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Historical background: classical Perron-Frobenius theory

Perron (1907) proved the following.

Let A ∈ Rn×n, with Aij > 0 ∀i, j. Then,

1. ∃u ∈ Rn, ui > 0 ∀i, Au = ρ(A)u, with ρ(A) := max{|λ| |
λ eigenval. of A}.

2. The eigenvalue ρ(A) is algebraically simple, a fortiori, u is unique up to
a multiplicative constant.

Frobenius (1912) showed that the same is true when Aij ≥ 0, with
G := {(i, j) | Aij > 0} strongly connected (A irreducible).
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Let c be the cyclicity of G (=gcd lengths of circuits), and ω =
exp(i2π/c).

Then,

3. the whole spectrum of A is invariant by multiplication by ω, and ωjρ(A),
j = 0, . . . , c − 1 are the only eigenvalues of maximal modulus (all
algebraically simple)

4. so ρmax(A)−kcAkc converges as k tends to ∞.
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Krĕın and Rutman (1948) considered more generally a linear operator F
leaving invariant a (closed, convex, pointed) cone C in a Banach space E.

C invariant iff F preserves the order: x ≤ y when y − x ∈ C. For
E = Rn and C = Rn+, we recover Perron-Frobenius theory.

When F is non-linear, we must assume that x ≤ y =⇒ F (x) ≤ F (y),
and some homogeneity condition, e.g. F (λx) = λF (x), λ > 0.

Krĕın and Rutman again, Krasnoselskĭı’s school, Morishima, . . . ,
Nussbaum (AMS memoirs, 80), . . .

applications: population dynamics / biology (monotone systems);
combinatorial matrix theory, diffusion on fractals, . . .
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Let’s use logarithmic glasses, i.e. log-log plots ! (Viro).

When E = Rn, C = Rn+, or E = C(K), C = C+(K),

G(x) = log(F (exp(x))) .

G is a dynamic programming operator:

u ≤ v =⇒ G(u) ≤ G(v) (M)

G(µ1 + u) = µ1 +G(u), µ ∈ R (AH)

(M)+(AH) =⇒ (N): ‖G(u)−G(v)‖∞ ≤ ‖u− v‖∞.

The importance of these axioms was recognized by several authors,
including: Blackwell, . . . Crandall, Tartar (PAMS 80),. . . Neyman, Sorin,
. . .
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(unfortunately, logarithmic glasses seem less powerful for the cone of
semidefinite positive matrices).
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When G(x) = Px is linear,

(M) =⇒ Pij ≥ 0,

(AH) =⇒
∑
j Pij = 1,

so P is a Markov matrix.

In general, G may be thought of as a non-linear Markov

operator.

We may replace (AH) by (SAH):

G(µ1+u) ≤ µ1+G(u), µ ∈ R+ (sub-Markov case modelling
a termination probability).
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Fundamental example: dynamic operators of zero-sum repeated games
with state space {1, . . . , n} are of the form:

G : Rn → Rn Gi(x) = inf
a∈A(i)

sup
b∈B(i,a)

(rabi + P abi x)

P abi := (P abij ), proba. of moving i→ j,
∑
j P

ab
ij ≤ 1.

rabi : instantaneous payment of Player I to player II. Undiscounted value
defined in terms of

E (ra1b1
i1

+ · · ·+ r
akbk
ik

+ vik+1
) .

(Gk(v))i gives the value of the game in horizon k when the initial state
is i.

7



Kolokoltsov has shown that any order preserving sup-norm nonexpansive
map can be represented by such a game (Rubinov and Singer showed: even
with deterministic transition probabilities P abi ).
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Hamilton-Jacobi-Isaacs equations

∂v

∂t
= H(x,

∂v

∂x
,
∂2v

∂x2
), v(t = 0) given

come from stochastic games (players control a diffusion process):

X � Y =⇒ H(x, p,X) ≤ H(x, p, Y ).

The evolution semigroup St : v(0, ·)→ v(t, ·) is M AH.

Monotone (sup-norm stable) discretisation schemes yield discrete
stochastic game operators, as above.
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Some notions become natural with log-glasses.

(Garrett) Birkhoff (1957) approached Perron-Frobenius theory by means
of Hilbert’s geometry. Hilbert’s projective metric is defined by

dH(x, y) = log inf{β
α
| αy ≤ x ≤ βy, α, β > 0} .

It defines a metric on the set of rays included in the interior of C, i.e.
on {R+u | u ∈ intC}, because d(x, y) = 0 iff x = βy. If C is normal,
meaning that 0 ≤ x ≤ y =⇒ ‖x‖ ≤ γ‖y‖ for some constant γ, the latter
metric space is complete.
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Here is the intersection of a ball in Hilbert metric with the simplex,
when C = R3

+:

e1 e2

e3

When C = Rn+, setting log(x) := (log(xi))1≤i≤n,

dH(x, y) = ‖ log x− log y‖H where ‖z‖H := max
i
zi −min

i
zi

One may also consider Thompson’s metric:

dT (x, y) := ‖ log x− log y‖∞
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Birkhoff showed that if A is linear preserving C and if the diameter ∆ of
A(C − {0}) in Hilbert’s metric is finite, then

dH(Ax,Ay) ≤ γdH(x, y) ∀x, y ∈ intC, γ := tanh(
∆
4

) .

Perron’s theorem is a corollary.

In the non-linear case, if F is M and F (λx) = λF (x), λ > 0, then
F is still nonexpansive in Hilbert’s and Thompson metric (it may not be
contracting in Hilbert metric).
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Making simple things complicated ? looking at a linear monotone
population dynamics with log glasses.

x(k + 1) = Mx(k), Mij ≥ 0, v(k) = log x(k).

v(k + 1) = G(v(k))

Gi(v) = log(
∑
jMije

vj)

Gi is convex (as the log of a Laplace transform of a positive measure /
by Hölder)

Gi(v) = supp≥0,
P
i pi=1(p · v − Si(p;M))

Si(p,M) :=
∑
j pj log(pj/Mij)

So, vm(k + 1) = log xm(k) is the value of a stochastic control problem
in horizon k, with initial state m (state space {1, . . . , n}).
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When in state i, the player choose a probability vector p � Mi·, so
that Si(p;M) < ∞, she receives −Si(p;M), and moves to the next state
according to the probability p.
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The Collatz-Wielandt formula tells that

ρ(M) = inf{µ > 0 |Mx ≤ µx, x ∈ int Rn+}
= inf
x∈int Rn+

sup
i

(Mx)i/xi

We recover Kingmans’ inequality: log ◦ρ◦ exp is convex (the
exp is entrywise, exp(A) = (exp(Aij))). I.e. ρ((AijBij)1/2) ≤
ρ((Aij))1/2ρ((Bij))1/2.

Indeed, log ρ(M) = infv∈Rn supi log(
∑
j e

logMij+vj−vi) is the marginal
(minimum) of a convex function of the vi, logMij

This allows one to approach optimisation problems for the Perron
eigenvalue, when the matrix M depends of parameters.
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Application: Clairambault, Perthame, SG (CRAS07): inequalities for
Floquet multipliers.
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ObservationObservation: a circadian rhythm perturbation by chronic jet-lag-like light : a circadian rhythm perturbation by chronic jet-lag-like light 
entrainment (phase advance) enhances GOS tumour proliferation in B6D2Fentrainment (phase advance) enhances GOS tumour proliferation in B6D2F11 mice mice

LD12-12LD12-12

Jet-lagJet-lag

How can this be accounted for in a mathematical model of tumour growth?
Major public health stake! (does shift work enhance incidence of cancer?) 

    (The answer is yes, cf. e.g. Davis, S., Cancer Causes Control 2006)(The answer is yes, cf. e.g. Davis, S., Cancer Causes Control 2006)

1) A question from human and animal physiopathology:1) A question from human and animal physiopathology:
tumour growth and circadian clock disruptiontumour growth and circadian clock disruption

JL+RFJL+RF

Filipski JNCI 2002, Canc. Res. 2004, JNCI 2005, Canc. Causes Control 2006Filipski JNCI 2002, Canc. Res. 2004, JNCI 2005, Canc. Causes Control 2006

  Here, clearly:Here, clearly:

  λλ(jet-lag) >(jet-lag) > λ λ(LD 12-12)(LD 12-12)

  if if λ λ is a growth exponentis a growth exponent

LD12-12

Jet-lag
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Following Clairambault, Michel, Perthame (CRAS06), we model our
population of cells by a Partial Differential Equation for the density
ni(t, x) ≥ 0 of cells with age x in the phase i = 1, . . . , I at time t,

∂
∂tni(t, x) + ∂

∂xni(t, x) + [di(t, x) +Ki→i+1(t, x)]ni(t, x) = 0 ,

ni(t, x = 0) =
∫
x′≥0

Ki−1→i(t, x′) ni−1(t, x′) dx′, 2 ≤ i ≤ I,

n1(t, x = 0) = 2
∫
x′≥0

KI→1(t, x′) nI(t, x′) dx′ .

di(t, x) ≥ 0 the apoptosis rate, Ki→i+1(t, x) the transition rates from one
phase to the next. These coefficients can be constant in time or time
T -periodic in order to take into account the circadian rhythm.

The Floquet eigenvalue λper is such that there is a solution ni(t, x) =
Ni(t, x)eλpert with Ni(t, x) T -periodic and Ni > 0.
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Construct a stationnary system with some time-averaged coefficients
K̄(x), d̄(x). Can we choose the averages such that λper ≤ λs ?

λs is such that there is a solution ni(t, x) = Ni(x)eλst with Ni > 0.
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Theorem (Clairambault, SG, Perthame, CRAS07). If we take the arithmetical
mean of coefficients in infinitesimal terms, and the geometric mean of the
coefficients in the integral terms, the averaged system satisfies λs ≤ λper.

“Variability increases the growth rate”. This is the opposite of the
experimental inequality. (So the absence of circadian control cannot be
explained by general convexity techniques).
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〈di(x)〉a =
1
T

∫ T

0

di(t, x)dt, 〈Ki→i+1(t, x)〉a =
1
T

∫ T

0

Ki→i+1(t, x)dt ,

〈Ki→i+1(t, x)〉g = exp

(
1
T

∫ T

0

log
(
Ki→i+1(t, x)

)
dt

)
.

These averages define the Perron eigenvalue λs ∈ R:

∂

∂x
N̄i(x) + [〈di(x)〉a + λs + 〈Ki→i+1(t, x)〉a]N̄i = 0 ,

N̄i(x = 0) =
∫
x′≥0

〈Ki−1→i(t, x′)〉g N̄i−1(x′)dx′, i 6= 1 ,

N̄1(x = 0) = 2
∫
x′≥0

〈KI→1(t, x′)〉g N̄I(x
′)dx′
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Let’s prove the discrete analogue.

ẋ(t) = A(t)x(t), A T− periodic, Aij ≥ 0 for i 6= j.

ẋ(t) = A(t)x(t)− λperx(t) with x T -periodic.

Define Āii = 〈Aii〉a and Āij = exp
(
〈log(Aij)〉a

)
for i 6= j.

Let λs denote the spectral abscissa of Ā, let’s show λs ≤ λper.

vi(t) := log xi(t) and for i 6= j, logAij(t) := logAij(t) .
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v̇i(t) =
∑
j

x−1
i (t)Aij(t)xj(t)− λper

=
∑
j 6=i

exp(−vi(t) + logAij(t) + vj(t)) +Aii(t)− λper .

Taking the arithmetic mean on [0, T ], and using Jensen:

0 =

〈∑
j 6=i

exp(−vi(t) + logAij(t) + vj(t))

〉
a

+ 〈Aii(t)〉a − λper ,

0 ≥
∑
j 6=i

exp(−〈vi(t)〉a + 〈logAij(t)〉a + 〈vj(t)〉a) + 〈Aii(t)〉a − λper .
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Setting x̄i := exp(〈vi(t)〉a),

0 ≥
∑
j

x̄−1
i Āijx̄j − λper ,

Āx̄ ≤ λperx̄ .

Using Collatz-Wielandt, λs = min{r; ∃Y ∈ int Rd+, ĀY ≤ rY } ≤ λper.
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Some results of non-linear Perron-Frobenius theory

Convergence to periodic orbits.

Theorem (Akian, SG, Lemmens, Nussbaum, Math. Proc. Camb. Phil. Soc.,06).
Let C be a polyhedral cone with N facets in a finite dimensional vector
space X. If F : C → C is a continuous order preserving subhomogeneous
map and the orbit of x ∈ C is bounded, then limk→∞F

kp(x) exists with

p ≤ max
q+r+s=N

N !
q!r!s!

=
N !

bN3 c!b
N+1

3 c!b
N+2

3 c!
.

Subhomogeneous means that F (λx) ≤ λF (x) for λ > 1.
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This comes after a long series of works on periodic orbits of nonexpansive
maps when the norm is polyhedral: Ackoglu and Krengel, Weller, Martus,
Nussbaum, Sine, Scheutzow, Verdyun-Lunel,. . .

Some ingredients of the proof: Reduce C = Rn+. If the orbit of x
stays in the interior of C, we can look at it with logarithmic glasses, i.e.,
consider G := log ◦F ◦ exp, which is order preserving and nonexpansive in
the sup-norm. Then a result of Lemmens and Scheutzow (Erg. Th. Dyn.
S. 05) shows that the orbit length is at most

N !
bN2 c!b

N+1
2 c!

Conjecture (Nussbaum). If G is non-expansive in the sup-norm (but not
order preserving) the bound becomes 2N .
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Application. Assume that G : Rn → Rn is order preserving and
additively homogeneous: G(α + x) = α + G(x) (think to undiscounted
games). Here, α+ x := (α+ xi)1≤i≤n.

If G(u) ≤ u, u ∈ Rn, then limkG
kp(x) exists in (R ∪ {−∞})n, for all

x ∈ Rn.

If G(u) = u, u ∈ Rn, then limkG
kp(x) exists in Rn, for all x ∈ Rn.

Assume that G has an additive eigenvector, so G(u) = λ + u, λ ∈ R,
u ∈ Rn, then, for all x ∈ Rn,

Gk(x) = kλ+ asymp. periodic. term in k

6= Difficult case in which Gki (x) − Gkj (x) → ∞: Neyman, Sorin,
Rosenberg. . .
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Existence of eigenvectors.

Theorem (SG, Gunawardena, TAMS 04). Assume that G is order preserving
and additively homogeneous, and that the recession function

Ĝ(x) := lim
t→∞

t−1G(tx)

exists. If
Ĝ(x) = x =⇒ x1 = · · · = xn

then
∃u ∈ Rn, ∃λ ∈ R, G(u) = λ+ u
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Application. A game inspired by Richman games / discretisation of
infinity Laplacian.

Let

Gi(x) =
1
2

( min
(i,j)∈G

Aij + xj + max
(i,j)∈G

Aij + xj) .

Two players. One flips a coin to decide who plays. Player MIN plays Aij to
Player MAX if the move is i→ j.

Ĝ(x) =
1
2

( min
(i,j)∈G

xj + max
(i,j)∈G

xj)

If xi = m := maxk xk, and x = Ĝ(x), (i, j) ∈ G =⇒ xj = m. So

x = Ĝ(x) =⇒ x1 = · · · = xn if G is strongly connected.
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Representation of the fixed point set

Let P be a Markov matrix: an harmonic function, v = Pv, is determined
uniquely by its value on recurrent classes, and its restriction on a recurrent
class is a constant.
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Precise results are available when G : Rn → Rn is order preserving,
nonexpansive in the sup-norm, and convex.

Then, by Legendre-Fenchel duality

G(x) = sup
P∈S+

n

(Px−G∗(P ))

where S+
n denote the set of substochastic matrices, and G∗(P ) ∈ (R ∪

{+∞})n.

Compare with the dynamic programming operator of a stochastic control
problem with state space {1, . . . , n}:

Gi(x) = sup
a∈A(i)

(rai + P ai x)

The previous expression is a canonical form of G: when in state i, the
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player chooses the substochastic vector Pi ∈ domG∗i , receives the payment
−G∗i (P ) when in state i, and moves to j with probability Pij.

The ergodic control problem consists in finding P ∈ domG∗ such
that −mG∗(P ) is maximal, where m is an invariant measure of P . If
G(u) = λ+ u with λ ∈ R and u ∈ Rn, this maximum is equal to λ.

Normalise G and assume that G(u) = u. We say that i is critical
if it belongs to a recurrence class of some matrix P such that G(u) =
Pu − G∗(P ) (in other words, if it is recurrent for a stationnary strategy
which is optimal for the ergodic problem). Let C denote the set of critical
nodes. We can write C = C1∪ · · ·∪Cs where the Ci are maximal recurrent
classes of randomised optimal strategies.
Theorem (Akian, SG, NLA TMA 03). The restriction x 7→ xC is a sup-
norm isometry from E := {x | G(x) = x} to a convex set K, and for all
x, y ∈ E, i 7→ xi − yi is constant on each class Ck, and so dimK ≤ s.
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“An harmonic function is defined uniquely by its value on the boundary”.
Here, C plays the role of the boundary, it is a discrete version of the Aubry
set arising in Fathi weak KAM’s theory.

Can we extend this to continuous time/second order PDE? special case
in a recent work with Akian and David, control of a degenerate diffusion on
the torus.

dxt = g(xt,ut) dt+ σ(xt,ut) dbt

Minu E

[∫ T

0

L(xs,us) ds+ φ(xT )

]
,

33



Find λ ∈ R, φ a function, such that Stφ = λt+ φ,∀t ≥ 0.

λ−H(x,Dφ(x), D2φ(x)) = 0, x ∈ Tn,

H(x, p,A) = min
u∈U

(
1
2

(σ(x, u)σ(x, u)TA) + 〈p, g(x, u)〉+ L(x, u)
)
.

We assume that for x ∈ Td \ {x1, . . . , xk}, and for all u, L(x, u) > 0 or
σ(x, u)σT (x, u) � 0, whereas ∀xi,∃ui, L, g, σ vanish at (xi, u).

So the “Aubry set” is finite. Similar representation theorem
(unfortunately, existence of Lyapunov functions is needed for the full
representation).
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In another recent work, we extend the discrete result to the case where
G is expansive (but still convex), i.e. to the case of a “negative discount
rate”.

Define the semiderivative G′v(y) = supP∈∂G(v)Py, so that G(v + y) =
G(v) +G′v(y) + o(‖y‖).

A fixed point v of G is ?-stable if every orbit of G′v is bounded above.
This is weaker than Lypunov stability. Critical classes are defined as before,
as the classes of the P ∈ ∂G(v) which have spectral radius 1 (such matrices
must be stable - every orbit of P is bounded).
Theorem (Akian, SG, Lemmens). A ?-stable fixed point is determined
uniquely by its value on critical classes.
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Application: the representation of the fixed points has been used in
Cochet,SG CRAS 06, policy iteration algorithm for stochastic games with
ergodic payoff in degenerate cases (degenerate transition probabilities).
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Open question: find a representation of fixed points in the case of
games.

37



Static analysis of programs by abstract interpretation

Cousot: finding invariants of a program reduces to compute the smallest
fixed point of a monotone self-map of a complete lattice L

To each breakpoint i of the program, is associated a set xi ∈ L which
is an overapproximation of the set of reachable values of the variables, at
this breakpoint.

xi may be a cartesian product of intervals (one interval for each variable
of the program)
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The best x is the smallest solution of a fixed point problem x = f(x)
with f order preserving Ln → Ln (n ≤ ] breakpoints).

void main() {
int x=0; // 1
while (x<100) { // 2
x=x+1; // 3

} // 4
}

x1 = [0, 0]
x2 = ]−∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)

Let x+
2 := maxx2. After some elimination, we arrive at

x+
2 = min(99,max(0, x+

2 + 1)) .

The smallest x+
2 is 99, it is the value of a zero-sum game with a stopping

option.

39



When does the fixed point problem of abstract intepretation

reduce to a game problem ?

Does it work for

More general programs ?

More general domains ?
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Some useful domains

1. Zones (Miné). Sets of the form

Z = {x ∈ Rn | xi − xj ≤Mij}

a zone is coded by the matrix M ∈ (R ∪ {+∞})n×n.

by setting x0 := 0 and projecting, we see that Zones ⊃ Intervals.

2. Polyhedra (Cousot, Halbwachs 78. . . )

but the number of extreme points or faces may grow exponentially

→ not scalable
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3. Templates S. Sankaranarayanan and H. Sipma and Z. Manna
(VMCAI’05)

almost as expressive as polyhedra but scalable.

I’ll give a convex analytic view of templates.

The support function σX of X ⊂ Rn is defined by

σX(p) = supx∈X p · x

Legendre-Fenchel duality tells that σX = σY iff X and Y have the same
closed convex hull.

σX(αp) = ασX(p) for α > 0, so it is enough to know σX(p) for all p in
the unit sphere.

Idea: discretize the unit sphere and represent X by σX restricted to the
discretization points.
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So fix P ⊂ Rn a finite set of directions.

L(P) lattice of sets of the form

Z = {x | p · x ≤ γ(p), ∀p ∈ P}, γ : P → R ∪ {+∞}.

Z is coded by γ := σZ |P.

Z is a polyhedron every facet of which is orthogonal to some p ∈ P.

Specialization: P = {±ei, i = 1, . . . , n} gives intervals, P = {±(ei −
ej), 1 ≤ i < j ≤ n} gives Miné’s templates.
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void main() {
i = 1; j = 10;
while (i <= j){ //1
i = i + 2;
j = j - 1; }

}

γ(e1) = +∞
γ(−e1) = −1

γ(e2) = 10

γ(−e2) = −∞
γ(e1 − e2) = 0

γ(e1 + 2e2) = 21

γ(−e1 − 2e2) = −21 .

P = {±e1,±e2, e1 − e2,±(e1 + 2e2)}, γ: breakpoint 1.
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void main() {
i = 1; j = 10;
while (i <= j){ //1
i = i + 2;
j = j - 1; }

}

i ≤ +∞
i ≥ 1

j ≤ 10

j ≥ −∞
i ≤ j

i+ 2j ≤ 21

i+ 2j ≥ 21

(i, j) ∈ [(1, 10), (7, 7)] (exact result).
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To reach this conclusion, we have to solve the fixed point problem:

γ(p) = ((1, 10) · p) ∨ (γ̄(p) + (2,−1) · p), ∀p ∈ P \ {e1 − e2}
γ(e1 − e2) = 0 ∧ (−9 ∨ (γ̄(e1 − e2)− 3))

γ̄ = convex hull(γ)

void main() {
i = 1; j = 10;
while (i <= j){ //1
i = i + 2;
j = j - 1; }

}
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Correspondence theorem (SG, Goubault, Taly, Zennou, ESOP’07)
When the arithmetics of the program is affine (no product or division of
variables), abstract interpretation over a lattice of templates reduces to
finding the smallest fixed point of a map f : (R∪{+∞})n → (R∪{+∞})n
of the form

fi(x) = inf
a∈A(i)

sup
b∈B(i,a)

(rabi +Mab
i x)

with Mab
i := (Mab

ij ), Mab
ij ≥ 0, but possibly

∑
jM

ab
ij > 1

→ game in infinite horizon with a “negative discount rate”.
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Sketch of proof.

y = Ax + b; If x ∈ Z1 := {z | p · z ≤ γ1(z), ∀p ∈ P}, find the best
Z2 := {z | p · z ≤ γ2(z), ∀p ∈ P} such that y ∈ Z2.

γ2(p) = supx∈Z1 p · (Ax+ b) = sup p · (Ax+ b); p · x ≤ γ1(p), ∀p ∈ P

by the strong duality theorem

= inf p · b+
∑
q∈P λ(q)γ1(q); λ(q) ≥ 0, ATp =

∑
q∈P λ(q)q

The inf is attained at an extreme point of the feasible set, so this is in
fact a min over a finite set.

σX∩Y = convex hull(inf(σX, σY )).

Convex hull reduces to a finite min by a similar argument.

Modelling the dataflow yields maxima, because σX∪Y = sup(σX, σY )
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How to solve the fixed point problem ?

Classically: Kleene (fixed point iteration) is slow or may even not
converge, so widening and narrowing have been used, leading to an
overapproximation of the solution.

An alternative: Policy iteration.

method developed by Howard (60) in stochastic control, extended by
Hofman and Karp (66) to some special (nondegenerate) stochastic games.
Extension to Newton method =⇒ fast. complexity still open.

extended by Costan, SG, Goubault, Martel, Putot, CAV’05) to fixed
point problems in static analysis (difficulty: what are the strategies?)

experiments: PI often yields more accurate fixed points (because it
avoids widening), small number of iterations.
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A strategy is a map π which to a state i associates an action π(i) ∈ A(i).

Consider the one player dynamic programming operator:

fπi (x) := sup
b∈B(i,π(i))

(rπ(i)b
i +M

π(i)b
i x)

f = inf
π
fπ

and the set {fπ | π strategy } has a selection:

∀v ∈ Rn, ∃π f(v) = fπ(v) .
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Since fπ is convex and piecewise affine, finding the smallest finite fixed
point of fπ (if any) can be done by linear programming:

min
∑
i

vi; fπ(v) ≤ v .

Can we compute the smallest fixed point of f from the smallest fixed
points of the fπ?
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We denote by f− the smallest fixed point of a monotone self-map f of
a complete lattice L, whose existence is guaranteed by Tarski’s fixed point
theorem.
Theorem (Costan, SG, Goubault, Martel, Putot CAV’05). Let G denote a
family of monotone self-maps of a complete lattice L with a lower
selection, and let f = inf G. Then f− = infg∈G g− .

The input of the following algorithm consists of a finite set G of
monotone self-maps of a lattice L with a lower selection. When the
algorithm terminates, its output is a fixed point of f = inf G.
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1. Initialization. Set k = 1 and select any map g1 ∈ G.

2. Value determination. Compute a fixed point xk of gk.

3. Compute f(xk).

4. If f(xk) = xk, return xk.

5. Policy improvement. Take gk+1 such that f(xk) = gk+1(xk). Increment
k and goto Step 2.

The algorithm does terminate when at each step, the smallest fixed-point
of gk, xk = g−k is selected.
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Example. Take L = R, and consider the self-map of L, f(x) =
inf1≤i≤mmax(ai + x, bi) , where ai, bi ∈ R. The set G consisting of
the m maps x 7→ max(ai + x, bi) admits a lower selection.

g2

g1

x2 x1 x

y

x2 x3 x11
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Experimentally fast, but the worst case complexity is not known. Condon
showed: mean payoff games is in NP ∩ co-NP, same with positive discount.
Much current work: (Zwick, Paterson, TCS 96), (Jurdziński, Paterson,
Zwick, SODA’06), (Bjorklund, Sandberg, Vorobyov, preprint 04),

PI often more accurate than Klenne+widening/narrowwing:
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0 i = 150;
1 j = 175;
2 while (j >= 100){
3 i++;
4 if (j<= i){
5 i = i - 1;
6 j = j - 2;
7 }
8 }
9

M0 = context initialization
M2 = (Assignment (i← 150, j ← 175)(M0))∗

M3 = ((M2 tM8) u (j ≥ 100))∗

M4 = (Assignment (i← i+ 1)(M3))∗

M5 = (M4 u (j ≤ i))∗

M7 = (Assignment (i← i− 1, j ← j − 2)(M5))∗

M8 = ((M4 u (j > i))∗ tM7

M9 = ((M2 tM8) u (j < 100))∗

IP

 150 ≤ i ≤ 174
98 ≤ j ≤ 99

−76 ≤ j − i ≤ −51
Mine’s Octogon


150 ≤ i

98 ≤ j ≤ 99
j − i ≤ −51
248 ≤ j + i
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In the case of “negative” discount, no systematic efficient technique is
known yet to determine the smallest fixed point!
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