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Introduction from hedging to target problems

Second order target problems

The standard model in frictionless markets

e (Q,F,P), W Brownian motion in R, F = {F,,t > 0} = F"
e The financial market consists of a riskless asset S° =1, and a
risky asset with price process

dSt = dlag[St] (Mtdt + Utth)

1, o adapted, o invertible +. ..
e Portfolio Z; : amount invested in asset / time t :

{Z;,t >0}  F — adapted with values in RY
e Self-financing condition = dynamics of portfolio value :
dY; = Z-diag[S;] 1dS;
Super-hedging problem of Fr—measurable G > 0
Vo = inf{Yy: Y7 > G as. for some Z € A} lﬂ
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Introduction from hedging to target problems

Second order target problems

Solution : the Black-Scholes model

e We may assume p = 0 : equivalent change of measure
e Then for Yo > W, E[YT] > E[G] = VN > E[G]

e From the martingale representation in Brownian filtration

T T
Y: = E[G|Fi] —E[G]-i-/ ¢r - dWy = Yo—i-/ Zs - ordW;
0 0

Since Y1 = G, we deduce that E[G] > WV

Hence VW, =E[G] and Y7 = G a.s. for some portfolio Z € A
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Introduction from hedging to target problems

Second order target problems

Stochastic target problems

e Controlled process
dXt = M(t,Xt,Vt)dt+O'(t,Xt,Vt)th

where the control process v € U takes values in U C R¥

e Given a Borel set [( ¢ RY, find

Vo = {XOE]Rd: XreroforsomeVEZ/l}

o If X =(S,Y) € R x R where Y is increasing in Y, find

Vo = inf{Yo: X7 =(S1,Y7) €l for some v € U}
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Introduction from hedging to target problems

Second order target problems

Main ingredient for target problems

e Define the dynamic problems V; and V;

Geometric Dynamic Programming for any stopping time 6
valued in [t, T]

Vi = {Xe: Xg €V for some v e U}

if Y is increasing in Yp :

Geometric Dynamic Programming for any stopping time 6
valued in [t, T]

Ve = inf{Y:: Yy > Vj for some v e U} ﬂ
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Introduction from hedging to target problems

Second order target problems

Dynamic Programming Equation for V

o If U =RK. Assume that V is locally bounded. Then V(t,s) is a
(discontinuous) viscosity solution of

%4
SO (5) — LUV (L) 4 Y (15, V(5,5),wolE5) = 0

where

LrV(t,s) = uS(t,s, V(t,s),v) DV(t, 5)+%Tr [USUS*DW(t, 5)}
and

¥ (t,s,V(t,s),m0(t,s) = o°(t,s, V(t,s),0(t,s)) DV(t,s)

o If U # Rk : similar PDE, with gradient constraint, boundary ﬂ
layer...
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Introduction from hedging to target problems

Second order target problems

Dynamic Programming equation for VV

Set u(t,x) = ]IV(t)C(X)

Theorem Under some conditions, u is a (discontinuous) viscosity
solution of the geometric equation

—g‘;(t,x)—i-F(t,x,Dv(t,x),Dzv(t,x)) =0

where
F(t,x, p, A)=sup {u(t,x, v)-p+ %Tr |:O'O'T(t,X, I/)A:| v e N(t, x, p)}
and

N(t,x,p) = {V ceU: o(t,x,v)Tp= 0}

= Stochastic representation for a class of geometric equations lﬂ
(exp : mean curvature flow)
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Introduction from hedging to target problems

Second order target problems

Quantile target problems

e Controlling the probability of reaching the target :
V(t,s,p) = inf{y:P[(S,Y)r €Tlp] > pforsomerv eld}
e Introduce an additional controlled state :
dP; = a¢-dW;
Then
V(t,s,p) = inf{y: I(s,v)rer, — Pr > 0 for some (o, v) € U}

thus converting the quantile target problem into a target problem
e V(T,s,p)!! <Bouchard, Elie, T.> lﬂ
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Introduction from hedging to target problems

Second order target problems

Hedging under liquidity costs (1)

<Cetin, Jarrow and Protter 2004, 2006>
e Risky asset price is defined by a supply curve :

S (S:,v) price per share of v risky assets
S(5,0) =S
e X; : holdings in cash, Z; : holdings in risky asset (number of

shares)

Xevdt — Xe + (Zeyde — Z¢)S(St, Zewdt — Zt) = O

= X7 = Xo— Y (Zerae — Z)S(St, Zevar — Zt)
= Xo+zzt (St = Stat) + - ,ﬂ
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Introduction from hedging to target problems

Second order target problems

Hedging under liquidity costs (2)

Direct computation leads to
Yr .= Xr+2Zr51 = Yo+ Z Z: (Sttde — St)
> (Zevar — Z:)[S(St, Zevar — Z¢) — St

Assume v —— S(S¢, V) is smooth, then :

T T oS
YT — YO + / thSt - i (St,O) d < ZC >t
0 o Ov
— Y AZ[S(S5:,AZ) - Si]
t<T
Super-hedging problem
Vo := inf{y : Y7 >g(S7) as. for some Y € A}
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Introduction from hedging to target problems

Second order target problems

Second order target problems

e The controlled state is defined by
dYy = f(t,S:, Ye, Ze,T)dt + Z; - dS:
and the control Z satisfies the dynamics
dZ; = dAs+T:dS;
e Given a function g, find

Vo = inf{y:Yr >g(St) for some Z € A}

Theorem V/(t,s) is a (discontinuous) viscosity solution of
1% R
—%t — L2V(t,s) — f (t,s, V(t,s),DV(t,s), D*V(t,s)) = O

where zA‘(t, s,r,p,A) :=supg>q f(t,s,r,p, A+ 3) (elliptic envelope) ﬂ
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Backward SDE : Definition

Find an F"Y —adapted (Y, Z) satisfying :

Y, = G+/TF,(Y,,Z,)dr—/TZr-dW,
i.e. dYs: :t —Ft(Yt,Zt)dt+2t-th and YT = G
where the generator F : Q x [0, T] x R x RY — R, and
{Fi(y,z), t €0, T]} is F — adapted

If Fis Lipschitz in (y, z) uniformly in (w, t), and G € L?(P), then
there is a unique solution satisfying

-
Esup]Yt2+E/ |Z2dt < oo
t<T

Jo Pk
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Markov BSDE's

Let X be defined by the (forward) SDE

dXt = b(t,Xt)dt+U(t,Xt)th
and  Fi(y,z) = f(t, Xe,y,2), f : [0, T]xRIxRxR? — R
G = g(X7) e} (P), g : RY¥ — R

If  continuous, Lipschitz in (x,y, z) uniformly in t, then there is a
unique solution to the BSDE

dYt = —7‘-(1'7 Xta Yt7 Zt)dt + Zt . O'(t, Xt)th s YT = 8 (XT)
Moreover, there exists a measurable function V :

Yt: \/(t,)(t)7 OStST
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

BSDE's and semilinear PDE's

e By definition,
Yern = Ye = V(t+ h Xeppn) = V(8 Xe)

t+h t+h
= —/ f(Xr, Y,,Z,)dr+/ Z, - o(X,)dW,
t t
e If V(t,x) is smooth, it follows from 1td's formula that :
t+h t+h
/ LV(r, X,)dr +/ DV(r. X,) - o(X,)dW,
f ‘ t+h t+h
= —/ f(X.,Y,, Z)dr —|—/ Z, - o(X)dW,
t t
where L is the Dynkin operator associated to X :

1
LV = Vt+b.DV—|—§Tr[aaTD2V] )k
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Stochastic representation of solutions of a semilinear PDE

e Under some conditions, the semilinear PDE

has a unique solution which can be represented as V/(t,x) = Y}
where Y'* solves the BSDE

Yr = g(X7), dYs = —f(Xs, Y, Zs)ds + Zs - o(Xs)dWs
Xe=x, dXs = o(Xs)dWs, t<s<T

e Extension to semilinear PDEs with obstacle is available by
introducing Reflected BSDEs .
e For f =0, we recover the Feynman-Kac formula ‘ﬂ
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Second order BSDEs : Definition

A

1
f(x,y,z,7) = f(x,y,z,7) + ETr[(mT(x)fy] non-decreasing in

Consider the 2nd order BSDE :

dXt = O'(Xt)th
dYt = —f(t,Xt, Yt,Zt,rt)dt+ZtU(Xt)th, YT :g(XT)
dZt = O dt + rt O'(Xt)th

A solution of (2BSDE) is
a process (Y, Z,a, ) with valuesin R xR" x R" x §"

Question : existence ? uniqueness ? in which class?
< Cheridito, Soner, Touzi and Victoir CPAM 2007> ‘ﬂ
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. BSDEs
Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Second order BSDEs : Main technical tool

(i) Suppose a solution exists with Y; = V/(t, X;), then
Yt+h - Yt = V(t + h7 Xt+h) - V(t,Xt)

t+h s
= —/ F(X,, Yr,Z,,I‘r)dr+/ Z, - dw,
t t

t+h
= —/ F(X,, Yy, Z,,T,)dr
t

t+h r r
+/ <Zt +/ audu+/ Fuqu) - dW,
t t t

(o(.) = Identity matrix for simplification)
(ii) 2x 1td's formula to V/, identify terms of different orders
— Need short time asymptotics of double stochastic integrals

t r
//buqu-dWr./ £>0 Pk
JO JO
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Second order BSDE : Uniqueness Assumptions

Assumption (f) £ : [0, T] x RY x R x RY x Sg(R) — R
continuous, Lipschitz in y uniformly in (t,x, z,~y), and for some
C,p>0:

[t xy,2)] < C(A+Iyl+xP+ [P+ [P)

Assumption (Comp) Ifw (resp. u) : [0, T| x R — R is a
Is.c. (resp. u.s.c.) viscosity supersolution (resp.subsolution) of (E)
with

w(t,x) > —C(1+|x|P), and u(t,x) < C(1+|x|P)

then w(T,.) > u(T,.) implies that w > u on [0, T] x RY lﬂ
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Second order BSDE : Class of solutions

Let A7, be the class of all processes Z of the form
S S
Zs = z+/ ardr—i—/ FrdXP*, selt, T]
t t

where z € RY, o and T are respectively RY and Sy(RY)
progressively measurable processes with

max {|Z], |elp. [Ts|} < m (14 [XE]P) |

Tl < m (L X [XE1P) (1l X - X
We shall look for a solution (Y, Z, «,T) of (2BSDE) such that
Z € Arx = Um>oAfy ﬂ
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. BSDEs
Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Scond Order BSDE : The Uniqueness Result

Theorem Suppose that the nonlinear PDE (E) satisfies the
comparison Assumption Com. Then, under Assumption (f), for

every g with polynomial growth, there is at most one solution to
(2BSDE) with

Z 6 At’x
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

2BSDE : Idea of proof of uniqueness

Define the stochastic target problems

V(t,x) := inf {y L YENE > g (XEX) as. for some Z € At,x}
(Seller super-replication cost in finance), and

U(t,x) = sup {y L YEYY < g (XEY) ass. for some Z € At,X}

(Buyer super-replication cost in finance)

e By definition : V/(t, X;) < Y;: < U(t, X;) for every solution
(Y.Z,a,T) of (2BSDE) with Z € A «

e Main technical result : V' is a (discontinuous) viscosity

super-solution of the nonlinear PDE (E)

= U is a (discontinuous) viscosity subsolution of (E) ﬂ
e Assumption Com — V > U
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BSDEs

Second order BSDEs and fully nonlinear PDEs Second order BSDEs

Second order BSDE : Existence

e Consider the fully nonlinear PDE (with
LV =V, + 3Tr[ooT D?V))

—Lv(t,x) — f (t,x,v(t,x),Dv(t,x),D?v(t,x)) = 0
(E)
v(T,x) = g(x)

e If (E) has a smooth solution, then

Vt = V(t7Xt), Zt = DV(t’)(j;)7
O_ét = EDV(t,Xt), Ft = VXX(taXt)
is a solution of (2BSDE), immediate application of 1td's formula

e Existence is an open problem, is there a weak theory of lﬂ
existence 7 ? -
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Discrete-time approximation of BSDEs

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the

associated backward SDE by means of Monte Carlo methods

Start from Euler discretization : Y = g (Xt’;) is given, and
4

i1

Vi =—f (X0, Y0, Z0) Ati+ 200 (X]) AW,
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
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Discrete-time approximation of BSDEs

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the

associated backward SDE by means of Monte Carlo methods

Start from Euler discretization : Y{? = g (X[) is given, and

Ef[ S Y =Y = —F (XD YD ZD) At 200 (X)) AW,

tiv1 i

— Discrete-time approximation : Y/” = g (X{) and

vi o= B o]+ fxa vz Ay 0<i<n-1,
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Discrete-time approximation of BSDEs

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the

associated backward SDE by means of Monte Carlo methods

Start from Euler discretization : Y{? = g (X[) is given, and

EI AW, — Y] =Y = —F (X2, Y0, Z0) At 2o (X)) AW,

i+1

— Discrete-time approximation : Y/” = g (X{) and

v = B [vg

tit1

}+f(xg,vg,zg)m,- 0<i<n-1

Zn = (At) L E? [Y"

tiv1

A Wfi+1]
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Monte Carlo Simulation of BSDEs
The fully nonlinear case

Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Discrete-time approximation of BSDEs

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the

associated backward SDE by means of Monte Carlo methods

Start from Euler discretization : Y{? = g (X{) is given, and

YD = —F (X0, Y0, Z0) At+Z00 (XD) AW,

Ef[AW, , — Y ,,

i+1 i1

— Discrete-time approximation : Y/” = g (X{) and

o o= B Yo, FOa ez Ay 0<i<n-1
zp = (g E Ve AW,

— Similar to numerical computation of American options

Nizar TOUZI Target problems, 2BSDEs, and numerical implications




Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Discrete-time approximation of BSDEs, continued

T:0=t<t<..<t,=T, |7r|:1n<1’;1<xn|t,-+1—t;|

Theorem Assume f and g are Lipschitz. Then :

lim sup n*/2 { sup || Yy — Yellpe + ||1Z27 — Z||Hz} < 00

n—oo 0<t<L1

Theorem <Gobet-Labart 06> Under additional regularity
conditions :

limsupn|| Yy — Yol < o0

n—oo
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Approximation of conditional expectations

Main observation : in our context all conditional expectations are
regressions, i.e.

(Yo, F] = E[Vo, %]

AWti+1|ftii| = E[Yn AWfi+1|Xti]

tiv1

E|v,
Classical methods from statistics :

e Kernel regression <Carriére>

e Projection on subspaces of .?(IP) <Longstaff-Schwarz,
Gobet-Lemor-Warin AAP05>

from numerical probabilistic methods
e quantization... <Bally-Pages SPA03>

Integration by parts <Lions-Reigner 00, Bouchard-Touzi SPA04>
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Simulation of Backward SDE's

1. Simulate trajectories of the forward process X (well understood)

2. Backward algorithm :

Voo = g(Xp)

\A/t"_ll = Ef | [\A/t',’] +f (th,?_lv )A/tr,-',p Z',Ll) Ati, 1<i=<n,
~ 1 A ¢

zZp = At Ef_. [Yt”,’AWt,}

(truncation of ¥" and Z" needed in order to control the L error)
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Simulation of BSDEs : bound on the rate of convergence

Error estimate for the Malliavin-based algorithm, |7| = n~!
Theorem Forp>1:
limsup max n_l_d/(4p)N1/2pH\A/t'.7— Y] < o0
n—oo  0<i<n ' e

. 1 .
For the time step —, and limit case p =1 :
n

1
rate of convergence of NG

if and only if
nTlE N2 = /2 e N = n3+s
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

A probabilistic numerical scheme for fully nonlinear PDEs

By analogy with BSDE, we introduce the following discretization
for 2BSDEs :

YL = g(Xt’L),

Yt’:fl = ?—1 [Yt’;] +f <Xt771’ Yt’;’fl’zgfl’ rg_71> At; ’ l<i<n ’
AW,
p.o= e v ]
n _ n yn ‘AWfiP_Ati
ti_1 T i—1 ti |At,‘2
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Intuition From Greeks Calculation

e First, use the approximation f”(x) ~p—o E[f"(x + W})]
e Then, integration by parts shows that

, , e—v?/(2h)
f'(x) ~ f'(x+y)———dy
V2
Wh]

fr ve 2wl w
= / (X+y)ﬁ\/§ ly = {(X+ h)T

2_ phe v/ W2 — h
= /f(x—i—y)y 12 mdy:E[f(x—i— Wh)< th )]

1 1
e Connection with Finite Differences : W}, ~ vh (251 + 2(5_1)

E [¢(X + Wh)vl\:h] ~ Y \/5)2_/7¢(X — Vh) Centered FD! pi
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

The Convergence Result

<Fahim and Touzi 2007>

Theorem Suppose in addition that f is Lipschitz and ||£ ||}« <
o. Then

Yo' (t,x) — v(t,x)  uniformly on compacts

where v is the unique viscosity solution of the nonlinear PDE.

e Proof : stability, consistency, monotonicity <Barles-Souganidis

AA91>

e Bounds on the approximation error are available <Krylov,
Barles-Jacobsen, Cafarelli-Souganidis>

e This convergence result is weaker than that of (first order) Aﬁ
Backward SDEs...
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Monte Carlo Simulation of BSDEs
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Comments on the 2BSDE algorithm

e in BSDEs the drift coefficient u of the forward SDE can be
changed arbitrarily by Girsanov theorem (importance sampling...)

e in 2BSDEs both y and o can be changed (numerical results
however recommend prudence...)

e The heat equation v; + vy = 0 correspond to a BSDE with zero
driver. Splitting the Laplacian in two pieces, it can also be viewed
as a 2BSDE with driver f(v) = 3~

— numerical experiments show that the 2BSDE algorithm
perform better than the pure finite differences scheme
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Monte Carlo Simulation of BSDEs
The fully nonlinear case
Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Portfolio optimization (X. Warin)

With U(x) = —e™ ", want to solve :

V(t,x) = sng{u <x+/tT9uU(/\du+qu)>]

e An explicit solution is available

e V is the characterized by the fully nonlinear PDE

(V)
VXX

1
—Vt+§)\2 =0 and V(T,)=U
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“sortie_sobsde_erreur_relative” +

Fig.: Relative Error (Regression), dimension 1 @

0
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Probabillistic numerical methods for fully nonlinear PDEs Numerical example

0.085
0.086
0.084
0.082

.06
0.078
0.076
0.074

Fi

g.

"sortie_sobsde_dim_erreur_relative?3"

+

0.085
0.086
0084
0.082
.08

0.075
0.076
0.074



Monte Carlo Simulation of BSDEs
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Varying the drift of the FSDE

Drift FSDE Relative error
(Regression)

-1 0,0648429
-0,8 0,0676044
-0,6 0,0346846
-0,4 0,0243774
-0,2 0,0172359

0 0,0124126
0,2 0,00880041
0,4 0,00656142
0,6 0,00568952
0,8 0,00637239
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Monte Carlo Simulation of BSDEs
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Probabillistic numerical methods for fully nonlinear PDEs Numerical example

Varying the volatility of the FSDE

Volatility FSDE Relative error Relative error
(Regression)  (Quantization)
0,2 0,581541 0,526552
0,4 0,42106 0,134675
0,6 0,0165435 0,0258884
0,8 0,0170161 0,00637319
10, 0124126 0,0109905
1,2 0,0211604 0,0209174
1,4 0,0360543 0,0362259
1,6 0,0656076 0,0624566
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