈ C∞(Q) vanishing in a neighborhood of the
surface ST \ Σin and in a neighborhood of the top
Ω× {t = T}, and for all smooth functions ϕ : [0,∞)→ R
such that

lim sup
%→∞

(|ϕ(%)|+ |%ϕ′(%)|) <∞.

This means that ϕ has minimal admissible smoothness
and ϕ is bounded at infinity.
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Renormalized solutions

The latter identity means that

∂ϕ(%)

∂t
+ div (ϕ(%)u) + (ϕ′(%)%− ϕ(%))div u = 0.

ϕ(%) = ϕ(%∞) on Σin and on Ω× {0}.
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Existence Theorem

The following theorem constitutes the existence of a weak
renormalized solution to Problem (N-S),
(Girinon - 2011, P.& Sokolowski-2010, 2012).
Theorem
Assume that γ > 3/2. Then Problem (N-S) has a weak
renormalized solution which satisfies the estimate

‖u‖L2(0,T ;W 1,2(Ω)) ≤ c,

‖%|u|2‖L∞(0,T ;L1(Ω)) ≤ c

‖%γ‖L∞(0,T ;L1(Ω)) ≤ c.

Moreover, there is θ > 0 such that for any Q′ b Q,∫
Q′
%γ+θ ≤ c(Q′)
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Oscillating Data

Let us consider Problem (N-S) with rapidly oscillating boundary
data

%ε∞ ⇀ %∞ weakly? in L∞(t).

The sequence of boundary and initial data %ε∞ is only weakly
convergent, and it may be rapidly oscillating as ε→ 0. The
example of a rapidly oscillating sequence is

%ε∞ = R
(

x , t ,
x
ε
,

t
ε

)
,

where R(x , t , y , τ) is a smooth function periodic in y and τ . In
particular,

%ε∞ = const. + A(x , t) sin
(
ωt − k · x

ε

)
.
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Oscillating Data

In view of the mass transport equation, oscillations in boundary
and initial data are transferred inside the flow domain along
fluid particle trajectories. Hence we can expect that these
oscillations induce rapid oscillations of the density in the flow
domain, and the propagation of such oscillations will now be
under discussion. It is worth noting that density oscillations can
be regarded as sound waves, studied in acoustics. Rapid
oscillations appear if the wavelength of the sound is small
compared to the diameter of the flow domain.
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Weak limits

Let (uε, %ε) be solutions to Problem (N-S). After passing to a
subsequence, we can assume that

uε ⇀ u weakly in L2(0,T ; W 1,2(Ω)),

%ε ⇀ % weakly? in L∞(0,T ; Lγ(Ω)),

%ε ⇀ % weakly in Lγ+θ(Q′) for all Q′ b Q,

p(%ε) ⇀ p weakly in L1+θ/γ(Q′) for all Q′ b Q
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Weak Limits

The limits satisfy the equations

∂t (%u) + div(%u⊗ u) +∇p
= divS(u) + % f in Q,

∂t%+ div(%u) = 0 in Q,

u = U on ST ,

% = %∞ on Σin,

u(x ,0) = U(x ,0) in Ω,

%(x ,0) = %∞(x ,0) in Ω,
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Problem

Now we establish the connection between % and p.
The main ingredients of our method are the kinetic equation
method (Lions, Perthame, Tadmor 1994) and the Young
measures theory (Tartar 1979).
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Young measures

There exist subsequences, still denoted by %ε, %ε∞, and the
Young measures µ ∈ L∞w (Q;M(R)), µ∞ ∈ L∞w (tT ;M(R)), with
the following properties:

For any continuous function ϕ ∈ C0(R),

ϕ(%ε) ⇀ ϕ weakly? in L∞(Q),

ϕ(%ε∞) ⇀ ϕ∞ weakly? in L∞(tT ),

ϕ(x , t) = 〈µxt , ϕ〉, ϕ∞(x , t) = 〈µ∞xt , ϕ〉.

In this framework rapidly oscillating sequences are associated
with some Young measures. At this point it is worth noting that
a Young measure determines a random function (depending on
the spatial variables and the time variable).
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Young measure and probability theory

Definition. Let (E ,A, π) be a probability space, i.e., A is a
σ-algebra on the set E and π : A → R is a probability measure,
π(E) = 1. A random variable is a Borel map ς : E → R. Recall
that ς is Borel if ς−1(B) ∈ A for any Borel set B ⊂ R. The
probability distribution of the random variable ς is the probability
measure µ on the real line defined by µ(B) = π(ς−1(B)) for all
Borel sets B ⊂ R. The distribution function (cumulative
distribution function) of ς is defined by f (λ) = µ(−∞, λ], λ ∈ R.
A family of random variables ςxt labeled by points (x , t) ∈ Q is
called a random function (random field) on Q.
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Examples of distribution function

For
uε = sin

(x1

ε

)
,

there is f (s) = H(s), where

H(s) = 0 for s < −1, H(s) = 1 for s > 1

H(s) =
1
π

∫ s

−1
(1− z2)−1/2 dz for − 1 ≤ s ≤ 1.

For
uε = sin

(k · x − ωt
ε

)
there is f (x , t , s) = H(s). Finally, for

uε = A(x , t) sin
(k · x − ωt

ε

)
there is f (x , t , s) = H(s/A(x , t)).
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Distribution function

We can consider rapidly oscillating sequences %ε and %ε∞ as
random functions on the cylinder Q and on tT with the
associated Young measures µxt and µ∞xt , respectively.
Introduce the corresponding cumulative distribution functions

f (x , t , s) = µxt (−∞, s], f∞(x , t , s) = µ∞xt (−∞, s].

For a.e. (x , t) ∈ Q (resp. (x , t) ∈ tT ), the functions f (x , t , s)
and f∞(x , t , s) are monotone and right continuous in s. They
tends to 1 as s →∞ and vanish for s < 0.

〈µxt , ϕ〉 =

∫
R
ϕ(s) dsf (x , t , s), 〈µ∞xt , ϕ〉 =

∫
R
ϕ(s) dsf∞(x , t , s).

In particular,

% =

∫
R

s dsf (x , t , s), p =

∫
R

p(s) dsf (x , t , s).
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Derivation of kinetic equation

Now, the so-called kinetic equation for the cumulative
probability distribution f is derived.
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Kinetic Equation

Theorem For a given distribution function f∞ : tT × R→ [0,1],
the function f satisfies the kinetic equation

∂f
∂t

+ div(fu)− ∂s(sf div u)− ∂s(s C[f ]) = 0 in Q × R,

with the nonlinear operator C[f ]

C[f ] =
1

λ+ 1

∫
(−∞,s]

(p(τ)− p) dτ f (x , t , τ),

and the boundary conditions

f = f∞ on Σin × R,
f (x ,0, s) = f∞(x ,0, s) on Ω× R.

The functions % and p are given by

% =

∫
R

s dsf (x , t , s), p =

∫
R

p(s) dsf (x , t , s).
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Remark on kinetic equation

Kinetic equations for the Young measure distribution
function contain some unknown measures in the right hand
sides, thus it is not closed (see Perthame 2002).
In the case of compressible N-S equations the kinetic
equation is obtained in the closed form.
Kinetic equation is nonlocal and nonlinear
No memory effect.
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Equations

∂t(%u) + div(%u⊗ u) +∇p
= divS(u) + % f in Q,

∂t%+ div(%u) = 0 in Q,

∂f
∂t

+ div(fu)− ∂s(sf div u)− ∂s(s C[f ]) = 0 in Q × R

% =

∫
R

s dsf (x , t , s), p =

∫
R

p(s)dsf (x , t , s).
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Derivation of kinetic equation

Lemma. Let ϕ ∈ C∞0 (R) and Φ(s) = ϕ′(s)s − ϕ(s). Then∫
Q
ϕ(∂tψ +∇ψ · u) dxdt − 1

λ+ 1

∫
Q
ψ
(
Φp − Φp

)
dxdt

−
∫

Q
ψΦ div u dxdt+

∫
Ω

(ψϕ∞)(x ,0) dx−
∫

ST

ψϕ∞U·n dSdt = 0

for all ψ ∈ C∞(Q) vanishing in a neighborhood of ST \ Σin and
of Ω× {t = T}. Here

ϕ =

∫
R
ϕ(s) dsf (x , t , s), p =

∫
R

p(s) dsf (x , t , s),

ϕ∞ =

∫
R
ϕ(s) dsf∞(x , t , s),

Φp =

∫
R

Φ(s)p(s) dsf (x , t , s), Φ =

∫
R

Φ(s) dsf (x , t , s).
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Proof

We have∫
Q

(
ϕ(%ε)∂tψ +ϕ(%ε)uε · ∇ψ +ψ(ϕ(%ε)−ϕ′(%ε)%ε) div uε

)
dxdt

=

∫
Σin

ψϕ(%ε∞)U · n dΣ−
∫

Ω
(ϕ(%ε∞)ψ)(x ,0) dx

Letting ε→ 0 and using the weak continuity of the viscous flux
we obtain the desired identity.
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Determenistic case

The sequence %ε∞ converges to %∞ a.e. in tT if and only if

f∞(x , t , s) = 0 for s < %∞(x , t),
f∞(x , t , s) = 1 for s ≥ %∞(x , t),

Definition A Young measure (random function) µxt is
deterministic if for a.e. (x , t) the measure µxt is concentrated at
a single point, i.e. there is % : Q → R such that

f (x , t , s) = 0 for s < %(x , t),
f (x , t , s) = 1 for s ≥ %(x , t).

The Young measure is deterministic if and only if the sequence
%ε converges strongly.
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Noisiness

A noisiness N (t) of a distribution function f at the moment t is
defined by

N (t) =

∫
Ω×R

f (x , t , s)(1− f (x , t , s))) dsdx .

N (t) is nonnegative. It vanishes if an only if the distribution
function f (·, t , ·) is deterministic.
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Question

The next question concerns the deterministic case. If the
boundary data f∞ is deterministic, is a solution to the kinetic
equation deterministic?
This question is important because if f is deterministic, then
obviously p = p(%) and a solution of the kinetic equation
becomes a weak renormalized solution of the mass balance
equation.
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Main Theorem

The theory of the kinetic equation is of independent interest
aside from the theory of Navier-Stokes equations itself.

The following theorem on kinetic equations with deterministic
data makes it possible, among other things, to prove
compactness properties of solutions to compressible
Navier-Stokes equations and to investigate the domain
dependence of solutions to these equations.
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Kinetic Problem

Let us consider the boundary value problem for the kinetic
equation

Problem K.

∂t f + div(fu)− ∂s(sf div u + s C[f ]) = 0 in Q × R,
f = f∞ on Σin × R, f (x ,0, s) = f∞(x ,0, s) on Ω× R .

We emphasize that here u is a given vector field that has
nothing to do with Navier-Stokes equations.
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Assumptions

The vector field u ∈ L2(0,T ; W 1,2(Ω)) satisfies the
boundary condition u = U on tT .
Functions f and f∞ are monotone and right continuous in s.
Moreover, they tends to 1 as s →∞ and vanish for s < 0.

ess sup
t∈(0,T )

∫
Ω

{∫
[0,∞)

sγ dsf (x , t , s)
}

dx <∞.

‖H‖L1+γ(Q) + sup
v∈R+

‖Vv‖L1(Q) <∞,

Vv (x , t) =

∫
[0,∞)

min{s, v}(p(s)− p) dsf (x , t , s),

H(x , t) =

∫
[0,∞)

f (x , t , s)(1− f (x , t , s)) ds.
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Result

Theorem 2.

Let Condition (A) be satisfied, f∞ be deterministic and f be a
solution to Problem K.

Then f is deterministic, i.e. there is % ∈ L∞(0,T ; Lγ(Ω)) such
that

f (x , t , s) = 0 for s < %(x , t), f (x , t , s) = 1 for s ≥ %(x , t).
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Renormalization

The renormalization procedure was introduced by Di Perna &
Lions (1991). Our case corresponds (in its local part) to
Le Bris&Lions (2004). The main idea of the proof is a
renormalization of Problem K. In other words we intend to
derive an equation for a composite function Ψ(f ). We choose Ψ
in such a way that it is concave and Ψ(f ) vanishes for every
deterministic distribution function f . The simplest choice is

Ψ(f ) = f (1− f ), Ψ′(f ) = 1− 2f . (6)

Because of the presence of nonlocal terms and delicate
operations with Stiltjies integrals, the justification of
renormalization procedure is complicated. We present the
result for the case of U = 0 (no-slip condition).
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Renormalization

Proposition Let Ψ = f (1− f ). Then for any
ψ ∈ C∞(Rd × (0,T )×R) vanishing for t = T and for sufficiently
large |s|, we have∫

Q×R

{
Ψ(f )(∂tψ+∇ψ·u−s∂sψ div u)−s∂sψΨ′(f ) C[f ]

}
dxdtds

+2
∫

Q×R
sψMdsf dxdt+

∫
Ω×R

Ψ(f∞(x ,0, s))ψ(x ,0, s) dxds = 0.

Here

M(x , t , s) =
1
2

lim
h↘0
C[f ](x , t , s − h) +

1
2

lim
h↘0
C[f ](x , t , s + h). (7)
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Corollary

The inequality∫
Q×R

{
Ψ(f )(∂t Φ− s∂sΦ div u)− s∂sΦ Ψ′(f ) C[f ]

}
dxdtds

+ 2
∫

Q

{∫
R

sΦMdsf
}

dxdt ≥ 0 (8)

holds for any nonnegative function Φ ∈ C∞((0,T )× R)
vanishing for t = T and for all large |s|.
Lemma

M(x , t , s) ≤ 0.
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Conclusion

∂N
∂t
≤ −2

∫
Ω×R

s|M|dsfdx

Recall

M(x , t , s) =
1
2

lim
h↘0
C[f ](x , t , s − h) +

1
2

lim
h↘0
C[f ](x , t , s + h).

C[f ] =
1

λ+ 1

∫
(−∞,s]

(p(τ)− p) dτ f (x , t , τ),
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Conclusion

If
uε are uniformly bounded in L2(0,T ; W 1,2(Ω)),
%ε are bounded from above and are separated from zero,
the magnitude of oscillations is separated from zero,

then
N (t) ≤ c exp

(
−c
ν

t
)
,

where ν is a gas viscosity.
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