SIMPLE QUASICRYSTALS ARE SETS OF STABLE SAMPLING

BASARAB MATEI AND YVES MEYER

VERSION FRANÇAISE ABRÉGÉE

Soit $K \subset \mathbb{R}^n$ un ensemble compact et soit $E_K \subset L^2(\mathbb{R}^n)$ le sous-espace de $L^2(\mathbb{R}^n)$ composé de toutes les fonctions $f \in L^2(\mathbb{R}^n)$ dont la transformée de Fourier $\hat{f}(\xi) = \int e^{-2\pi i x \cdot \xi} f(x) \, dx$ est nulle hors de K. En utilisant la terminologie introduite dans [3], un ensemble $\Lambda \subset \mathbb{R}^n$ est un "ensemble d'échantillonnage stable" pour E_K s'il existe une constante C telle que pour toute $f \in E_K$ on ait

(0.1)
$$||f||_2^2 \le C \sum_{\lambda \in \Lambda} |f(\lambda)|^2.$$

Si n = 1 et si K est un intervalle de \mathbb{R} , le problème a été résolu par Albert Ingham en 1936. L'énoncé d'Ingham a été ensuite généralisé par Beurling et c'est sous cette forme que nous l'utiliserons.

Pour $n \ge 1$ et K arbitraire, H.J. Landau [3] a démontré que (0.1) implique <u>dens</u> $\Lambda \ge |K|$. Mais la réciproque n'est pas vraie et $|K| < \underline{\text{dens}} \Lambda$ n'implique pas (0.1) même dans le cas le plus simple où $\Lambda = \mathbb{Z}^n$. Nous allons prouver le résultat suivant : Pour tout quasicrystal simple $\Lambda \subset \mathbb{R}^n$ et tout ensemble compact $K \subset \mathbb{R}^n$, la condition $|K| < \underline{\text{dens}} \Lambda$ entraîne (0.1).

1. INTRODUCTION

This paper is motivated by some recent advances on what is now called "compressed sensing". Let us begin with a theorem by Terence Tao. Let pbe a prime number and \mathbb{F}_p be the finite field with p elements. We denote by #E the cardinality of $E \subset \mathbb{F}_p$. The Fourier transform of a complex valued function f defined on \mathbb{F}_p is denoted by \hat{f} . Let M_q be the collection of all $f : \mathbb{F}_p \mapsto \mathbb{C}$ such that the cardinality of the support of f does not exceed q. Then Terence Tao proved that for q < p/2 and for any set Ω of frequencies such that $\#\Omega \geq 2q$, the mapping $\Phi : M_q \mapsto l^2(\Omega)$ defined by $f \mapsto \mathbf{1}_{\Omega} \hat{f}$ is injective. Here and in what follows, $\mathbf{1}_E$ will denote the indicator function of the set E. This property is no longer true if \mathbb{F}_p is replaced by $\mathbb{Z}/N\mathbb{Z}$ and if

²⁰⁰⁰ Mathematics Subject Classification. Primary: 42B10; Secondary: 42C30.

Key words and phrases. Fourier expansions, Compressed Sensing, Irregular sampling.

N is not a prime.

We want to generalize this fact to functions f of several real variables with applications to image processing. The Fourier transform of $f \in L^1(\mathbb{R}^n)$ will be defined by

(1.1)
$$\hat{f}(\xi) = \int_{\mathbb{R}^n} \exp(-2\pi i \xi \cdot x) f(x) dx, \ \xi \in \mathbb{R}^n.$$

To generalize Tao's theorem to the continuous setting we begin with a parameter $\beta \in (0, 1/2)$ which will play the role of q and define a collection M_{β} of functions $f \in L^2(\mathbb{R}^n)$ as follows: we write $f \in M_{\beta}$ if \hat{f} is supported by a compact set $K \subset [0,1]^2$ whose measure |K| does not exceed β . This compact set K depends on f and M_{β} is not a vector space. If f, g belong to M_{β} , then f + g belongs to $M_{2\beta}$, a situation which is classical in nonlinear approximation. It will be proved below that for every $\alpha \in (0, 1/2)$ there exists a set $\Lambda_{\alpha} \subset \mathbb{Z}^2$ with the following properties: (a) density $\Lambda_{\alpha} = 2\alpha$ and (b) the mapping $\Phi: M_{\beta} \mapsto \ell^2(\Lambda_{\alpha})$ defined by $\Phi(f) = (f(\lambda))_{\lambda \in \Lambda_{\alpha}}$ is injective when $0 < \beta < \alpha$. This set Λ_{α} plays the role of Ω in Tao's work and the density of Λ_{α} is then playing the role of the cardinality of Ω . Any $f \in M_{\beta}$ can be retrieved from the information given by the "irregular sampling" $f(\lambda) = a(\lambda), \ \lambda \in \Lambda_{\alpha}$, and one would like to do it by some fast algorithm. Tao's theorem can be decomposed into two statements. In the first one Ω and T are fixed with the same cardinality. We denote by $l^2(T)$ the vector space consisting of all functions f supported by T. Then the first theorem by Tao says that the mapping $\Phi : l^2(T) \mapsto l^2(\Omega)$ is an isomorphism. The second theorem easily follows form this first statement. We now generalize this first theorem to the continuous case. Let $K \subset \mathbb{R}^n$ be a compact set and $E_K \subset L^2(\mathbb{R}^n)$ be the translation invariant subspace of $L^2(\mathbb{R}^n)$ consisting of all $f \in L^2(\mathbb{R}^n)$ whose Fourier transform $\hat{f}(\xi) = \int e^{-2\pi i x \cdot \xi} f(x) dx$ is supported by K. We now follow [3].

Definition 1.1. A set $\Lambda \subset \mathbb{R}^n$ has the property of stable sampling for E_K if there exists a constant C such that

(1.2)
$$f \in E_K \Rightarrow ||f||_2^2 \le C \sum_{\lambda \in \Lambda} |f(\lambda)|^2.$$

In other words any "band-limited " $f \in E_K$ can be reconstructed from its sampling $f(\lambda)$, $\lambda \in \Lambda$. Here is an equivalent definition. Let $L^2(K)$ be the space of all restrictions to K of functions in $L^2(\mathbb{R}^n)$. Then $\Lambda \subset \mathbb{R}^n$ is a set of stable sampling for E_K if and only if the collection of functions $\exp(2\pi i\lambda \cdot x), \lambda \in \Lambda$, is a frame of $L^2(K)$. **Definition 1.2.** A set Λ has the property of stable interpolation for E_K if there exists a constant C such that

(1.3)
$$\sum_{\lambda \in \Lambda} |c(\lambda)|^2 \le C ||f||^2_{L^2(K)}$$

for every finite trigonometric sum $f(x) = \sum_{\lambda \in \Lambda} c(\lambda) \exp(2\pi i \lambda \cdot x)$.

In the one dimensional case and when K is an interval, A. Ingham (1936) proved the following estimate:

Proposition 1.1. Let Λ be an increasing sequence λ_j , $j \in \mathbb{Z}$, of real numbers such that $\lambda_{j+1} - \lambda_j \geq \beta$, $j \in \mathbb{Z}$, where β is a positive constant. Let I be any interval with length $|I| > 1/\beta$. Then we have $C \sum |c_j|^2 \leq \int_I |\sum c_j \exp(2\pi i \lambda_j t)|^2 dt$ where $C = \frac{2}{\pi} (1 - \frac{1}{|I|^2 \beta^2})$.

This constant C is not optimal. The condition $|I| > 1/\beta$ cannot be replaced by $|I| < 1/\beta$ and Ingham's inequality does not tell anything in the limiting case $|I| = 1/\beta$. This was generalized A. Beurling (see [2]) who proved the following:

Proposition 1.2. Let Λ be an increasing sequence λ_j , $j \in \mathbb{Z}$, of real numbers fulfilling the following two conditions

- (a) $\lambda_{j+1} \lambda_j \ge \beta' > 0$
- (b) if T large enough we have $\lambda_{j+T} \lambda_j \ge \beta T$, $j \in \mathbb{Z}$, $\beta > 0$.

Let I be any interval with length $|I| > 1/\beta$. Then we have $C \sum |c_j|^2 \le \int_I |\sum c_j \exp(2\pi i \lambda_j t)|^2 dt$ where $C = C(\beta, \beta', T, |I|)$.

Here the length of I only depends on the averaged distance between λ_{j+1} and λ_j . The final result easily follows from the preceding one:

Proposition 1.3. Let Λ be an increasing sequence λ_j , $j \in \mathbb{Z}$, of real numbers such that $\lambda_{j+1} - \lambda_j \geq \beta > 0$ and let $\overline{\text{dens}} \Lambda = \lim_{R \to \infty} R^{-1} \sup_{x \in \mathbb{R}} \operatorname{card} \{\Lambda \cap [x, x + R]\}$ be the upper density of Λ . The lower density is defined by replacing upper bounds by lower bounds. Then for any interval I, $|I| < \underline{\text{dens}} \Lambda$ implies (1.2) and $|I| > \overline{\text{dens}} \Lambda$ implies (1.3).

Returning to the general case $K \subset \mathbb{R}^n$ H.J. Landau proved in [3] that (1.2) implies $\underline{\operatorname{dens}} \Lambda \geq |K|$ and (1.3) implies $\overline{\operatorname{dens}} \Lambda \leq |K|$. These necessary conditions are not sufficient. Indeed $|K| < \underline{\operatorname{dens}} \Lambda$ does not even imply (1.2) when $\Lambda = \mathbb{Z}^n$. The following result shows that Landau's necessary conditions are sufficient for some sets Λ .

Theorem 1.1. Let $\Lambda \subset \mathbb{R}^n$ be a simple quasicrystal and $K \subset \mathbb{R}^n$ be a compact set. Then $|K| < \text{dens } \Lambda$ implies (1.2). If K is Riemann integrable, then $|K| > \text{dens } \Lambda$ implies (1.3).

A compact $K \subset \mathbb{R}^n$ is a Riemann integrable if the Lebesgue measure of its boundary is 0.

We now define a simple quasicrystal as in [2] or [3]. Let $\Gamma \subset \mathbb{R}^n \times \mathbb{R}$ be a lattice and if $(x,t) \in \mathbb{R}^n \times \mathbb{R}$, let us write $p_1(x,t) = x$, $p_2(x,t) = t$. We now assume that p_1 once restricted to Γ is an injective mapping onto $p_1(\Gamma) = \Gamma_1$. We make the same assumption on p_2 . We furthermore assume that $p_1(\Gamma)$ is dense in \mathbb{R}^n and $p_2(\Gamma)$ is dense in \mathbb{R} . The dual lattice of of Γ is denoted Γ^* and is defined by $x \cdot y \in \mathbb{Z}$, $x \in \Gamma$, $y \in \Gamma^*$. We use the following notations. For $\gamma = (x,t) \in \Gamma$ we write $t = \tilde{x}, \tilde{t} = x$. Note that t is uniquely defined by x. The same notations are used for the two components of $\gamma^* \in \Gamma^*$. If $I = [-\alpha, \alpha]$, the simple quasicrystal $\Lambda_I \subset \mathbb{R}^n$ is defined by

(1.4)
$$\Lambda_I = \{ p_1(\gamma); \gamma \in \Gamma, \, p_2(\gamma) \in I \}.$$

2. Proof of Theorem 1.4.

If $K \subset \mathbb{R}^n$ is a compact set, $M_K \subset \mathbb{R}$ is defined by

(2.1)
$$M_K = \{ p_2(\gamma^*); \gamma^* \in \Gamma^*, \, p_1(\gamma^*) \in K \}$$

The density of Λ_I is uniform and is given by c|I| where $c = c(\Gamma)$ and similarly the density of M_K is |K|/c when K is Riemann integrable ([5], [6]). Therefore $|K| < \text{dens } \Lambda_I$ implies $|I| > \text{dens } M_K$ which will be crucial in what follows. We sort the elements of M_K in increasing order and denote the corresponding sequence by $\{m_k; k \in \mathbb{Z}\}$. Then we have ([5], [6])

Lemma 2.1. The sequence $\{\tilde{m}_k; k \in \mathbb{Z}\}$ is equidistributed on K.

We now prove our main result.

We replace K by a larger compact set still denoted by K which is Riemann integrable and still satisfies $|K| < \text{dens } \Lambda$. By a standard density argument we can assume $\hat{f} \in \mathcal{C}_0^{\infty}(K)$. Lemma 2.1 implies

(2.2)
$$\frac{1}{|K|} \|\hat{f}\|_2^2 = \lim_{T \to \infty} \frac{1}{2T} \sum_{k=-T}^T |\hat{f}(\tilde{m}_k)|^2.$$

The right-hand side in(2.2) is given by

(2.3)
$$c_K \lim_{\varepsilon \downarrow 0} \varepsilon \sum_{k \in \mathbb{Z}} |\varphi(\varepsilon m_k)|^2 |\hat{f}(\tilde{m}_k)|^2$$

where φ is any function in the Schwartz class $\mathcal{S}(\mathbb{R})$ normalized by $\|\varphi\|_2 = 1$. The constant $c_K = \frac{C}{|K|}$ is taking care of the density of the sequence $m_k, k \in \mathbb{Z}$ and C only depends on the lattice Γ . At this stage we use the auxiliary function of the real variable t defined as

(2.4)
$$F_{\varepsilon}(t) = \sqrt{\varepsilon} \sum_{k \in \mathbb{Z}} \varphi(\varepsilon m_k) \hat{f}(\tilde{m}_k) \exp\left(2\pi i m_k t\right).$$

We denote by ϕ the Fourier transform of φ . We will suppose that $\phi \in \mathcal{C}_0^{\infty}([-1,1])$ is a positive and even function. Since $|I| > \text{dens } M_K$, Beurling's theorem applies to the interval I, to the set of frequencies M_K and to the trigonometric sum defined in (2.4). Then one has

(2.5)
$$\varepsilon \sum_{k \in \mathbb{Z}} |\varphi(\varepsilon m_k)|^2 |\hat{f}(\tilde{m}_k)|^2 \le C \int_I |F_{\varepsilon}(t)|^2 dt.$$

Let us compute the lim sup as $\varepsilon \to 0$ of the right-hand side of (2.5). To this aim, we use the definition of M_K and write

(2.6)
$$F_{\varepsilon}(t) = \sqrt{\varepsilon} \sum_{\gamma^* \in \Gamma^*} \varphi(\varepsilon p_2(\gamma^*)) \hat{f}(p_1(\gamma^*)) \exp(2\pi i p_2(\gamma^*) t).$$

Poisson identity says that this sum can be computed on the dual lattice. We then have

(2.7)
$$F_{\varepsilon}(t) = c(\Gamma) \frac{1}{\sqrt{\varepsilon}} \sum_{\gamma \in \Gamma} \phi(\frac{t - p_2(\gamma)}{\varepsilon}) f(p_1(\gamma)).$$

We then return to the estimation of

(2.8)
$$\limsup_{\varepsilon \downarrow 0} \int_{I} |F_{\varepsilon}(t)|^{2} dt,$$

where F_{ε} is given by (2.7). To this end, we notice that all terms in the righthand side of (2.7) for which $|p_1(\gamma)| \ge \alpha + \varepsilon$ vanish on $I = [-\alpha, \alpha]$. Indeed the support of ϕ is contained in [-1, 1]. We can restrict the summation to the set $\Lambda_{I,\varepsilon} = \{p_1(\gamma); \gamma \in \Gamma, |p_2(\gamma)| \le \alpha + \varepsilon\}$. For $0 \le \varepsilon \le 1$ we have

(2.9)
$$\lim_{\varepsilon \to 0} \Lambda_{I,\varepsilon} = \Lambda_I \text{ and } \Lambda_{I,\varepsilon} \subset \Lambda_{I,1}.$$

We split F_{ε} into a sum $F_{\varepsilon} = F_{\varepsilon}^{N} + R_{N}$ where

(2.10)
$$F_{\varepsilon}^{N}(t) = \frac{1}{\sqrt{\varepsilon}} \sum_{\gamma \in \Gamma, |p_{1}(\gamma)| \le N, |p_{2}(\gamma)| \le \alpha + \varepsilon} \phi(\frac{t - p_{2}(\gamma)}{\varepsilon}) f(p_{1}(\gamma)),$$

and

(2.11)
$$R_N(t) = \frac{1}{\sqrt{\varepsilon}} \sum_{\gamma \in \Gamma, |p_1(\gamma)| > N, |p_2(\gamma)| \le \alpha + \varepsilon} \phi(\frac{t - p_2(\gamma)}{\varepsilon}) f(p_1(\gamma)).$$

The triangle inequality yields $||R_N||_2 \leq \varepsilon_N ||\phi||_2$ with

(2.12)
$$\varepsilon_N = \sum_{\gamma \in \Gamma, |p_1(\gamma)| > N, |p_2(\gamma)| \le \alpha + 1} |f(p_1(\gamma))|.$$

Let us observe that this series converges. Therefore ε_N tends to 0. Indeed f belongs to the Schwartz class and the set $Y = \{p_1(\gamma); |p_2(\gamma)| \leq \alpha + 1\}$ is uniformly sparse in \mathbb{R}^n . Using the terminology of [3], Y is a "model set". For the term (2.10) the estimations are more involved. Since $|p_1(\gamma)| \leq N$,

the points $p_2(\gamma)$ appearing in (2.10) are separated by a distance $\geq \beta_N > 0$. If $0 < \varepsilon < \beta_N$ the different terms in (2.10) have disjoint supports which implies

(2.13)
$$\|F_{\varepsilon}^{N}\|_{L^{2}(I)} \leq \sigma(N, \varepsilon) \|\phi\|_{2}$$

where

$$\sigma(N,\varepsilon)^2 = \sum_{\gamma \in \Gamma, |p_1(\gamma)| \le N, |p_2(\gamma)| \le \alpha + \varepsilon} |f(p_1(\gamma))|^2.$$

If ε is small enough we have

$$\{\gamma \in \Gamma, |p_1(\gamma)| \le N, |p_2(\gamma)| \le \alpha + \varepsilon\} = \{\gamma \in \Gamma, |p_1(\gamma)| \le N, |p_2(\gamma)| \le \alpha\}.$$

and $\sigma(N, \varepsilon) = \sigma(N, 0)$. Therefore

(2.14)
$$\limsup_{\varepsilon \to 0} \int_{I} |F_{\varepsilon}(t)|^{2} dt \leq \sum_{\lambda \in \Lambda_{I}} |f(\lambda)|^{2} + \eta_{N}$$

and letting $N \to \infty$ we obtain the first claim. The following lemma clarifies and summarizes our proof:

Lemma 2.2. Let $x_j, j \in \mathbb{N}$, be a sequence of pairwise distinct points in \mathbb{R}^n , let f(x) be a function in $L^2(\mathbb{R}^n)$ with a compact support and, for $\varepsilon > 0$, let $f_{\varepsilon}(x) = \varepsilon^{-n/2} f(x/\varepsilon)$. Then for any sequence $c_j \in l^1$ we have

(2.15)
$$\lim_{\varepsilon \to 0} \|\sum_{0}^{\infty} c_j f_{\varepsilon}(x - x_j)\|_2 = (\sum_{0}^{\infty} |c_j|^2)^{1/2}$$

The proof of the second claim uses the same strategy and notations. The first assertion of Beurling's theorem is used and the details can be found in a forthcoming paper.

François Golse raised the following problem. Let us assume $\Lambda = \{\lambda_j, j \in \mathbb{Z}\}$ where $\lambda_j = j + r_j, j \in \mathbb{Z}$, and r_j are equidistributed mod 1. Is it true that Λ is a set of stable sampling for any compact set K with measure |K| < 1? There are some examples where this happens. For instance if α is irrational, the set Λ defined by $\lambda_j = j + \{\alpha_j\}, j \in \mathbb{Z}$, is a set of stable sampling for every compact set of the real line with a measure less than 1. Indeed this set Λ is a simple quasicrystal. On the other hand we cannot take r_j at random as the following lemma is showing:

Lemma 2.3. Let r_j , $j \in \mathbb{Z}$, be independent random variables equidistributed in [0, 1]. Then almost surely the random set $\Lambda = \{\lambda_j = j + r_j, j \in \mathbb{Z}\}$ is not a set of stable sampling.

This lemma answers an issue raised by Jean-Michel Morel. Recently in [1] the problem of random sampling of band-limited functions was studied. More precisely, the authors proved the following

Proposition 2.1. Let

$$B = \{ f \in L^2(\mathbb{R}^d) : \operatorname{supp} \hat{f} \subset [-1/2, 1/2]^d \},\$$

be the space band-limited functions. Let $r \geq 1$ be the number of random samples in each cube $k + [0, 1]^d$. With probability one the following holds: For each k > 0 there exists a function $f_k \in B$ such that

(2.16)
$$\sum_{x_i \in X(\omega)} |f_k(x_i)|^2 \le \frac{1}{k} ||f_k||_2^2.$$

Consequently, the sampling inequality is false almost surely.

Exactly the same proof applies to our lemma. Here are the details.

Our probability space Ω is $[0,1]^{\mathbb{N}}$ equipped with the product measure and the elements of Ω are denoted by $\omega = (r_j)_{j \in \mathbb{N}}$. The random set under study is $\Lambda(\omega)$. We now prove a stronger statement. Almost surely (1.1) fails for $\Lambda(\omega)$ when the compact set K in (1.1) is the union between the two intervals $[0, \alpha]$ and $[1, 1 + \alpha]$ where α is arbitrarily small. The measure of Kis 2α . To prove this statement, it suffices to construct a sequence of random functions $f_{N,\omega}(x)$, $N \in \mathbb{N}$ such that $||f_N||_2 = \sqrt{2}$, \hat{f}_N is supported by K but $\sum_j |f_N(\lambda_j)|^2 \leq CN^{-2}$. We start with a function ϕ belonging to the Schwartz class, normalized by $||\phi||_2 = 1$ and such that the Fourier transform of ϕ is supported by $[0, \alpha]$. Then $f_N(x) = \phi(x - n_N)(\exp(2\pi i x) - 1)$ fulfils these requirements when $n_N = n_N(\omega)$ is a random integer which is now defined. Given N there are almost surely infinitely many integers m such that the following holds

$$(2.17) m - N \le j \le m + N \Rightarrow 0 < r_j < 1/N.$$

This observation follows form the Borel-Cantelli lemma applied to the independent events $E_{k,N} = \{0 < r_j < 1/N, |3Nk - j| \le N\}$. The probability of $E_{k,N}$ is N^{-2N-1} and the sum over k of these probabilities diverges. Therefore with probability 1, for every N there exists a random integer n_N such that $|n_N - j| \le N \Rightarrow 0 < r_j < 1/N$. Since $f_N(j) = 0$, $\lambda_j = j + r_j$ and $0 < r_j < 1/N$ we have

(2.18)
$$\sum_{|n_N - j| \le N} |f_N(\lambda_j)|^2 < CN^{-2}.$$

On the other hand the rapid decay of ϕ yields

(2.19)
$$\sum_{|n_N - j| > N} |f_N(\lambda_j)|^2 < CN^{-2}.$$

Putting these estimates together we can conclude.

References

- [1] Bass R.F. and Gröchenig K, Random sampling of band-limited functions, preprint.
- Beurling, A. Collected Works of Arne Beurling (2 vol.), edited by L. Carleson et al., Birkhauser, (1989).
- [3] Landau, H.J. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117 (1967) 37-52.
- [4] Matei Basarab and Meyer Yves, A variant of compressed sensing, Revista Matematica Iberoamericana, (2008).
- [5] Meyer Yves, Nombres de Pisot, nombres de Salem et Analyse Harmonique, Lecture Notes in Mathematics, 117, (1970).
- [6] Meyer Yves, Trois problèmes sur les sommes trigonométriques, Astérisque 1, (1973), SMF.
- [7] Olevskii Alexander and Ulanovskii Alexander, A universal sampling of band-limited signals, C.R.Math. Acad. Sci. Paris 342 (2006) 927-931.

UNIVERSITÉ PARIS NORD - 99, AV. JEAN-BAPTISTE CLÉMENT, 93430 VILLETA-NEUSE, FRANCE

E-mail address: matei@math.univ-paris13.fr

CMLA, ENS-Cachan - 61, Av. du Président-Wilson, 94235 Cachan Cedex, France

E-mail address: yves.meyer@cmla.ens-cachan.fr