Evolution and approximation in brittle fracture Thermal dipping experiment Yuse-Sano 93

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Evolution and approximation in brittle fracture Multi-cracking Bourdin 06

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Evolution and approximation in brittle fracture Multi-cracking Bourdin 06

・ロト・日本・モト・モー ちょうくで

preset crack path $\hat{\Gamma}$

preset crack path $\hat{\Gamma}$ crack of length I

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

preset crack path $\hat{\Gamma}$ crack of length / E(t; u; l) := $\int_{\Omega \setminus \Gamma(l)} W(\nabla \cdot) dx - \mathcal{F}(t, \cdot)$

 $\begin{array}{ccc} \mathsf{elastic} \nearrow & \mathsf{work} & \uparrow \mathsf{of} \mathsf{ loads} \\ \mathsf{energy} \end{array}$

u = g(t) on $\partial \Omega \setminus \Gamma(I)$

preset crack path $\hat{\Gamma}$ crack of length / E(t; u; l) := $\int_{\Omega \setminus \Gamma(l)} W(\nabla \cdot) dx - \mathcal{F}(t, \cdot)$

 $\begin{array}{ccc} \mathsf{elastic} \nearrow & \mathsf{work} & \uparrow \mathsf{of} \mathsf{ loads} \\ \mathsf{energy} \end{array}$

$$u = g(t)$$
 on $\partial \Omega \setminus \Gamma(I)$

Quasistatic \equiv elastic equilibrium at time $t \Rightarrow$

$$\mathcal{P}(t, l) := E(u(t, l), l) = \min_{u \in \mathsf{k.a.}} E(u(t, l), l)$$

preset crack path $\hat{\Gamma}$ crack of length / E(t; u; l) := $\int_{\Omega \setminus \Gamma(l)} W(\nabla \cdot) dx - \mathcal{F}(t, \cdot)$

 $\begin{array}{ccc} \mathsf{elastic} \nearrow & \mathsf{work} & \uparrow \mathsf{of} \mathsf{ loads} \\ \mathsf{energy} \end{array}$

u = g(t) on $\partial \Omega \setminus \Gamma(I)$

Quasistatic \equiv elastic equilibrium at time $t \Rightarrow$

$$\mathcal{P}(t,l) := E(u(t,l),l) = \min_{u \text{ k.a.}} E(u(t,l),l)$$

Energy release rate: $G(t, l) := -\partial P / \partial l(t, l)$

Griffith
$$\Rightarrow \frac{dl}{dt}(t) \ge 0$$
, $G(t, l(t)) \le k$, $(G(t, l(t)) - k)\frac{dl}{dt}(t) = 0$

Problems

- crack path must be preset: how does a crack kink?
- initiation generically impossible:
- \mathcal{P} concave in $I \Rightarrow$ jump in crack growth: brutal growth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathcal{E}(t; u; l) := \int_{\Omega \setminus \Gamma(l)} W(\nabla u) dx + kl - \mathcal{F}(t, u)$$

$$\mathcal{E}(t; u; l) := \int_{\Omega \setminus \Gamma(l)} W(\nabla u) dx + kl - \mathcal{F}(t, u)$$

- Griffith's Model is equivalent to:
 - ► Unilateral stationarity: 1-parameter family of variations $l(t,\varepsilon) = l(t) + \varepsilon \hat{l}, \quad u(t,\varepsilon,l) = u(t,l) + \varepsilon v(t,l)$ $\Rightarrow \frac{d}{d\varepsilon} \mathcal{E}(t, u(t,\varepsilon, l(t,\varepsilon)), l(t,\varepsilon)) \Big|_{\varepsilon=0} \ge 0$

pprox a necessary first order condition for minimality

$$\mathcal{E}(t; u; l) := \int_{\Omega \setminus \Gamma(l)} W(\nabla u) dx + kl - \mathcal{F}(t, u)$$

- Griffith's Model is equivalent to:
 - ► Unilateral stationarity: 1-parameter family of variations $l(t,\varepsilon) = l(t) + \varepsilon \hat{l}, \quad u(t,\varepsilon,l) = u(t,l) + \varepsilon v(t,l)$ $\Rightarrow \frac{d}{d\varepsilon} \mathcal{E}(t, u(t,\varepsilon, l(t,\varepsilon)), l(t,\varepsilon)) \Big|_{\varepsilon=0} \ge 0$

≈ a necessary first order condition for minimality ► l(t) × with t

$$\mathcal{E}(t; u; l) := \int_{\Omega \setminus \Gamma(l)} W(\nabla u) dx + kl - \mathcal{F}(t, u)$$

- Griffith's Model is equivalent to:
 - ► Unilateral stationarity: 1-parameter family of variations $l(t,\varepsilon) = l(t) + \varepsilon \hat{l}, \quad u(t,\varepsilon,l) = u(t,l) + \varepsilon v(t,l)$ $\Rightarrow \frac{d}{d\varepsilon} \mathcal{E}(t, u(t,\varepsilon, l(t,\varepsilon)), l(t,\varepsilon)) \Big|_{\varepsilon=0} \ge 0$

pprox a necessary first order condition for minimality

- ► $I(t) \nearrow$ with t
- Energy balance:

$$\begin{split} \frac{d}{dt}\mathcal{E}(t;u(t),l(t)) &= \int_{\partial\Omega\setminus\Gamma(l(t))} DW(\nabla u(t))n \cdot \dot{g}(t)dS - \dot{\mathcal{F}}(t,u(t)) \\ &= \int_{\Omega\setminus\Gamma(l(t))} DW(\nabla u(t)) \cdot \nabla \dot{g}(t)dS - \dot{\mathcal{F}}(t,u(t)) \end{split}$$

• Replace unilateral stationarity by global minimality

• Replace unilateral stationarity by global minimality

∥ Expand test cracks ↓

• Global Stability:

$$\min_{\substack{u,\Gamma \ \uparrow}} \mathcal{E}(t, \underbrace{u}, \Gamma) := \int_{\Omega \setminus \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t, u)$$
$$\equiv g(t) \text{ on } \partial\Omega \setminus \Gamma \quad \left\{ \begin{array}{c} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{array} \right.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Replace unilateral stationarity by global minimality

Expand test cracks ↓

• Global Stability:

$$\begin{split} \min_{u,\Gamma} & \mathcal{E}(t, u, \Gamma) := \int_{\Omega \setminus \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t, u) \\ &\equiv g(t) \text{ on } \partial\Omega \setminus \Gamma \quad \left\{ \begin{array}{c} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{array} \right. \\ & \text{Looks like Mumford-Shah 89: for } g \text{ datum,} \end{split}$$

$$\min_{u,\Gamma}\left\{1/2\int_{\Omega\setminus\Gamma}|\nabla u|^2dx+k\mathcal{H}^{N-1}(\Gamma)+\int_{\Omega}|u-g|^2dx\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Replace unilateral stationarity by global minimality

∥ Expand test cracks ↓

• Global Stability:

$$\min_{\substack{u,\Gamma \ \uparrow}} \mathcal{E}(t, \underline{u}, \Gamma) := \int_{\Omega \setminus \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t, u)$$
$$\equiv g(t) \text{ on } \partial\Omega \setminus \Gamma \begin{cases} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Energy balance

• Replace unilateral stationarity by global minimality

Expand test cracks ↓

• Global Stability:

$$\min_{\substack{u,\Gamma \ \uparrow}} \mathcal{E}(t, u, \Gamma) := \int_{\Omega \setminus \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t, u)$$
$$\equiv g(t) \text{ on } \partial\Omega \setminus \Gamma \quad \left\{ \begin{array}{c} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{array} \right.$$

Energy balance

.... Immediate consequence: In a linear setting $(W(F) = \mu/2|F|^2)$ always initiation in finite time!

Time discretization

$$I_n = \{0 = t_0^n, ..., T = t_{k(n)}^n\}, \nearrow I_{\infty} \text{ dense in } [0, T]$$

• $u_i^n, \Gamma_i^n \text{ minimizes } \int_{\Omega \setminus \Gamma} W(\nabla u) dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t_i^n, u) \text{ with }$

$$\left\{\begin{array}{l} \Gamma_{i-1}^n \subset \Gamma \subset \overline{\Omega} \\ u = g_i^n \text{ on } \partial\Omega \setminus \Gamma \end{array}\right.$$

<□ > < @ > < E > < E > E のQ @

Time discretization

$$I_{n} = \{0 = t_{0}^{n}, ..., T = t_{k(n)}^{n}\}, \nearrow I_{\infty} \text{ dense in } [0, T]$$
• $u_{i}^{n}, \Gamma_{i}^{n} \text{ minimizes } \int_{\Omega \setminus \Gamma} W(\nabla u) dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t_{i}^{n}, u) \text{ with}$

$$\begin{cases} \Gamma_{i-1}^{n} \subset \Gamma \subset \overline{\Omega} \\ u = g_{i}^{n} \text{ on } \partial\Omega \setminus \Gamma \\ \downarrow \end{pmatrix}$$

<□ > < @ > < E > < E > E のQ @

•
$$\begin{cases} u^n(t) := u^n_i \\ \Gamma^n(t) := \Gamma^n_i \end{cases} \text{ on } [t^n_i, t^n_{i+1}) \\ n \nearrow \infty ? \end{cases}$$

Time discretization

$$I_{n} = \{0 = t_{0}^{n}, ..., T = t_{k(n)}^{n}\}, \nearrow I_{\infty} \text{ dense in } [0, T]$$

• $u_{i}^{n}, \Gamma_{i}^{n} \text{ minimizes } \int_{\Omega \setminus \Gamma} W(\nabla u) dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t_{i}^{n}, u) \text{ with}$

$$\begin{cases} \Gamma_{i-1}^{n} \subset \Gamma \subset \overline{\Omega} \\ u = g_{i}^{n} \text{ on } \partial\Omega \setminus \Gamma \end{cases}$$

• Mumford-Shah 89 + De Giorgi-Carriero-Leaci 89 \Rightarrow Discrete weak formulation:

 u_i^n minimizes $\int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u) \setminus \bigcup_{j < i} S(u_j^n)) - \mathcal{F}(t_i^n, u)$ for all $u \in SBV(\mathbb{R}^N)$ with $u \equiv g_i^n$ outside $\overline{\Omega}$

The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05, Dal Maso ... 09):

- ► W C¹ with (or without) p-growth, p-coercive, convex or quasiconvex;
- Ω nice ;

► appropriate loads $\mathcal{F}(t, v)$ and displacements g(t). Then $\exists \Gamma(t) \nearrow, u(t) \in SBV, \ \nabla u \in L^p$ st

- u(t) minimizes $\int_{\Omega} W(\nabla v) dx + k \mathcal{H}^{N-1}(S(v) \setminus \Gamma(t)) \mathcal{F}(t, v)$ with $u(t) \equiv g(t)$ on $\mathbb{R}^N \setminus \overline{\Omega}$
- $S(u(t)) \subset \Gamma(t)$
- $\mathcal{E}(t) := \int_{\Omega} W(\nabla u(t)) dx + k \mathcal{H}^{N-1}(\Gamma(t)) \mathcal{F}(t, u(t))$ satisfies

 $\frac{d}{dt}\mathcal{E}(t) = \int_{\Omega} DW(\nabla u(t)) \cdot \nabla \dot{g}(t) \, dx + \text{ terms coming from } \mathcal{F} \square$

The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05, Dal Maso ... 09):

- ► W C¹ with (or without) p-growth, p-coercive, convex or quasiconvex;
- Ω nice ;

► appropriate loads $\mathcal{F}(t, v)$ and displacements g(t). Then $\exists \Gamma(t) \nearrow, u(t) \in SBV, \ \nabla u \in L^p$ st

- u(t) minimizes $\int_{\Omega} W(\nabla v) dx + k \mathcal{H}^{N-1}(S(v) \setminus \Gamma(t)) \mathcal{F}(t, v)$ with $u(t) \equiv g(t)$ on $\mathbb{R}^N \setminus \overline{\Omega}$
- $S(u(t)) \subset \Gamma(t)$
- $\mathcal{E}(t) := \int_{\Omega} W(\nabla u(t)) dx + k \mathcal{H}^{N-1}(\Gamma(t)) \mathcal{F}(t, u(t))$ satisfies

 $\frac{d}{dt}\mathcal{E}(t) = \int_{\Omega} DW(\nabla u(t)) \cdot \nabla \dot{g}(t) \, dx + \text{ terms coming from } \mathcal{F} \square$ No a priori measurability property of u with respect to t.....

The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05, Dal Maso ... 09):

- ► W C¹ with (or without) p-growth, p-coercive, convex or quasiconvex;
- Ω nice ;

► appropriate loads $\mathcal{F}(t, v)$ and displacements g(t). Then $\exists \Gamma(t) \nearrow, u(t) \in SBV, \ \nabla u \in L^p$ st

- u(t) minimizes $\int_{\Omega} W(\nabla v) dx + k \mathcal{H}^{N-1}(S(v) \setminus \Gamma(t)) \mathcal{F}(t, v)$ with $u(t) \equiv g(t)$ on $\mathbb{R}^N \setminus \overline{\Omega}$
- $S(u(t)) \subset \Gamma(t)$
- $\mathcal{E}(t) := \int_{\Omega} W(\nabla u(t)) dx + k \mathcal{H}^{N-1}(\Gamma(t)) \mathcal{F}(t, u(t))$ satisfies

 $\frac{d}{dt}\mathcal{E}(t) = \int_{\Omega} DW(\nabla u(t)) \cdot \nabla \dot{g}(t) \, dx + \text{ terms coming from } \mathcal{F} \square$

No a priori measurability property of u with respect to t.....

• Does not work in linearized elasticity !!!! no co-area formula: however results in 2d for connected cracks by Chambolle 03

• Global minimization does not agree with dead forces:

$$\inf_{u}\left\{\int_{\Omega}W(\nabla u)dx+k\mathcal{H}^{N-1}(S(u))-\int_{\Omega}f\cdot udx\right\}=-\infty$$

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

Replace global by local Which??? small add-length, L^p

• Global minimization does not agree with dead forces:

$$\inf_{u}\left\{\int_{\Omega}W(\nabla u)dx+k\mathcal{H}^{N-1}(S(u))-\int_{\Omega}f\cdot udx\right\}=-\infty$$

Replace global by local Which??? small add-length, L^p

• Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation

$$\begin{array}{ll} \text{2d, hard device,} & x \quad \text{point of weak singularity} \\ \text{"connected cracks"} & \text{iff, for some } \alpha > 1 \\ W \text{ strictly convex, } \mathcal{C}^1, & \Rightarrow & \lim \sup_{r\downarrow 0} \frac{1}{r^\alpha} \int_{B(x,r)} |\nabla \psi|^p dx \leq C. \\ p \text{-growth, } \psi \text{ elastic sol.} & \end{array}$$

Thm: If all points in $\overline{\Omega}$ are points of weak singularity (with a uniform bound), then $\exists I^*$ s.t. if $\mathcal{H}^{N-1}(\Gamma) < I^*$, then

$$\int_{\Omega} W(\nabla \psi) dx < \int_{\Omega} W(\nabla u^{\mathsf{\Gamma}}) dx + k \mathcal{H}^{N-1}(\mathsf{\Gamma}) \square_{\uparrow \text{ solution with }\mathsf{\Gamma} \text{ as crack}}$$

• Global minimization does not agree with dead forces:

$$\inf_{u}\left\{\int_{\Omega}W(\nabla u)dx+k\mathcal{H}^{N-1}(S(u))-\int_{\Omega}f\cdot udx\right\}=-\infty$$

Replace global by local Which??? small add-length, L^p

• Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation

$$\begin{array}{ll} \text{2d, hard device,} & x \quad \text{point of weak singularity} \\ \text{"connected cracks"} & \text{iff, for some } \alpha > 1 \\ W \text{ strictly convex, } \mathcal{C}^1, & \Rightarrow & \lim \sup_{r\downarrow 0} \frac{1}{r^\alpha} \int_{B(x,r)} |\nabla \psi|^p dx \leq C. \\ p \text{-growth, } \psi \text{ elastic sol.} & \end{array}$$

Thm: If all points in $\overline{\Omega}$ are points of weak singularity (with a uniform bound), then $\exists I^*$ s.t. if $\mathcal{H}^{N-1}(\Gamma) < I^*$, then

$$\int_{\Omega} W(\nabla \psi) dx < \int_{\Omega} W(\nabla u^{\Gamma}) dx + k \mathcal{H}^{N-1}(\Gamma) \square$$

$$\uparrow \text{ solution with } \Gamma \text{ as crack}$$

$$\downarrow \downarrow$$

• ψ is local minimizer of the energy in any topology finer than L^1

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

Replace global by local Which??? small add-length, L^p

- Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation
- Does not cure dead forces: small crack Γ will kill potential energy.

Possible sol.: Non-interpenetration

• Global minimization does not agree with dead forces:

$$\inf_{u}\left\{\int_{\Omega}W(\nabla u)dx+k\mathcal{H}^{N-1}(S(u))-\int_{\Omega}f\cdot udx\right\}=-\infty$$

Replace global by local Which??? small add-length, L^p

- Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation
- Does not cure dead forces: small crack Γ will kill potential energy.

Possible sol .: Non-interpenetration

Kinking - the classics

• crack tip singularity:

$$u = \sqrt{r} \sum_{i=1,2} \{ K_i(t, l+l', \theta) \varphi_i \} + \hat{u}$$

with \hat{u} smoother; φ_i universal fcts. =: u_{00} (defined on all of \mathbb{R}^2) + \hat{u} • $K_{1(2)} = 0$ if $\sigma \vec{e}_2 \parallel \vec{e}_{1(2)}$ near tip

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Kinking - the classics

• crack tip singularity:

$$u = \sqrt{r} \sum_{i=1,2} \{ K_i(t, l+l', \theta) \varphi_i \} + \hat{u}$$

with \hat{u} smoother; φ_i universal fcts. =: u_{00} (defined on all of \mathbb{R}^2) + \hat{u} • $K_{1(2)} = 0$ if $\sigma \vec{e}_2 \parallel \vec{e}_{1(2)}$ near tip

• shared by all:

G(t, l) = k at time t when crack kinks \approx energy conservation

- problem: what determines θ ?
- 2 schools:

 θ maximizes $G(t, l, \theta)$ vs. $0 = K_2^*(t, l, \theta) := \lim_{l' \searrow 0} K_2(t, l+l', \theta)$.

Kinking - the classics

• crack tip singularity:

$$u = \sqrt{r} \sum_{i=1,2} \{ K_i(t, l+l', \theta) \varphi_i \} + \hat{u}$$

with \hat{u} smoother; φ_i universal fcts. =: u_{00} (defined on all of \mathbb{R}^2) + \hat{u} • $K_{1(2)} = 0$ if $\sigma \vec{e}_2 \parallel \vec{e}_{1(2)}$ near tip

▲■▶★≣▶★≣▶ ≣ めへで

• shared by all:

G(t, l) = k at time t when crack kinks \approx energy conservation

- problem: what determines θ ?
- 2 schools:

 θ maximizes $G(t, l, \theta)$ vs. $0 = K_2^*(t, l, \theta) := \lim_{l' \searrow 0} K_2(t, l+l', \theta).$

↑

• Amestoy-Leblond 92: criteria do not coincide!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - connected add-crack: $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - connected add-crack: $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} Ce(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} Ce(u_0) \cdot e(u_0) dx \} \equiv$ energy release slope associated with add-crack $\varepsilon \Gamma_{\varepsilon}$

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - connected add-crack: $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} Ce(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} Ce(u_0) \cdot e(u_0) dx \} = \mathcal{F}^{\Gamma} :=$

elast. energy release due to add-crack Γ starting from tip of straight half-line in dir. of pre-crack in \mathbb{R}^2

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} Ce(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} Ce(u_0) \cdot e(u_0) dx \} = \mathcal{F}^{\Gamma} :=$

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - connected add-crack: $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} Ce(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} Ce(u_0) \cdot e(u_0) dx \} = \mathcal{F}^{\Gamma} :=$

elast. energy release due to add-crack Γ starting from tip of straight half-line in dir. of pre-crack in \mathbb{R}^2

$$:= \min\{1/2 \int_{\mathbb{R}^2} \mathcal{C}e(w) \cdot e(w) dx + \int_{B(0,r)} \mathcal{C}e(u_{00}) \cdot e(w) dx - \int_{\partial B(0,r)} \mathcal{C}e(u_{00}) \cdot (w \otimes \nu) d\mathcal{H}_1 : w \in H^1_{loc}(\mathbb{R}^2 \setminus (\mathbb{R}^- \vec{e}_1 \cup \Gamma)) \square$$

 \uparrow avoids dealing with infinite energies

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - connected add-crack: $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} Ce(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} Ce(u_0) \cdot e(u_0) dx \} = \mathcal{F}^{\Gamma} :=$

elast. energy release due to add-crack Γ starting from tip of straight half-line in dir. of pre-crack in \mathbb{R}^2

$$:= \min\{1/2 \int_{\mathbb{R}^2} \mathcal{C}e(w) \cdot e(w) dx + \int_{B(0,r)} \mathcal{C}e(u_{00}) \cdot e(w) dx - \int_{\partial B(0,r)} \mathcal{C}e(u_{00}) \cdot (w \otimes \nu) d\mathcal{H}_1 : w \in H^1_{loc}(\mathbb{R}^2 \setminus (\mathbb{R}^- \vec{e}_1 \cup \Gamma)) \square$$

• Rk.: $\Gamma_{\varepsilon} = \Gamma(\varepsilon)/\varepsilon$ with $\Gamma(\varepsilon) \nearrow$ with ε , $\mathcal{H}_1(\Gamma(\varepsilon)) = \varepsilon$ and $\Gamma(\varepsilon)$ has density 1/2 at 0, then $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}}$ unit length line-segment.

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - connected add-crack: $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm on \mathbb{R}^2 :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Thm: If $K_2 \neq 0$, then $\min_{\Gamma;\mathcal{H}^1(\Gamma)=1} \mathcal{F}^{\Gamma}$ is not attained for Γ unit-length line segments \Rightarrow maximal energy release> energy release rate for add-cracks with density 1/2 \Box Theorem proved iff $\theta' = 0$ is not a maximum of en. release among all segments [O, N]originating from O, assuming that [O, M] attains the max. energy release.

Revisiting energy release rates III

• $F(\zeta)$ analytic universal matrix: expansion determined for small ζ 's in Amestoy-Leblond 92

$$\theta_{max} \neq 0$$
 if $F_{21}(\zeta)F'_{12}(\zeta) - F_{22}(\zeta)F'_{11}(\zeta) \neq 0, \forall \zeta$

$$\Downarrow$$

Among small ζ 's, result is true.

• Conjecture numerically satisfied for large angles.

• Assumptions of "generalized" classical kinking: existence of smooth evolution:

- Γ has density 1/2 at crack tip;
- $\blacktriangleright \ \Gamma(t) \subset \Gamma;$
- ► Γ(0) = ∅;
- $\Gamma(t) \nearrow$ strictly and continuously in length;

 \Rightarrow energy release rate at 0 = k

• Assumptions of "generalized" classical kinking: existence of smooth evolution:

- Γ has density 1/2 at crack tip;
- $\blacktriangleright \ \Gamma(t) \subset \Gamma;$
- ► Γ(0) = ∅;
- $\Gamma(t) \nearrow$ strictly and continuously in length;

 \Rightarrow energy release rate at 0 = k

• Assume meta-stability: at $t = 0, \gamma_i$ locally minimizes total energy/length \Rightarrow maximal energy release slope $\leq k$

• Assumptions of "generalized" classical kinking: existence of smooth evolution:

- Γ has density 1/2 at crack tip;
- $\blacktriangleright \ \Gamma(t) \subset \Gamma;$
- ► Γ(0) = ∅;
- $\Gamma(t) \nearrow$ strictly and continuously in length;

 \Rightarrow energy release rate at 0 = k

• Assume meta-stability: at $t = 0, \gamma_i$ locally minimizes total energy/length \Rightarrow maximal energy release slope $\leq k$

• But $\stackrel{\text{Thm}+ \text{ Blow up Thm}}{\Longrightarrow}$ energy release rate at 0 along path $\Gamma(t) < k!$

₩

 \bullet Cor: No time continuous kinking onto add-cracks of density 1/2

• Assumptions of "generalized" classical kinking: existence of smooth evolution:

- Γ has density 1/2 at crack tip;
- $\blacktriangleright \ \Gamma(t) \subset \Gamma;$
- ► Γ(0) = ∅;
- $\Gamma(t) \nearrow$ strictly and continuously in length;

 \Rightarrow energy release rate at 0 = k

• Assume meta-stability: at t = 0, γ_i locally minimizes total energy/length \Rightarrow maximal energy release slope $\leq k$ • But $\xrightarrow{\text{Thm}+\text{ Blow up Thm}}$ energy release rate at 0 along path $\Gamma(t) < k!$

∜

 \bullet Cor: No time continuous kinking onto add-cracks of density 1/2

• Either jump, or fork like pattern, or lack of connectedness!