Configurations de vortex dans le modèle de Ginzburg-Landau de la supraconductivité De Ginzburg-Landau à des problèmes de réseaux

Sylvia Serfaty, avec Etienne Sandier

1er février 2008, Collège de France

La fonctionnelle de Ginzburg-Landau

$$\mathcal{G}_{arepsilon}(\psi, \mathcal{A}) = rac{1}{2}\int_{\Omega} |
abla_{\mathcal{A}}\psi|^2 + |\mathrm{curl}\,\mathcal{A} - h_{\mathrm{ex}}|^2 + rac{(1-|\psi|^2)^2}{2arepsilon^2}$$

- $\blacktriangleright \ \Omega \subset \mathbb{R}^2$ simplement connexe
- $\psi: \Omega \to \mathbb{C}$ "paramètre d'ordre"
- $A: \Omega \to \mathbb{R}^2$ potentiel vecteur $\nabla_A = \nabla iA$
- $h = \operatorname{curl} A$ champ magnétique induit
- $h_{\rm ex} > 0$ intensité du champ appliqué
- $\varepsilon = \frac{1}{\kappa}$ "paramètre de Ginzburg-Landau": constante du matériau
- ▶ limite $\varepsilon \rightarrow 0$ extrême type-II ou fortement répulsive

Les équations de Ginzburg-Landau

$$(GL) \begin{cases} -\nabla_A^2 \psi = \frac{\psi}{\varepsilon^2} (1 - |\psi|^2) & \text{dans } \Omega \\ -\nabla^\perp h = \psi \times \nabla_A \psi & \text{dans } \Omega \\ h = h_{\text{ex}} & \text{sur } \partial \Omega \\ \nabla_A \psi \cdot \nu = 0 & \text{sur } \partial \Omega. \end{cases}$$

Invariance de jauge $\mathbb{U}(1)$ ("théorie abélienne de jauge")

 $\begin{cases} \psi \mapsto \psi e^{i\Phi} \\ A \mapsto A + \nabla \Phi \end{cases}$

Les quantités physiques sont celles qui sont invariantes de jauge, tq: $|\psi|^2$, $h, j = \psi \times \nabla_A \psi, G_{\varepsilon}$. motivations: supraconductivité, superfluidité, condensats de Bose-Einstein

Les équations de Ginzburg-Landau

$$(GL) \begin{cases} -\nabla_A^2 \psi = \frac{\psi}{\varepsilon^2} (1 - |\psi|^2) & \text{dans } \Omega \\ -\nabla^\perp h = \psi \times \nabla_A \psi & \text{dans } \Omega \\ h = h_{\text{ex}} & \text{sur } \partial \Omega \\ \nabla_A \psi \cdot \nu = 0 & \text{sur } \partial \Omega. \end{cases}$$

Invariance de jauge $\mathbb{U}(1)$ ("théorie abélienne de jauge")

 $\begin{cases} \psi \mapsto \psi e^{i\Phi} \\ A \mapsto A + \nabla \Phi \end{cases}$

Les quantités physiques sont celles qui sont invariantes de jauge, tq: $|\psi|^2$, $h, j = \psi \times \nabla_A \psi, G_{\varepsilon}$. motivations: supraconductivité, superfluidité, condensats de Bose-Einstein

Les vortex

- ▶ $|\psi|^2 \leq 1$ densité d'électrons supraconducteurs
- $|\psi| = 0$ phase normale
- $|\psi| \sim 1$ phase supra
- ▶ vortex: zéros de ψ de degré non nul

•
$$\psi = \rho e^{i\varphi}$$

$$\frac{1}{2\pi}\int_{\partial B(\mathbf{x_0},r)}\frac{\partial \varphi}{\partial \tau}=d\in \mathbb{Z}$$

degré du vortex

Dans la lim ε → 0 les vortex deviennent *ponctuels*, ou plus généralement des singularités de *codimension-2*

La vorticité

$\psi = \rho e^{i\varphi}$, φ pas univaluée

introduire la mesure de vorticité

 $\mu_{arepsilon} := \mu(\psi, \mathcal{A}) = \operatorname{curl}(\psi imes
abla_{\mathcal{A}}\psi) + \operatorname{curl}\mathcal{A}$

"estimée Jacobienne" (voir Jerrard-Soner)

 $\operatorname{curl}(\psi \times \nabla \psi) = \det D\psi = \operatorname{curl}(\rho^2 \nabla \varphi) \simeq \operatorname{curl} \nabla \varphi = 2\pi \sum_i d_i \delta_{a_i} \quad \operatorname{qd} \varepsilon \to 0$

Si (ψ, A) vérifie (GL2)

 $-\nabla^{\perp}h=\psi imes
abla_{A}\psi$

prenant le rot

$$\begin{cases} -\Delta h + h = \mu \simeq 2\pi \sum_i d_i \delta_{a_i} & \text{dans } \Omega \\ h = h_{\text{ex}} & \text{sur } \partial \Omega. \end{cases}$$

Egalement $|
abla_{\mathcal{A}}\psi|\simeq |
abla h| \rightsquigarrow$ divergence logarithmique de $\int_{\Omega} |
abla_{\mathcal{A}}\psi|^2$

La vorticité

 $\psi = \rho e^{i\varphi}$, φ pas univaluée

introduire la mesure de vorticité

 $\mu_{\varepsilon} := \mu(\psi, A) = \operatorname{curl}(\psi \times \nabla_A \psi) + \operatorname{curl} A$

"estimée Jacobienne" (voir Jerrard-Soner)

 $\operatorname{curl}(\psi \times \nabla \psi) = \det D\psi = \operatorname{curl}(\rho^2 \nabla \varphi) \simeq \operatorname{curl} \nabla \varphi = 2\pi \sum_i d_i \delta_{a_i} \quad \operatorname{qd} \varepsilon \to 0$

Si (ψ, A) vérifie (GL2)

 $-\nabla^{\perp} h = \psi \times \nabla_A \psi$

prenant le rot

$$\begin{cases} -\Delta h + h = \mu \simeq 2\pi \sum_{i} d_i \delta_{a_i} & \text{dans } \Omega \\ h = h_{\text{ex}} & \text{sur } \partial \Omega. \end{cases}$$

Egalement $|
abla_A \psi| \simeq |
abla h| \rightsquigarrow$ divergence logarithmique de $\int_\Omega |
abla_A \psi|^2$

La vorticité

 $\psi = \rho e^{i\varphi}$, φ pas univaluée

introduire la mesure de vorticité

 $\mu_{\varepsilon} := \mu(\psi, A) = \operatorname{curl}(\psi \times \nabla_{A}\psi) + \operatorname{curl} A$

"estimée Jacobienne" (voir Jerrard-Soner)

$$\operatorname{curl}(\psi \times \nabla \psi) = \det D\psi = \operatorname{curl}(\rho^2 \nabla \varphi) \simeq \operatorname{curl}\nabla \varphi = 2\pi \sum_i d_i \delta_{a_i} \quad \operatorname{qd} \varepsilon \to 0$$

Si (ψ, A) vérifie (GL2)

$$-\nabla^{\perp} h = \psi \times \nabla_{\mathcal{A}} \psi$$

prenant le rot

$$\begin{cases} -\Delta h + h = \mu \simeq 2\pi \sum_{i} d_i \delta_{a_i} & \text{dans } \Omega \\ h = h_{\text{ex}} & \text{sur } \partial \Omega. \end{cases}$$

Egalement $|
abla_A\psi|\simeq |
abla h|$ \rightsquigarrow divergence logarithmique de $\int_\Omega |
abla_A\psi|^2$

• $h_{ m ex} < H_{c_1}$ pas de vortex, $|\psi| \sim 1$ (effet Meissner)

- *H*_{c1} = O(|log ε|) premier champ critique: les premiers vortex apparaissent, puis leur nombre croît
 → réseaux d'Abrikosov (triangulaires)
- ► H_{c2} = O(¹/_{ε²}) supraconductivité détruite à l'intérieur, reste de la supraconductivité de surface
- $H_{c_3} = O(\frac{1}{\varepsilon^2})$ état normal $\psi \equiv 0$

- $h_{
 m ex} < H_{c_1}$ pas de vortex, $|\psi| \sim 1$ (effet Meissner)
- $H_{c_1} = O(|\log \varepsilon|)$ premier champ critique: les premiers vortex apparaissent, puis leur nombre croît
 - → reseaux d'Abrikosov (triangulaires)
- ► H_{c2} = O(¹/_{ε²}) supraconductivité détruite à l'intérieur, reste de la supraconductivité de surface
- $H_{c_3} = O(\frac{1}{\varepsilon^2})$ état normal $\psi \equiv 0$

- $h_{
 m ex} < H_{c_1}$ pas de vortex, $|\psi| \sim 1$ (effet Meissner)
- *H*_{c1} = O(|log ε|) premier champ critique: les premiers vortex apparaissent, puis leur nombre croît
 → réseaux d'Abrikosov (triangulaires)

- ► H_{c2} = O(¹/_{ε²}) supraconductivité détruite à l'intérieur, reste de la supraconductivité de surface
- $H_{c_3} = O(\frac{1}{\varepsilon^2})$ état normal $\psi \equiv 0$

- $h_{
 m ex} < H_{c_1}$ pas de vortex, $|\psi| \sim 1$ (effet Meissner)
- *H*_{c1} = O(|log ε|) premier champ critique: les premiers vortex apparaissent, puis leur nombre croît
 → réseaux d'Abrikosov (triangulaires)

*H*_{c₂} = *O*(¹/_{ε²}) supraconductivité détruite à l'intérieur, reste de la supraconductivité de surface

• $H_{c_3} = O(\frac{1}{\epsilon^2})$ état normal $\psi \equiv 0$

- $h_{
 m ex} < H_{c_1}$ pas de vortex, $|\psi| \sim 1$ (effet Meissner)
- *H*_{c1} = O(|log ε|) premier champ critique: les premiers vortex apparaissent, puis leur nombre croît
 → réseaux d'Abrikosov (triangulaires)

- *H*_{c2} = O(¹/_{ε²}) supraconductivité détruite à l'intérieur, reste de la supraconductivité de surface
- $H_{c_3} = O(\frac{1}{\varepsilon^2})$ état normal $\psi \equiv 0$

Questions et méthodes

- Prouver des résultats mathématiques sur les minimiseurs de l'énergie
- décrire leurs vortex dans la limite $\varepsilon \to 0$
- les réseaux d'Abrikosov
- les champs critiques pour lesquels ils apparaissent

Méthode de **F**-convergence:

- prouver des bornes inférieures pour une configuration arbitraire en fonction de ses vortex limites
- prouver que cette minoration est optimale en construisant une configuration test explicite
- déduire l'énergie limite à minimiser

Autres résultats non décrits aujourd'hui:

- existence de branches de solutions localement minimisantes à nombre de vortex prescrit
- caractérisation des vortex pour tous les points critiques

Questions et méthodes

- ▶ Prouver des résultats mathématiques sur les minimiseurs de l'énergie
- décrire leurs vortex dans la limite $\varepsilon \to 0$
- les réseaux d'Abrikosov
- les champs critiques pour lesquels ils apparaissent

Méthode de **Γ**-convergence:

- prouver des bornes inférieures pour une configuration arbitraire en fonction de ses vortex limites
- prouver que cette minoration est optimale en construisant une configuration test explicite
- déduire l'énergie limite à minimiser

Autres résultats non décrits aujourd'hui:

- existence de branches de solutions localement minimisantes à nombre de vortex prescrit
- caractérisation des vortex pour tous les points critiques

Questions et méthodes

- ▶ Prouver des résultats mathématiques sur les minimiseurs de l'énergie
- décrire leurs vortex dans la limite $\varepsilon \to 0$
- les réseaux d'Abrikosov
- les champs critiques pour lesquels ils apparaissent

Méthode de Γ-convergence:

- prouver des bornes inférieures pour une configuration arbitraire en fonction de ses vortex limites
- prouver que cette minoration est optimale en construisant une configuration test explicite
- déduire l'énergie limite à minimiser

Autres résultats non décrits aujourd'hui:

- existence de branches de solutions localement minimisantes à nombre de vortex prescrit
- caractérisation des vortex pour tous les points critiques

Le problème de l'obstacle...

▶ introduire h_* l'(unique) minimiseur du problème de l'obstacle

$$\min_{\substack{h=1 \text{ sur } \partial\Omega\\h\geq 1-\frac{1}{2h_{\text{ex}}}\log \frac{1}{\varepsilon\sqrt{h_{\text{ex}}}}:=m_{\varepsilon}}} \frac{1}{2} \int_{\Omega} |\nabla h|^2 + h^2$$

supposer

$$\lim_{\varepsilon \to 0} \frac{h_{\rm ex}}{\log \frac{1}{\varepsilon \sqrt{h_{\rm ex}}}} = \lambda$$

 $\rightsquigarrow h_* \text{ ne dépend essentiellement pas de } \varepsilon, \text{ juste de } \lambda.$ \blacktriangleright ensemble de coincidence

$$\omega = \{x \in \Omega/h_*(x) = m_{\varepsilon}\}$$

 $\mu_* = -\Delta h_* + h_*$ μ_* densité uniforme sur $\omega \subset \Omega$,

$$\mu_* = m_{\varepsilon} \mathbf{1}_{\omega}$$

avec $m_arepsilon o m := 1 - rac{1}{2\lambda}$

Le problème de l'obstacle...

▶ introduire h_* l'(unique) minimiseur du problème de l'obstacle

$$\min_{\substack{h=1 \text{ sur } \partial\Omega\\h\geq 1-\frac{1}{2h_{\text{ex}}}\log \frac{1}{\varepsilon\sqrt{h_{\text{ex}}}}:=m_{\varepsilon}}} \frac{1}{2} \int_{\Omega} |\nabla h|^2 + h^2$$

supposer

$$\lim_{\varepsilon \to 0} \frac{h_{\rm ex}}{\log \frac{1}{\varepsilon \sqrt{h_{\rm ex}}}} = \lambda$$

→ h_{*} ne dépend essentiellement pas de ε, juste de λ.
▶ ensemble de coincidence

$$\omega = \{x \in \Omega/h_*(x) = m_{\varepsilon}\}$$

 $\begin{array}{l} \mu_{*}=-\Delta h_{*}+h_{*}\\ \mu_{*} \mbox{ densité uniforme sur }\omega\subset\Omega, \end{array}$

$$\mu_* = m_{\varepsilon} \mathbf{1}_{\omega}$$

avec $m_arepsilon o m := 1 - rac{1}{2\lambda}$

 $\blacktriangleright \ \lambda > \lambda_0: \ \omega_\lambda \neq \varnothing$

 $\blacktriangleright \ |\log \varepsilon| \ll h_{\rm ex} \ll \tfrac{1}{\varepsilon^2}; \quad \omega_\infty = \Omega, \ \mu_* = 1$

• $\lambda < \lambda_0$: $\omega_{\lambda} = \varnothing$, $\mu_* = 0$, pas de vortex

• $\lambda = \lambda_0$: $\omega_{\lambda} = \Lambda$ = ensemble fini de points (on suppose $\Lambda = \{p\}$)

 $\blacktriangleright \ \lambda > \lambda_0: \ \omega_\lambda \neq \varnothing$

 $\blacktriangleright \ |\log \varepsilon| \ll h_{\rm ex} \ll \tfrac{1}{\varepsilon^2}; \quad \omega_\infty = \Omega, \ \mu_* = 1$

- $\lambda < \lambda_0$: $\omega_{\lambda} = \varnothing$, $\mu_* = 0$, pas de vortex
- $\lambda = \lambda_0$: $\omega_{\lambda} = \Lambda =$ ensemble fini de points (on suppose $\Lambda = \{p\}$)

$$\label{eq:rescaled_eq} \begin{split} \mathbf{\blacktriangleright} \ |\log \varepsilon| \ll h_{\mathrm{ex}} \ll \frac{1}{\varepsilon^2}; \quad \omega_\infty = \Omega, \ \mu_* = 1 \end{split}$$

- $\lambda < \lambda_0$: $\omega_{\lambda} = \varnothing$, $\mu_* = 0$, pas de vortex
- $\lambda = \lambda_0$: $\omega_{\lambda} = \Lambda =$ ensemble fini de points (on suppose $\Lambda = \{p\}$)

Soit (ψ, A) vérifiant (GL2) et $h = \operatorname{curl} A$. On décompose A et h en posant

 $A = h_{\mathrm{ex}} \nabla^{\perp} h_* + A_1 \qquad h = h_{\mathrm{ex}} h_* + h_1.$

Un calcul direct donne avec (GL2)

$$\begin{cases} -\Delta h_1 + h_1 = \mu_{\varepsilon} - h_{ex}\mu_* & \text{dans } \Omega \\ h_1 = 0 & \text{sur } \partial\Omega. \end{cases}$$

Proposition (Décomposition de l'énergie)

$$\begin{split} \mathcal{G}_{\varepsilon}(\psi,\mathcal{A}) &= \frac{h_{\mathrm{ex}}}{2} \log \; \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}} \int_{\Omega} \mu_* + \frac{h_{\mathrm{ex}}^2}{2} \int_{\Omega} |\nabla h_*|^2 + |h_* - 1|^2 \\ &+ \frac{1}{2} \int_{\Omega} |\nabla_{\mathcal{A}_1} \psi|^2 + h_1^2 + \frac{(1 - |\psi|^2)^2}{2\varepsilon^2} + h_{\mathrm{ex}} \int_{\Omega} (h_* - 1) \mu_{\varepsilon} + o(1). \end{split}$$

On se ramène à minimiser

$$G_1(\psi, A) = \frac{1}{2} \int_{\Omega} |\nabla_{A_1} \psi|^2 + h_1^2 + \frac{(1 - |\psi|^2)^2}{2\varepsilon^2} + \int_{\Omega} h_{\text{ex}}(h_* - 1) \mu_{\varepsilon}.$$

On verra que min $G_1 = O(h_{\mathrm{ex}})$ d'où on déduit

$$\min G_{\varepsilon} \sim h_{\mathrm{ex}}^2 \left(\frac{1}{2\lambda} \int_{\Omega} |\mu_*| + \frac{1}{2} \int_{\Omega} |\nabla h_*|^2 + |h_* - 1|^2 \right) + O(h_{\mathrm{ex}})$$

Résultats pour les minimiseurs à l'ordre principal

Théorème (Sandier-S)

Pour les minimiseurs de G_{ε} on a

$$\frac{\mu_{\varepsilon}}{h_{\text{ex}}} \rightharpoonup \mu_{*} = m\mathbf{1}_{\omega_{\lambda}} \qquad \frac{h}{h_{\text{ex}}} \rightharpoonup h_{*}$$
$$\frac{\mathcal{G}_{\varepsilon}(\psi, A)}{h_{\text{ex}}^{2}} \rightarrow \frac{1}{2\lambda} \int_{\Omega} |\mu_{*}| + \frac{1}{2} \int_{\Omega} |\nabla h_{*}|^{2} + |h_{*} - 1|^{2}$$

Minimiseurs près de H_{c_1} - nombre fini de vortex

Théorème

Supposons $\Lambda = \{p\}$ et $h_{ex} \leq H_{c_1} + O(\log |\log \varepsilon|)$ et $h_{ex} \in (H_n, H_{n+1})$ où $H_n = \lambda_0 (|\log \varepsilon| + (n-1)\log(\lambda_0|\log \varepsilon|) + C_n)$

les minimiseurs de G_{ε} ont exactement n vortex de degré +1, $a_i^{\varepsilon} \rightarrow p$ et

$$\widetilde{a_i^arepsilon} = \sqrt{rac{h_{ ext{ex}}}{n}}(a_i^arepsilon - p)$$

converge quand $\varepsilon \rightarrow 0$ vers un minimiseur de

$$w_n(x_1,\cdots,x_n)=-\pi\sum_{i\neq j}\log|x_i-x_j|+\pi n\sum_i Q(x_i).$$

minimiser w_n donne des configurations régulières (polygone régulier pour n assez petit)

Figure: Résultat de la minimisation numérique de w_n par Gueron-Shafrir, n = 16, 21, 24, 29

Minimiseurs près de H_{c_1} : régime intermédiaire

Théorème

 $\log |\log \varepsilon| \ll h_{ex} - H_{c_1} \ll |\log \varepsilon|, \text{ il existe } n_{\varepsilon} \text{ tel que}$

$$h_{ ext{ex}} \sim \lambda_0 \quad |\log arepsilon| + n_arepsilon \log rac{|\log arepsilon|}{n_arepsilon} \qquad 1 \ll n_arepsilon \ll h_{ ext{ex}}$$

et si $(\psi_{\varepsilon}, A_{\varepsilon})$ minimise G_{ε} et a des vortex en $a_i(\varepsilon)$ de degré d_i , notant

$$\mu_{\varepsilon} = 2\pi \sum_{i} d_i \delta_{a_i}$$

on a $\frac{\mu_{\varepsilon}}{2\pi n_{\varepsilon}} \rightarrow \mu_0$ où μ_{ε} est la mesure image de μ_{ε} par le blow-up $x \mapsto \sqrt{\frac{h_{\varepsilon}}{n_{\varepsilon}}(x-p)}$ et μ_0 est l'unique minimiseur parmi les mesures de probabilité de

$$I(\mu) = \int_{\mathbb{R}^2 \times \mathbb{R}^2} -\log|x-y| \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^2} Q(x) \, d\mu(x)$$

 μ_0 est une proba de densité cste sur un sous-domaine de \mathbb{R}^2

Comportement des minimiseurs à l'ordre suivant

- ▶ densité de vortex $mh_{\rm ex}$, distances $\sim 1/\sqrt{mh_{\rm ex}} \rightarrow$ faut dilater pour voir la configuration
- ▶ comprendre la Γ-limite de $G_1/h_{ex} \rightarrow$ Γ-convergence à l'ordre suivant

$$-\Delta h_1 + h_1 = \mu_arepsilon - h_{ ext{ex}} \mu_* = \mu_arepsilon - m_arepsilon h_{ ext{ex}} \mathbf{1}_\omega$$

▶ après blow up à l'échelle $\sqrt{mh_{ex}}$ autour d'un point de ω , on obtient une configuration de points dans TOUT le plan avec

$$-\Delta H = 2\pi \sum_{i} d_i \delta_{a_i} - 1 \quad \text{sur } \mathbb{R}^2$$

Question: quelle est l'énergie d'interaction des a_i ? Pbl: domaine de taille infinie

Comportement des minimiseurs à l'ordre suivant

- ▶ densité de vortex $mh_{\rm ex}$, distances $\sim 1/\sqrt{mh_{\rm ex}} \rightarrow$ faut dilater pour voir la configuration
- ▶ comprendre la Γ-limite de $G_1/h_{ex} \rightarrow$ Γ-convergence à l'ordre suivant

$$-\Delta h_1 + h_1 = \mu_{\varepsilon} - h_{\mathrm{ex}}\mu_* = \mu_{\varepsilon} - m_{\varepsilon}h_{\mathrm{ex}}\mathbf{1}_{\omega}$$

► après blow up à l'échelle $\sqrt{mh_{ex}}$ autour d'un point de ω , on obtient une configuration de points dans TOUT le plan avec

$$-\Delta H = 2\pi \sum_{i} d_i \delta_{a_i} - 1 \quad \text{sur } \mathbb{R}^2$$

Question: quelle est l'énergie d'interaction des a_i ? Pbl: domaine de taille infinie

Comportement des minimiseurs à l'ordre suivant

- ▶ densité de vortex $mh_{\rm ex}$, distances $\sim 1/\sqrt{mh_{\rm ex}} \rightarrow$ faut dilater pour voir la configuration
- ▶ comprendre la Γ-limite de $G_1/h_{ex} \rightarrow$ Γ-convergence à l'ordre suivant

$$-\Delta h_1 + h_1 = \mu_{\varepsilon} - h_{\mathrm{ex}}\mu_* = \mu_{\varepsilon} - m_{\varepsilon}h_{\mathrm{ex}}\mathbf{1}_{\omega}$$

► après blow up à l'échelle $\sqrt{mh_{ex}}$ autour d'un point de ω , on obtient une configuration de points dans TOUT le plan avec

$$-\Delta H = 2\pi \sum_{i} d_i \delta_{a_i} - 1 \quad \text{sur } \mathbb{R}^2$$

Question: quelle est l'énergie d'interaction des a_i ? Pbl: domaine de taille infinie

Analyse formelle de G_1

$$G_{1}(\psi, A) = \frac{1}{2} \int_{\Omega} |\nabla_{A_{1}}\psi|^{2} + h_{1}^{2} + \frac{(1-|\psi|^{2})^{2}}{2\varepsilon^{2}} + \int_{\Omega} h_{\mathrm{ex}}(h_{*}-1)\mu_{\varepsilon}$$
$$h_{\mathrm{ex}}(h_{*}-1) = -\frac{1}{2}\log \frac{1}{\varepsilon\sqrt{h_{\mathrm{ex}}}} \quad \text{dans } \omega$$
$$> -\frac{1}{2}\log \frac{1}{\varepsilon\sqrt{h_{\mathrm{ex}}}} \quad \text{ailleurs}$$

$$\int_{\Omega} h_{
m ex}(h_*-1) \mu_arepsilon \simeq -\pi \sum_i d_i \log \; rac{1}{arepsilon \sqrt{h_{
m ex}}}$$

 \leadsto tous les vortex doivent être dans ω , et de degrés positifs. Après blow-up, posant $\varepsilon' = \varepsilon \sqrt{h_{\rm ex}}$ et avec les mêmes notations pour (ψ, A)

$$G_1(\psi, A) \simeq rac{1}{2} \int_{\sqrt{h_{ ext{ex}}}\Omega} |
abla_{A_1}\psi|^2 + rac{h_1^2}{h_{ ext{ex}}} + rac{(1-|\psi|^2)^2}{2(arepsilon')^2} - \pi \sum_i d_i |\logarepsilon'|$$

Première partie \sim énergie "libre" de GL sans chp appliqué $\geq \pi \sum |d_i| |\log \varepsilon'|$

énergie dans les vortex - minorations via "méthode de construction de boules" Bethuel-Brezis-Hélein, Jerrard, Sandier, Sandier-S

- Un vortex ajoute une qté "infinie" d'énergie mais aussi soustrait une qté infinie
- ▶ ~→ reste une "énergie renormalisée"
- ► ~→ il faut extraire l'énergie des vortex avec une très grande précision pour évaluer le reste

$$G_1(\psi, \mathcal{A}) \simeq rac{1}{2} \int_{\sqrt{h_{ ext{ex}}}\Omega} |
abla_{\mathcal{A}_1}\psi|^2 + rac{h_1^2}{h_{ ext{ex}}} + rac{(1-|\psi|^2)^2}{2(arepsilon')^2} - \pi \sum_i d_i |\logarepsilon'|$$

Première partie \sim énergie "libre" de GL sans chp appliqué $\geq \pi \sum |d_i| |\log \varepsilon'|$

énergie dans les vortex - minorations via "méthode de construction de boules" Bethuel-Brezis-Hélein, Jerrard, Sandier, Sandier-S

- Un vortex ajoute une qté "infinie" d'énergie mais aussi soustrait une qté infinie
- ▶ ~→ reste une "énergie renormalisée"
- ► ~→ il faut extraire l'énergie des vortex avec une très grande précision pour évaluer le reste

L'énergie renormalisée

Etant donnée une configuration de points dans le plan a_i , $d_i = 1$ et H solution de

$$-\Delta H = 2\pi \sum_{i} \delta_{a_i} - 1$$
 dans \mathbb{R}^2 .

On considère pour tout R une fonction troncature $\chi_R \in C_0^{\infty}(B_R)$ tq $0 \le \chi_R \le 1$ et $\chi_R \equiv 1$ dans B_{R-1} , $|\nabla \chi_R| \le 2$, et on définit

$$W(\{a_i\}, H) = \liminf_{R \to \infty} \frac{1}{|B_R|} \lim_{\alpha \to 0} \left(\frac{1}{2} \int_{B_R \setminus \bigcup_i B(a_i, \alpha)} \chi_R |\nabla H|^2 + \sum_i \chi_R(a_i) (\pi \log \alpha + \gamma - \frac{1}{4} \log m) \right)$$

cf énergie renormalisée de Bethuel-Brezis-Hélein pour nombre fini de vortex, ou cf w_n

"
$$W(\{a_i\}) = \|2\pi \sum_i \delta_{a_i} - 1\|_{H^{-1}}^2$$
"

 \mathcal{F} désigne l'ensemble des $(\{a_i\}, H)$ avec $-\Delta H = 2\pi \sum_i \delta_{a_i} - 1$ sur \mathbb{R}^2

Théorème (Borne inférieure)

Soit ω le support de μ_* . Pour tout $(\psi_\varepsilon, A_\varepsilon)$, il existe une probabilité P sur $\mathcal F$ tq

$$\liminf_{\varepsilon \to 0} \frac{1}{mh_{\mathrm{ex}}|\omega|} G_1(\psi_{\varepsilon}, A_{\varepsilon}) \geq \int W(\{a_i\}, H) \, dP(\{a_i\}, H) \geq \inf_{a_i, H} W$$

et ainsi

$$egin{aligned} \mathcal{G}_arepsilon(\psi_arepsilon,\mathcal{A}_arepsilon) \geq rac{h_{ ext{ex}}^2}{2} \int_\Omega |
abla h_*|^2 + |h_* - 1|^2 + rac{h_{ ext{ex}}}{2} \log rac{1}{arepsilon \sqrt{h_{ ext{ex}}}} \int_\Omega \mu_* \ &+ m h_{ ext{ex}} |\omega| \inf_{m{a}_i,H} W + o(h_{ ext{ex}}) \end{aligned}$$

Borne inférieure optimale à $o(h_{ex})$ près (=o(nombre de vortex))

Majoration

Théorème (Borne supérieure)

Supposons $h_{\mathrm{ex}} \ll \frac{1}{\varepsilon^2}$. Pour $\varepsilon < \varepsilon_0$, il existe $(\psi_{\varepsilon}, A_{\varepsilon})$ tq

$$egin{aligned} & G_arepsilon(\psi_arepsilon, A_arepsilon) &\leq rac{h_{ ext{ex}}^2}{2} \int_\Omega |
abla h_*|^2 + |h_* - 1|^2 + rac{h_{ ext{ex}}}{2} \log \; rac{1}{arepsilon \sqrt{h_{ ext{ex}}}} \int \mu_* \ &+ m h_{ ext{ex}} |\omega| \inf_{m{a_i}, \mathcal{H}} \mathcal{W} + o(h_{ ext{ex}}) \end{aligned}$$

Corollaire

"Pour des minimiseurs de G_{ε} , les images des vortex par dilatation d'un facteur $\sqrt{mh_{ex}}$ autour d'un point x_{ε} pris au hasard convergent p.s vers des configurations de points dans le plan qui "minimisent" W."

 pour dériver W on doit contrôler le nombre de vortex par unité de volume après blow-up
 il faut des minorations très précises de leur coût et pour un

nombre divergent

- ▶ le coût renormalisé d'un vortex dans B_R tend vers $-\infty$ quand il s'approche de $\partial B_R \rightsquigarrow$ besoin de tronquer et faire $R \rightarrow \infty$
- la taille du domaine dilaté tend vers ∞. Grâce au théorème ergodique, on définit une sorte de notion de Γ-convergence moyennée qui marche sur les domaines infinis quand il y a invariance par translation de la densité d'énergie. Alternative à une méthode d'Alberti-Müller via mesures de Young.

- cela fournit aussi une borne sur le nombre de vortex par unité de volume en moyenne autour de la plupart des points
- pour obtenir la majoration il faut se ramener à des configurations de points périodiques cad mq on peut approcher la minimisation de W par une minimisation sur des grands tores
- \blacktriangleright montrer aussi que la discontinuité sur $\partial \omega$ génère une énergie négligeable

- pour dériver W on doit contrôler le nombre de vortex par unité de volume après blow-up
 - \rightsquigarrow il faut des minorations très précises de leur coût et pour un nombre divergent
- ► le coût renormalisé d'un vortex dans B_R tend vers $-\infty$ quand il s'approche de $\partial B_R \rightsquigarrow$ besoin de tronquer et faire $R \rightarrow \infty$
- Ia taille du domaine dilaté tend vers ∞. Grâce au théorème ergodique, on définit une sorte de notion de Γ-convergence moyennée qui marche sur les domaines infinis quand il y a invariance par translation de la densité d'énergie. Alternative à une méthode d'Alberti-Müller via mesures de Young. Phi: notre densité d'énergie n'est pas positive
- cela fournit aussi une borne sur le nombre de vortex par unité de volume en moyenne autour de la plupart des points
- pour obtenir la majoration il faut se ramener à des configurations de points périodiques cad mq on peut approcher la minimisation de W par une minimisation sur des grands tores
- \blacktriangleright montrer aussi que la discontinuité sur $\partial \omega$ génère une énergie négligeable

 pour dériver W on doit contrôler le nombre de vortex par unité de volume après blow-up

 \rightsquigarrow il faut des minorations très précises de leur coût et pour un nombre divergent

- ► le coût renormalisé d'un vortex dans B_R tend vers $-\infty$ quand il s'approche de $\partial B_R \rightsquigarrow$ besoin de tronquer et faire $R \rightarrow \infty$
- la taille du domaine dilaté tend vers ∞. Grâce au théorème ergodique, on définit une sorte de notion de Γ-convergence moyennée qui marche sur les domaines infinis quand il y a invariance par translation de la densité d'énergie. Alternative à une méthode d'Alberti-Müller via mesures de Young.

- cela fournit aussi une borne sur le nombre de vortex par unité de volume en moyenne autour de la plupart des points
- pour obtenir la majoration il faut se ramener à des configurations de points périodiques cad mq on peut approcher la minimisation de W par une minimisation sur des grands tores
- \blacktriangleright montrer aussi que la discontinuité sur $\partial \omega$ génère une énergie négligeable

 pour dériver W on doit contrôler le nombre de vortex par unité de volume après blow-up

 \rightsquigarrow il faut des minorations très précises de leur coût et pour un nombre divergent

- ► le coût renormalisé d'un vortex dans B_R tend vers $-\infty$ quand il s'approche de $\partial B_R \rightsquigarrow$ besoin de tronquer et faire $R \rightarrow \infty$
- la taille du domaine dilaté tend vers ∞. Grâce au théorème ergodique, on définit une sorte de notion de Γ-convergence moyennée qui marche sur les domaines infinis quand il y a invariance par translation de la densité d'énergie. Alternative à une méthode d'Alberti-Müller via mesures de Young.

- cela fournit aussi une borne sur le nombre de vortex par unité de volume en moyenne autour de la plupart des points
- pour obtenir la majoration il faut se ramener à des configurations de points périodiques cad mq on peut approcher la minimisation de W par une minimisation sur des grands tores
- ► montrer aussi que la discontinuité sur ∂ω génère une énergie négligeable

 pour dériver W on doit contrôler le nombre de vortex par unité de volume après blow-up

 \rightsquigarrow il faut des minorations très précises de leur coût et pour un nombre divergent

- ► le coût renormalisé d'un vortex dans B_R tend vers $-\infty$ quand il s'approche de $\partial B_R \rightsquigarrow$ besoin de tronquer et faire $R \rightarrow \infty$
- la taille du domaine dilaté tend vers ∞. Grâce au théorème ergodique, on définit une sorte de notion de Γ-convergence moyennée qui marche sur les domaines infinis quand il y a invariance par translation de la densité d'énergie. Alternative à une méthode d'Alberti-Müller via mesures de Young.

- cela fournit aussi une borne sur le nombre de vortex par unité de volume en moyenne autour de la plupart des points
- pour obtenir la majoration il faut se ramener à des configurations de points périodiques cad mq on peut approcher la minimisation de W par une minimisation sur des grands tores
- ► montrer aussi que la discontinuité sur ∂ω génère une énergie négligeable

▶ pour dériver W on doit contrôler le nombre de vortex par unité de volume après blow-up

 \rightsquigarrow il faut des minorations très précises de leur coût et pour un nombre divergent

- ► le coût renormalisé d'un vortex dans B_R tend vers $-\infty$ quand il s'approche de $\partial B_R \rightsquigarrow$ besoin de tronquer et faire $R \rightarrow \infty$
- la taille du domaine dilaté tend vers ∞. Grâce au théorème ergodique, on définit une sorte de notion de Γ-convergence moyennée qui marche sur les domaines infinis quand il y a invariance par translation de la densité d'énergie. Alternative à une méthode d'Alberti-Müller via mesures de Young.

- cela fournit aussi une borne sur le nombre de vortex par unité de volume en moyenne autour de la plupart des points
- pour obtenir la majoration il faut se ramener à des configurations de points périodiques cad mq on peut approcher la minimisation de W par une minimisation sur des grands tores
- ► montrer aussi que la discontinuité sur ∂ω génère une énergie négligeable

Le résultat abstrait

 θ_{λ} groupe à un paramètre d'actions sur les fonctions sur un espace topologique X(= action des translations)

Proposition

Soit f_{ε} fonctions positives sur X, avec $f_{\varepsilon} \Gamma$ -converge vers f sur X, au sens que si $u_{\varepsilon} \to u$ dans X, $\liminf_{\varepsilon \to 0} f_{\varepsilon}(u_{\varepsilon}) \ge f(u) + une$ hyp de coercivité. Soit

$$F_{\varepsilon}(u) = rac{1}{|\omega_{\varepsilon}|} \int_{\omega_{\varepsilon}} f_{\varepsilon}(heta_{y}u) \, dy$$

Si $F_{\varepsilon}(u_{\varepsilon}) \leq C$, quitte à extraire $u_{\varepsilon} \rightarrow u$ dans X et il existe une probabilité P sur X supportée sur $\mathcal{F} = l$ 'ensemble des limites de $\theta_{x_{\varepsilon}}u_{\varepsilon}$, invariante par l'action de θ , tq

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) \geq \mathbf{E}^{P} \left(\lim_{R \to \infty} \frac{1}{|B_{R}|} \int_{B_{R}} f(\theta_{y} u) dy \right)$$

Un exemple simple

Soit f_n des fonctions sur $\omega_n = n\omega$ tq

$$\frac{1}{|\omega_n|}\int_{\omega_n}|f_n|^2\leq C.$$

Alors il existe x_n et f tq $f_n(x_n + \cdot) \rightharpoonup f$ et

$$\liminf_{n\to\infty} \frac{1}{|\omega_n|} \int_{\omega_n} |f_n|^2 \geq \limsup_{R\to\infty} \frac{1}{|B_R|} \int_{B_R} |f|^2$$

Vient de la relation plus forte

$$\liminf_{n\to\infty}\frac{1}{|\omega_n|}\int_{\omega_n}|f_n|^2\geq \mathbf{E}^P\left(\limsup_{R\to\infty}\frac{1}{|B_R|}\int_{B_R}|f|^2\right)$$

 P_n processus stochastique obtenu en rendant tous les $f_n(x_n + \cdot)$ équiprobables, P_n tendue $\rightarrow P$.

• Soit H solution de

$-\Delta H = \delta_0 - 1$

sur un tore de volume 1 de forme quelconque.

- ► transformer de Fourier l'expression explicite de W dans ce cas pour en faire une fonction du réseau (régularisation de $\sum_{p \in \Lambda} \frac{1}{|p|^2}$)
- sa valeur se trouve liée à la fonction eta de Dedekind et aux séries de Eisenstein
- ▶ Minimiser *W* se ramène à minimiser la fonction zeta d'Epstein $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$, *s* > 2, parmi les réseaux Λ
- résultats de théorie des nombres (Cassels, Rankin, 60's) disent que c'est minimisé par le réseau triangulaire

Théorème

La fonction W restreinte aux configurations en réseau admet pour seul minimiseur le réseau triangulaire

\rightsquigarrow W permet de distinguer entre les réseaux

• Soit H solution de

 $-\Delta H = \delta_0 - 1$

sur un tore de volume 1 de forme quelconque.

- ► transformer de Fourier l'expression explicite de W dans ce cas pour en faire une fonction du réseau (régularisation de ∑_{p∈A} 1/|p|²)
- sa valeur se trouve liée à la fonction eta de Dedekind et aux séries de Eisenstein
- ▶ Minimiser *W* se ramène à minimiser la fonction zeta d'Epstein $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$, *s* > 2, parmi les réseaux Λ
- résultats de théorie des nombres (Cassels, Rankin, 60's) disent que c'est minimisé par le réseau triangulaire

Théorème

La fonction W restreinte aux configurations en réseau admet pour seul minimiseur le réseau triangulaire

$\rightsquigarrow \textit{W} \textit{ permet de distinguer entre les réseaux}$

• Soit H solution de

 $-\Delta H = \delta_0 - 1$

sur un tore de volume 1 de forme quelconque.

- ► transformer de Fourier l'expression explicite de W dans ce cas pour en faire une fonction du réseau (régularisation de ∑_{p∈A} 1/|p|²)
- ► sa valeur se trouve liée à la fonction eta de Dedekind et aux séries de Eisenstein
- ► Minimiser *W* se ramène à minimiser la fonction zeta d'Epstein $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$, s > 2, parmi les réseaux Λ
- ▶ résultats de théorie des nombres (Cassels, Rankin, 60's) disent que c'est minimisé par le réseau triangulaire

Théorème

La fonction W restreinte aux configurations en réseau admet pour seul minimiseur le réseau triangulaire

\rightsquigarrow *W* permet de distinguer entre les réseaux

• Soit H solution de

 $-\Delta H = \delta_0 - 1$

sur un tore de volume 1 de forme quelconque.

- ► transformer de Fourier l'expression explicite de W dans ce cas pour en faire une fonction du réseau (régularisation de ∑_{p∈A} 1/|p|²)
- ► sa valeur se trouve liée à la fonction eta de Dedekind et aux séries de Eisenstein
- ► Minimiser *W* se ramène à minimiser la fonction zeta d'Epstein $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$, s > 2, parmi les réseaux Λ
- résultats de théorie des nombres (Cassels, Rankin, 60's) disent que c'est minimisé par le réseau triangulaire

Théorème

La fonction W restreinte aux configurations en réseau admet pour seul minimiseur le réseau triangulaire

$\rightsquigarrow W$ permet de distinguer entre les réseaux

Conclusion et perspectives

- ▶ on a caractérisé l'emplacement des vortex dans tous les régimes de champs appliqués $h_{\rm ex} \ll \frac{1}{\varepsilon^2}$ jusqu'à l'échelle où on voit des vortex individuels
- ▶ on a derivé un problème limite d'interaction de points dans le plan : l'énergie renormalisée W
- ► *W* est une interaction de type logarithmique ~→ longue portée!
- ► ce problème permet de distinguer entre les réseaux et sélectionne le triangulaire ~→ première justification rigoureuse du réseau triangulaire d'Abrikosov dans ce régime
- ► reste à étudier l'énergie renormalisée W sans supposer cette périodicité ~> question de cristallisation...

- ► E. Sandier, S.S, *Vortices in the Magnetic Ginzburg-Landau Model*, Progress in Nonlinear Differential Equations, Birkhaüser, 2007.
- E. Sandier, S.S, From the Ginzburg-Landau energy to lattice problems, en préparation.