Target problems, Second order BSDEs, and probabilistic numerical methods for fully nonlinear PDEs

Nizar TOUZI

Ecole Polytechnique Paris

Collège de France
23 septembre 2007

Outline

(1) Introduction

- from hedging to target problems
- Second order target problems

2) Second order BSDEs and fully nonlinear PDEs

- BSDEs
- Second order BSDEs
(3) Probabillistic numerical methods for fully nonlinear PDEs
- The semilinear case
- Monte Carlo Simulation of BSDEs
- The fully nonlinear case
- Numerical example

The standard model in frictionless markets

- $(\Omega, \mathcal{F}, \mathbb{P}), W$ Brownian motion in $\mathbb{R}^{d}, \mathbb{F}=\left\{\mathcal{F}_{t}, t \geq 0\right\}=\mathbb{F}^{W}$
- The financial market consists of a riskless asset $S^{0} \equiv 1$, and a risky asset with price process

$$
d S_{t}=\operatorname{diag}\left[S_{t}\right]\left(\mu_{t} d t+\sigma_{t} d W_{t}\right)
$$

μ, σ adapted, σ invertible $+\ldots$

- Portfolio Z_{t}^{i} : amount invested in asset i time t :

$$
\left\{Z_{t}, t \geq 0\right\} \quad \mathbb{F} \text { - adapted with values in } \mathbb{R}^{d}
$$

- Self-financing condition \Longrightarrow dynamics of portfolio value :

$$
d Y_{t}=Z_{t} \cdot \operatorname{diag}\left[S_{t}\right]^{-1} d S_{t}
$$

Super-hedging problem of \mathcal{F}_{T}-measurable $G \geq 0$

$$
V_{0}:=\inf \left\{Y_{0}: Y_{T} \geq G \text { a.s. for some } Z \in \mathcal{A}\right\}
$$

Solution : the Black-Scholes model

- We may assume $\mu \equiv 0$: equivalent change of measure
- Then for $Y_{0}>V_{0}, \mathbb{E}\left[Y_{T}\right] \geq \mathbb{E}[G] \Longrightarrow V_{0} \geq \mathbb{E}[G]$
- From the martingale representation in Brownian filtration

$$
\hat{Y}_{t}:=\mathbb{E}\left[G \mid \mathcal{F}_{t}\right]=\mathbb{E}[G]+\int_{0}^{T} \phi_{t} \cdot d W_{t}=\hat{Y}_{0}+\int_{0}^{T} \hat{Z}_{t} \cdot \sigma_{t} d W_{t}
$$

Since $Y_{T}=G$, we deduce that $\mathbb{E}[G] \geq V_{0}$
Hence $\quad V_{0}=\mathbb{E}[G]$ and $Y_{T}=G$ a.s. for some portfolio $Z \in \mathcal{A}$

Stochastic target problems

- Controlled process

$$
d X_{t}=\mu\left(t, X_{t}, \nu_{t}\right) d t+\sigma\left(t, X_{t}, \nu_{t}\right) d W_{t}
$$

where the control process $\nu \in \mathcal{U}$ takes values in $U \subset \mathbb{R}^{k}$

- Given a Borel set $\Gamma_{0} \subset \mathbb{R}^{d}$, find

$$
\mathcal{V}_{0}:=\left\{x_{0} \in \mathbb{R}^{d}: X_{T} \in \Gamma_{0} \text { for some } \nu \in \mathcal{U}\right\}
$$

- If $X=(S, Y) \in \mathbb{R}^{n-1} \times \mathbb{R}$ where Y is increasing in Y_{0}, find

$$
V_{0}:=\inf \left\{Y_{0}: X_{T}=\left(S_{T}, Y_{T}\right) \in \Gamma_{0} \text { for some } \nu \in \mathcal{U}\right\}
$$

Main ingredient for target problems

- Define the dynamic problems \mathcal{V}_{t} and V_{t}

Geometric Dynamic Programming for any stopping time θ valued in $[t, T$]

$$
\mathcal{V}_{t}=\left\{X_{t}: X_{\theta} \in \mathcal{V}_{\theta} \text { for some } \nu \in \mathcal{U}\right\}
$$

if Y is increasing in Y_{0} :

Geometric Dynamic Programming for any stopping time θ valued in $[t, T$]

$$
V_{t}=\inf \left\{Y_{t}: Y_{\theta} \geq V_{\theta} \text { for some } \nu \in \mathcal{U}\right\}
$$

Dynamic Programming Equation for V

- If $U=\mathbb{R}^{k}$. Assume that V is locally bounded. Then $V(t, s)$ is a (discontinuous) viscosity solution of

$$
-\frac{\partial V}{\partial t}(t, s)-\mathcal{L}^{\nu_{0}(t, s)} V(t, s)+\mu^{Y}\left(t, s, V(t, s), \nu_{0}(t, s)\right)=0
$$

where

$$
\mathcal{L}^{\nu} V(t, s)=\mu^{S}(t, s, V(t, s), \nu) \cdot D V(t, s)+\frac{1}{2} \operatorname{Tr}\left[\sigma^{S} \sigma^{S^{*}} D^{2} V(t, s)\right]
$$

and

$$
\sigma^{Y}\left(t, s, V(t, s), \nu_{0}(t, s)\right)=\sigma^{S}\left(t, s, V(t, s), \nu_{0}(t, s)\right) D V(t, s)
$$

- If $U \neq \mathbb{R}^{k}$: similar PDE, with gradient constraint, boundary layer...

Dynamic Programming equation for \mathcal{V}

Set $u(t, x):=\mathbb{1}_{\mathcal{V}(t)^{c}}(x)$
Theorem Under some conditions, u is a (discontinuous) viscosity solution of the geometric equation

$$
-\frac{\partial v}{\partial t}(t, x)+F\left(t, x, D v(t, x), D^{2} v(t, x)\right)=0
$$

where

$$
F(t, x, p, A)=\sup \left\{\mu(t, x, \nu) \cdot p+\frac{1}{2} \operatorname{Tr}\left[\sigma \sigma^{T}(t, x, \nu) A\right]: \nu \in \mathcal{N}(t, x, p)\right\}
$$

and

$$
\mathcal{N}(t, x, p):=\left\{\nu \in U: \sigma(t, x, \nu)^{T} p=0\right\}
$$

\Longrightarrow Stochastic representation for a class of geometric equations (exp : mean curvature flow)

Quantile target problems

- Controlling the probability of reaching the target :

$$
V(t, s, p):=\inf \left\{y: \mathbb{P}\left[(S, Y)_{T} \in \Gamma_{0}\right] \geq p \text { for some } \nu \in \mathcal{U}\right\}
$$

- Introduce an additional controlled state :

$$
d P_{t}=\alpha_{t} \cdot d W_{t}
$$

Then

$$
V(t, s, p):=\inf \left\{y: \mathbb{I}_{(S, Y)_{T} \in \Gamma_{0}}-P_{T} \geq 0 \text { for some }(\alpha, \nu) \in \overline{\mathcal{U}}\right\}
$$

thus converting the quantile target problem into a target problem

- $V(T, s, p)$!! <Bouchard, Elie, T.>

Hedging under liquidity costs (1)

<Çetin, Jarrow and Protter 2004, 2006>

- Risky asset price is defined by a supply curve :
$\mathrm{S}\left(S_{t}, \nu\right)$: price per share of ν risky assets
$\mathbf{S}\left(S_{t}, 0\right)=S_{t}$
- X_{t} : holdings in cash, Z_{t} : holdings in risky asset (number of shares)

$$
\begin{aligned}
X_{t+d t}-X_{t} & +\left(Z_{t+d t}-Z_{t}\right) \mathbf{S}\left(S_{t}, Z_{t+d t}-Z_{t}\right)=0 \\
\Longrightarrow X_{T} & =X_{0}-\sum\left(Z_{t+d t}-Z_{t}\right) \mathbf{S}\left(S_{t}, Z_{t+d t}-Z_{t}\right) \\
& =X_{0}+\sum Z_{t}\left(S_{t}-S_{t+d t}\right)+\ldots
\end{aligned}
$$

Hedging under liquidity costs (2)

Direct computation leads to

$$
\begin{aligned}
Y_{T}:=X_{T}+Z_{T} S_{T}= & Y_{0}+\sum Z_{t}\left(S_{t+d t}-S_{t}\right) \\
& -\sum\left(Z_{t+d t}-Z_{t}\right)\left[\mathbf{S}\left(S_{t}, Z_{t+d t}-Z_{t}\right)-S_{t}\right]
\end{aligned}
$$

Assume $\nu \longmapsto \mathbf{S}\left(S_{t}, \nu\right)$ is smooth, then:

$$
\begin{aligned}
Y_{T}=Y_{0}+\int_{0}^{T} Z_{t} d S_{t} & -\int_{0}^{T} \frac{\partial \mathbf{S}}{\partial \nu}\left(S_{t}, 0\right) d<Z^{c}>_{t} \\
& -\sum_{t \leq T} \Delta Z_{t}\left[\mathbf{S}\left(S_{t}, \Delta Z_{t}\right)-S_{t}\right]
\end{aligned}
$$

Super-hedging problem

$$
V_{0}:=\inf \left\{y: Y_{T} \geq g\left(S_{T}\right) \text { a.s. for some } Y \in \mathcal{A}\right\}
$$

Second order target problems

- The controlled state is defined by

$$
d Y_{t}=f\left(t, S_{t}, Y_{t}, Z_{t}, \Gamma_{t}\right) d t+Z_{t} \cdot d S_{t}
$$

and the control Z satisfies the dynamics

$$
d Z_{t}=d A_{t}+\Gamma_{t} d S_{t}
$$

- Given a function g, find

$$
V_{0}:=\inf \left\{y: Y_{T} \geq g\left(S_{T}\right) \text { for some } Z \in \mathcal{A}\right\}
$$

Theorem $V(t, s)$ is a (discontinuous) viscosity solution of

$$
-\frac{\partial V}{\partial t}-\mathcal{L}^{S} V(t, s)-\hat{f}\left(t, s, V(t, s), D V(t, s), D^{2} V(t, s)\right)=0
$$

where $\hat{f}(t, s, r, p, A):=\sup _{\beta \geq 0} f(t, s, r, p, A+\beta)$ (elliptic envelope)

Outline

(1) Introduction

- from hedging to target problems
- Second order target problems
(2) Second order BSDEs and fully nonlinear PDEs
- BSDEs
- Second order BSDEs
(3) Probabillistic numerical methods for fully nonlinear PDEs
- The semilinear case
- Monte Carlo Simulation of BSDEs
- The fully nonlinear case
- Numerical example

Backward SDE : Definition

Find an \mathbb{F}^{W}-adapted (Y, Z) satisfying :

$$
\begin{aligned}
& Y_{t}= G+\int_{t}^{T} F_{r}\left(Y_{r}, Z_{r}\right) d r-\int_{t}^{T} Z_{r} \cdot d W_{r} \\
& \text { i.e. } \quad d Y_{t}=-F_{t}\left(Y_{t}, Z_{t}\right) d t+Z_{t} \cdot d W_{t} \text { and } Y_{T}=G
\end{aligned}
$$

where the generator $F: \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$, and

$$
\left\{F_{t}(y, z), t \in[0, T]\right\} \text { is } \mathbb{F}^{W} \text { - adapted }
$$

If F is Lipschitz in (y, z) uniformly in (ω, t), and $G \in \mathbb{L}^{2}(\mathbb{P})$, then there is a unique solution satisfying

$$
\mathbb{E} \sup _{t \leq T}\left|Y_{t}\right|^{2}+\mathbb{E} \int_{0}^{T}\left|Z_{t}\right|^{2} d t<\infty
$$

Markov BSDE's

Let X. be defined by the (forward) SDE

$$
\begin{array}{ll}
& d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \\
\text { and } & F_{t}(y, z)=f\left(t, X_{t}, y, z\right), f:[0, T] \times \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{d} \longrightarrow \mathbb{R} \\
& G=g\left(X_{T}\right) \in \mathbb{L}^{2}(\mathbb{P}), g: \mathbb{R}^{d} \longrightarrow \mathbb{R}
\end{array}
$$

If f continuous, Lipschitz in (x, y, z) uniformly in t, then there is a unique solution to the BSDE

$$
d Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t} \cdot \sigma\left(t, X_{t}\right) d W_{t}, \quad Y_{T}=g\left(X_{T}\right)
$$

Moreover, there exists a measurable function V :

$$
Y_{t}=V\left(t, X_{t}\right), \quad 0 \leq t \leq T
$$

BSDE's and semilinear PDE's

- By definition,

$$
\begin{aligned}
Y_{t+h}-Y_{t} & =V\left(t+h, X_{t+h}\right)-V\left(t, X_{t}\right) \\
& =-\int_{t}^{t+h} f\left(X_{r}, Y_{r}, Z_{r}\right) d r+\int_{t}^{t+h} Z_{r} \cdot \sigma\left(X_{r}\right) d W_{r}
\end{aligned}
$$

- If $V(t, x)$ is smooth, it follows from Itô's formula that:

$$
\begin{aligned}
\int_{t}^{t+h} \mathcal{L} V\left(r, X_{r}\right) d r & +\int_{t}^{t+h} D V\left(r, X_{r}\right) \cdot \sigma\left(X_{r}\right) d W_{r} \\
& =-\int_{t}^{t+h} f\left(X_{r}, Y_{r}, Z_{r}\right) d r+\int_{t}^{t+h} Z_{r} \cdot \sigma\left(X_{r}\right) d W_{r}
\end{aligned}
$$

where \mathcal{L} is the Dynkin operator associated to X :

$$
\mathcal{L} V=V_{t}+b \cdot D V+\frac{1}{2} \operatorname{Tr}\left[\sigma \sigma^{T} D^{2} V\right]
$$

Stochastic representation of solutions of a semilinear PDE

- Under some conditions, the semilinear PDE

$$
\begin{aligned}
& -\frac{\partial V}{\partial t}-\frac{1}{2} \operatorname{Tr}\left[\sigma \sigma^{T}(x) D^{2} V(t, x)\right]-f(x, V(t, x), D V(t, x))=0 \\
& V(T, x)=g(x)
\end{aligned}
$$

has a unique solution which can be represented as $V(t, x)=Y_{t}^{t, x}$ where $Y^{t, x}$ solves the BSDE

$$
\begin{aligned}
Y_{T}=g\left(X_{T}\right), & \\
X_{t}=x, & d Y_{s}=-f\left(X_{s}, Y_{s}, Z_{s}\right) d s+Z_{s} \cdot \sigma\left(X_{s}\right) d W_{s}, t \leq s \leq T
\end{aligned}
$$

- Extension to semilinear PDEs with obstacle is available by introducing Reflected BSDEs
- For $f \equiv 0$, we recover the Feynman-Kac formula

Second order BSDEs : Definition

$$
\hat{f}(x, y, z, \gamma):=f(x, y, z, \gamma)+\frac{1}{2} \operatorname{Tr}\left[\sigma \sigma^{T}(x) \gamma\right] \text { non-decreasing in } \gamma
$$

Consider the 2nd order BSDE :

$$
\begin{aligned}
d X_{t} & =\sigma\left(X_{t}\right) d W_{t} \\
d Y_{t} & =-f\left(t, X_{t}, Y_{t}, Z_{t}, \Gamma_{t}\right) d t+Z_{t} \sigma\left(X_{t}\right) d W_{t}, \quad Y_{T}=g\left(X_{T}\right) \\
d Z_{t} & =\alpha_{t} d t+\Gamma_{t} \sigma\left(X_{t}\right) d W_{t}
\end{aligned}
$$

A solution of (2BSDE) is
a process (Y, Z, α, Γ) with values in $\mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathcal{S}^{n}$
Question : existence? uniqueness? in which class?
<Cheridito, Soner, Touzi and Victoir CPAM 2007>

Second order BSDEs : Main technical tool

(i) Suppose a solution exists with $Y_{t}=V\left(t, X_{t}\right)$, then

$$
\begin{aligned}
Y_{t+h}-Y_{t}= & V\left(t+h, X_{t+h}\right)-V\left(t, X_{t}\right) \\
= & -\int_{t}^{t+h} f\left(X_{r}, Y_{r}, Z_{r}, \Gamma_{r}\right) d r+\int_{t}^{s} Z_{r} \cdot d W_{r} \\
= & -\int_{t}^{t+h} f\left(X_{r}, Y_{r}, Z_{r}, \Gamma_{r}\right) d r \\
& +\int_{t}^{t+h}\left(Z_{t}+\int_{t}^{r} \alpha_{u} d u+\int_{t}^{r} \Gamma_{u} d W_{u}\right) \cdot d W_{r}
\end{aligned}
$$

$(\sigma()=$. Identity matrix for simplification)
(ii) $2 \times$ Itô's formula to V, identify terms of different orders
\Longrightarrow Need short time asymptotics of double stochastic integrals

$$
\int_{0}^{t} \int_{0}^{r} b_{u} d W_{u} \cdot d W_{r}, \quad t \geq 0
$$

Second order BSDE : Uniqueness Assumptions

Assumption (f) $\quad f:[0, T] \times \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{d} \times \mathcal{S}_{d}(\mathbb{R}) \longrightarrow \mathbb{R}$ continuous, Lipschitz in y uniformly in (t, x, z, γ), and for some C, $p>0$:

$$
|f(t, x, y, z)| \leq C\left(1+|y|+|x|^{p}+|z|^{p}+|\gamma|^{p}\right)
$$

Assumption (Comp) If $w(r e s p . u):[0, T] \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$ is a l.s.c. (resp. u.s.c.) viscosity supersolution (resp.subsolution) of (E) with

$$
w(t, x) \geq-C\left(1+|x|^{p}\right), \quad \text { and } \quad u(t, x) \leq C\left(1+|x|^{p}\right)
$$

then $w(T,.) \geq u(T,$.$) implies that w \geq u$ on $[0, T] \times \mathbb{R}^{d}$

Second order BSDE : Class of solutions

Let $\mathcal{A}_{t, x}^{m}$ be the class of all processes Z of the form

$$
Z_{s}=z+\int_{t}^{s} \alpha_{r} d r+\int_{t}^{s} \Gamma_{r} d X_{r}^{t, x}, \quad s \in[t, T]
$$

where $z \in \mathbb{R}^{d}, \alpha$ and Γ are respectively \mathbb{R}^{d} and $\mathcal{S}_{d}\left(\mathbb{R}^{d}\right)$ progressively measurable processes with

$$
\begin{gathered}
\max \left\{\left|Z_{s}\right|,\|\alpha\|_{b},\left|\Gamma_{s}\right|\right\} \leq m\left(1+\left|X_{s}^{t, x}\right|^{p}\right) \\
\left|\Gamma_{r}-\Gamma_{s}\right| \leq m\left(1+\left|X_{r}^{t, x}\right|^{p}+\left|X_{s}^{t, x}\right|^{p}\right)\left(|r-s|+\left|X_{r}^{t, x}-X_{s}^{t, x}\right|\right)
\end{gathered}
$$

We shall look for a solution (Y, Z, α, Γ) of (2BSDE) such that

$$
Z \in \mathcal{A}_{t, x}:=\cup_{m \geq 0} \mathcal{A}_{t, x}^{m}
$$

Scond Order BSDE : The Uniqueness Result

Theorem Suppose that the nonlinear PDE (E) satisfies the comparison Assumption Com. Then, under Assumption (f), for every g with polynomial growth, there is at most one solution to (2BSDE) with

$$
z \in \mathcal{A}_{t, x}
$$

2BSDE : Idea of proof of uniqueness

Define the stochastic target problems

$$
V(t, x):=\inf \left\{y: Y_{T}^{t, y, Z} \geq g\left(X_{T}^{t, x}\right) \text { a.s. for some } Z \in \mathcal{A}_{t, x}\right\}
$$

(Seller super-replication cost in finance), and
$U(t, x):=\sup \left\{y: Y_{T}^{t, y, Z} \leq g\left(X_{T}^{t, x}\right)\right.$ a.s. for some $\left.Z \in \mathcal{A}_{t, x}\right\}$
(Buyer super-replication cost in finance)

- By definition : $V\left(t, X_{t}\right) \leq Y_{t} \leq U\left(t, X_{t}\right)$ for every solution
(Y, Z, α, Γ) of (2BSDE) with $Z \in \mathcal{A}_{0, x}$
- Main technical result : V is a (discontinuous) viscosity super-solution of the nonlinear PDE (E)
$\Longrightarrow U$ is a (discontinuous) viscosity subsolution of (E)
- Assumption Com $\Longrightarrow V \geq U$

Second order BSDE : Existence

- Consider the fully nonlinear PDE (with
$\left.\mathcal{L} V=V_{t}+\frac{1}{2} \operatorname{Tr}\left[\sigma \sigma^{T} D^{2} V\right]\right)$

$$
-\mathcal{L} v(t, x)-f\left(t, x, v(t, x), D v(t, x), D^{2} v(t, x)\right)=0
$$

(E)

$$
v(T, x)=g(x)
$$

- If (E) has a smooth solution, then

$$
\begin{aligned}
\bar{Y}_{t}=v\left(t, X_{t}\right), & \bar{Z}_{t}:=\operatorname{Dv}\left(t, X_{t}\right), \\
\bar{\alpha}_{t}:=\mathcal{L} D v\left(t, X_{t}\right), & \bar{\Gamma}_{t}:=V_{x x}\left(t, X_{t}\right)
\end{aligned}
$$

is a solution of (2BSDE), immediate application of Itô's formula

- Existence is an open problem, is there a weak theory of existence??

Outline

(1) Introduction

- from hedging to target problems
- Second order target problems
(2) Second order BSDEs and fully nonlinear PDEs
- BSDEs
- Second order BSDEs
(3) Probabillistic numerical methods for fully nonlinear PDEs
- The semilinear case
- Monte Carlo Simulation of BSDEs
- The fully nonlinear case
- Numerical example

Discrete-time approximation of BSDEs

<Bally-Pagès SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods Start from Euler discretization : $Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right)$ is given, and

$$
Y_{t_{i+1}}^{n}-Y_{t_{i}}^{n}=-f\left(X_{t_{i}}^{n}, Y_{t_{i}}^{n}, Z_{t_{i}}^{n}\right) \Delta t_{i}+Z_{t_{i}}^{n} \cdot \sigma\left(X_{t_{i}}^{n}\right) \Delta W_{t_{i+1}}
$$

Discrete-time approximation of BSDEs

<Bally-Pagès SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods Start from Euler discretization : $Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right)$ is given, and
$\mathbb{E}_{i}^{n}[$

$$
\rightarrow Y_{t_{i+1}}^{n}-Y_{t_{i}}^{n}=-f\left(X_{t_{i}}^{n}, Y_{t_{i}}^{n}, Z_{t_{i}}^{n}\right) \Delta t_{i}+Z_{t_{i}}^{n} \cdot \sigma\left(X_{t_{i}}^{n}\right) \Delta W_{t_{i+1}}
$$

\Longrightarrow Discrete-time approximation : $Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right)$ and

$$
Y_{t_{i}}^{n}=\mathbb{E}_{i}^{n}\left[Y_{t_{i+1}}^{n}\right]+f\left(X_{t_{i}}^{n}, Y_{t_{i}}^{n}, Z_{t_{i}}^{n}\right) \Delta t_{i} \quad, 0 \leq i \leq n-1
$$

Discrete-time approximation of BSDEs

<Bally-Pagès SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods Start from Euler discretization: $Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right)$ is given, and
$\mathbb{E}_{i}^{n}\left[\Delta W_{t_{i+1}} \rightarrow Y_{t_{i+1}}^{n}-Y_{t_{i}}^{n}=-f\left(X_{t_{i}}^{n}, Y_{t_{i}}^{n}, Z_{t_{i}}^{n}\right) \Delta t_{i}+Z_{t_{i}}^{n} \cdot \sigma\left(X_{t_{i}}^{n}\right) \Delta W_{t_{i+1}}\right.$
\Longrightarrow Discrete-time approximation : $Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right)$ and

$$
\begin{aligned}
Y_{t_{i}}^{n} & =\mathbb{E}_{i}^{n}\left[Y_{t_{i+1}}^{n}\right]+f\left(X_{t_{i}}^{n}, Y_{t_{i}}^{n}, Z_{t_{i}}^{n}\right) \Delta t_{i} \quad, 0 \leq i \leq n-1 \\
Z_{t_{i}}^{n} & =\left(\Delta t_{i}\right)^{-1} \mathbb{E}_{i}^{n}\left[Y_{t_{i+1}}^{n} \Delta W_{t_{i+1}}\right]
\end{aligned}
$$

Discrete-time approximation of BSDEs

<Bally-Pagès SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods Start from Euler discretization: $Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right)$ is given, and
$\mathbb{E}_{i}^{n}\left[\Delta W_{t_{i+1}} \rightarrow Y_{t_{i+1}}^{n}-Y_{t_{i}}^{n}=-f\left(X_{t_{i}}^{n}, Y_{t_{i}}^{n}, Z_{t_{i}}^{n}\right) \Delta t_{i}+Z_{t_{i}}^{n} \cdot \sigma\left(X_{t_{i}}^{n}\right) \Delta W_{t_{i+1}}\right.$
\Longrightarrow Discrete-time approximation : $Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right)$ and

$$
\begin{aligned}
Y_{t_{i}}^{n} & =\mathbb{E}_{i}^{n}\left[Y_{t_{i+1}}^{n}\right]+f\left(X_{t_{i}}^{n}, Y_{t_{i}}^{n}, Z_{t_{i}}^{n}\right) \Delta t_{i} \quad, 0 \leq i \leq n-1 \\
Z_{t_{i}}^{n} & =\left(\Delta t_{i}\right)^{-1} \mathbb{E}_{i}^{n}\left[Y_{t_{i+1}}^{n} \Delta W_{t_{i+1}}\right]
\end{aligned}
$$

\Longrightarrow Similar to numerical computation of American options

Discrete-time approximation of BSDEs, continued

$$
\pi: 0=t_{0}<t_{1}<\ldots<t_{n}=T,|\pi|=\max _{1 \leq i \leq n}\left|t_{i+1}-t_{i}\right|
$$

Theorem Assume f and g are Lipschitz. Then :

$$
\limsup _{n \rightarrow \infty} n^{1 / 2}\left\{\sup _{0 \leq t \leq 1}\left\|Y_{t}^{n}-Y_{t}\right\|_{\mathbb{L}^{2}}+\left\|Z^{n}-Z\right\|_{\mathbb{H}^{2}}\right\}<\infty
$$

Theorem <Gobet-Labart 06> Under additional regularity conditions :

$$
\limsup _{n \rightarrow \infty} n\left\|Y_{0}^{n}-Y_{0}\right\|_{\mathbb{L}^{2}}<\infty
$$

Approximation of conditional expectations

Main observation : in our context all conditional expectations are regressions, i.e.

$$
\begin{aligned}
\mathbb{E}\left[Y_{t_{i+1}}^{n} \mid \mathcal{F}_{t_{i}}\right] & =\mathbb{E}\left[Y_{t_{i+1}}^{n} \mid X_{t_{i}}\right] \\
\mathbb{E}\left[Y_{t_{i+1}}^{n} \Delta W_{t_{i+1}} \mid \mathcal{F}_{t_{i}}\right] & =\mathbb{E}\left[Y_{t_{i+1}}^{n} \Delta W_{t_{i+1}} \mid X_{t_{i}}\right]
\end{aligned}
$$

Classical methods from statistics :

- Kernel regression <Carrière>
- Projection on subspaces of $\mathbb{L}^{2}(\mathbb{P})<$ Longstaff-Schwarz, Gobet-Lemor-Warin AAP05>
from numerical probabilistic methods
- quantization... <Bally-Pagès SPA03>

Integration by parts <Lions-Reigner 00, Bouchard-Touzi SPA04> इ

Simulation of Backward SDE's

1. Simulate trajectories of the forward process X (well understood)
2. Backward algorithm :

$$
\begin{aligned}
\hat{Y}_{t_{n}}^{n} & =g\left(X_{t_{n}}^{n}\right) \\
\hat{Y}_{t_{i-1}}^{n} & =\widehat{\mathbb{E}}_{t_{i-1}}^{n}\left[\hat{Y}_{t_{i}}^{n}\right]+f\left(X_{t_{i-1}}^{n}, \hat{Y}_{t_{i-1}}^{n}, \hat{Z}_{t_{i-1}}^{n}\right) \Delta t_{i}, \quad 1 \leq i \leq n, \\
\hat{Z}_{t_{i-1}}^{n} & =\frac{1}{\Delta t_{i}} \widehat{\mathbb{E}}_{t_{i-1}}^{n}\left[\hat{Y}_{t_{i}}^{n} \Delta W_{t_{i}}\right]
\end{aligned}
$$

(truncation of \hat{Y}^{n} and \hat{Z}^{n} needed in order to control the \mathbb{L}^{p} error)

Simulation of BSDEs : bound on the rate of convergence

Error estimate for the Malliavin-based algorithm, $|\pi|=n^{-1}$

Theorem For $p>1$:

$$
\limsup _{n \rightarrow \infty} \max _{0 \leq i \leq n} n^{-1-d /(4 p)} N^{1 / 2 p}\left\|\hat{Y}_{t_{i}}^{n}-Y_{t_{i}}^{n}\right\|_{\mathbb{L}^{p}}<\infty
$$

For the time step $\frac{1}{n}$, and limit case $p=1$:
rate of convergence of $\frac{1}{\sqrt{n}}$
if and only if

$$
n^{-1-\frac{d}{4}} N^{1 / 2}=n^{1 / 2}, \quad \text { i.e. } N=n^{3+\frac{d}{2}}
$$

A probabilistic numerical scheme for fully nonlinear PDEs

By analogy with BSDE, we introduce the following discretization for 2BSDEs :

$$
\begin{aligned}
Y_{t_{n}}^{n} & =g\left(X_{t_{n}}^{n}\right), \\
Y_{t_{i-1}}^{n} & =\mathbb{E}_{i-1}^{n}\left[Y_{t_{i}}^{n}\right]+f\left(X_{t_{i-1}}^{n}, Y_{t_{i-1}}^{n}, Z_{t_{i-1}}^{n}, \Gamma_{t_{i-1}}^{n}\right) \Delta t_{i}, 1 \leq i \leq n, \\
Z_{t_{i-1}}^{n} & =\mathbb{E}_{i-1}^{n}\left[Y_{t_{i}}^{n} \frac{\Delta W_{t_{i}}}{\Delta t_{i}}\right] \\
\Gamma_{t_{i-1}}^{n} & =\mathbb{E}_{i-1}^{n}\left[Y_{t_{i}}^{n} \frac{\left|\Delta W_{t_{i}}\right|^{2}-\Delta t_{i}}{\left|\Delta t_{i}\right|^{2}}\right]
\end{aligned}
$$

Intuition From Greeks Calculation

- First, use the approximation $f^{\prime \prime}(x) \sim_{h=0} \mathbb{E}\left[f^{\prime \prime}\left(x+W_{h}\right)\right]$
- Then, integration by parts shows that

$$
\begin{aligned}
f^{\prime \prime}(x) & \sim \int f^{\prime \prime}(x+y) \frac{e^{-y^{2} /(2 h)}}{\sqrt{2 \pi}} d y \\
& =\int f^{\prime}(x+y) \frac{y}{h} \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y=\mathbb{E}\left[f^{\prime}\left(x+W_{h}\right) \frac{W_{h}}{h}\right] \\
& =\int f(x+y) \frac{y^{2}-h}{h^{2}} \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y=\mathbb{E}\left[f\left(x+W_{h}\right)\left(\frac{W_{h}^{2}-h}{h^{2}}\right)\right]
\end{aligned}
$$

- Connection with Finite Differences: $W_{h} \sim \sqrt{h}\left(\frac{1}{2} \delta_{1}+\frac{1}{2} \delta_{-1}\right)$
$\mathbb{E}\left[\psi\left(x+W_{h}\right) \frac{W_{h}}{h}\right] \sim \frac{\psi(x+\sqrt{h})-\psi(x-\sqrt{h})}{2 h}$ Centered FD!

The Convergence Result

<Fahim and Touzi 2007>

Theorem Suppose in addition that f is Lipschitz and $\left\|f_{\gamma}\right\|_{\mathbb{L}^{\infty}} \leq$ σ. Then

$$
Y_{0}^{n}(t, x) \longrightarrow v(t, x) \quad \text { uniformly on compacts }
$$ where v is the unique viscosity solution of the nonlinear PDE.

- Proof : stability, consistency, monotonicity <Barles-Souganidis AA91>
- Bounds on the approximation error are available <Krylov, Barles-Jacobsen, Cafarelli-Souganidis>
- This convergence result is weaker than that of (first order) Backward SDEs...

Comments on the 2BSDE algorithm

- in BSDEs the drift coefficient μ of the forward SDE can be changed arbitrarily by Girsanov theorem (importance sampling...)
- in 2BSDEs both μ and σ can be changed (numerical results however recommend prudence...)
- The heat equation $v_{t}+v_{x x}=0$ correspond to a BSDE with zero driver. Splitting the Laplacian in two pieces, it can also be viewed as a 2 BSDE with driver $f(\gamma)=\frac{1}{2} \gamma$
\longrightarrow numerical experiments show that the 2BSDE algorithm perform better than the pure finite differences scheme

Portfolio optimization (X. Warin)

With $U(x)=-e^{-\eta x}$, want to solve :

$$
V(t, x):=\sup _{\theta} \mathbb{E}\left[U\left(x+\int_{t}^{T} \theta_{u} \sigma\left(\lambda d u+d W_{u}\right)\right)\right]
$$

- An explicit solution is available
- V is the characterized by the fully nonlinear PDE

$$
-V_{t}+\frac{1}{2} \lambda^{2} \frac{\left(V_{x}\right)^{2}}{V_{x x}}=0 \quad \text { and } \quad V(T, .)=U
$$

Monte Carlo Simulation of BSDEs The fully nonlinear case
Numerical example

Fig.: Relative Error (Regression), dimension 1

Monte Carlo Simulation of BSDEs The fully nonlinear case
Numerical example

Fig.: Relative Error (Regression), dimension 2

Varying the drift of the FSDE

Drift FSDE	Relative error (Regression)
-1	0,0648429
$-0,8$	0,0676044
$-0,6$	0,0346846
$-0,4$	0,0243774
$-0,2$	0,0172359
0	0,0124126
0,2	0,00080041
0,4	0,00656142
0,6	0,00568952
0,8	0,00637239

Varying the volatility of the FSDE

Volatility FSDE
Relative error (Regression)

0,581541
0,42106
0,0165435
0,0170161 0124126
0,0211604
0,0360543
0,0656076

Relative error (Quantization) 0,526552 0,134675 0,0258884 0,00637319 0,0109905 0,0209174 0,0362259 0,0624566

