Lignes Géodésiques et Segmentation d'images

Laurent D. COHEN

Directeur de Recherche CNRS CEREMADE, UMR CNRS 7534 Université Paris-9 Dauphine Place du Maréchal de Lattre de Tassigny 75016 Paris, France <u>Cohen@ceremade.dauphine.fr</u>

http://www.ceremade.dauphine.fr/~cohen Some joint works with G. Peyré, S. Bougleux, and PhD students R. Ardon, S. Bonneau and F. Benmansour. Collège de France, 16 Janvier 2009

29/01/2009 21:20

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Paths of minimal energy

Looking for a path along which a feature Potential P(x,y) is minimal

example: a vessel dark structure P = gray levelInput : Start point p0=(x0,y0)End point p1 = (x,y)Image Output: Minimal Path

Paths of minimal energy

Looking for a path along which a feature Potential P(x,y) is minimal

example: cardiac ventricle contour P = gradient basedInput : Start point p0=(x0,y0)End point p1 = (x,y)Image

Output: Minimal Path

29/01/2009 21:20

$$E(C) = \int_0^L P(C(s)) ds$$

Potential P>0 takes lower values near interesting features : on contours, dark structures, ...

STEP 1 : search for the surface of minimal action U of p0 as the minimal energy integrated along a path between start point p0 and any point p in the image Start point C(0) = p0; $U_{p0}(p) = \inf_{C(0)=p0; C(L)=p} E(C) = \inf_{C(0)=p0; C(L)=p} \int_{0}^{L} P(C(s)) ds$

STEP 2: Back-propagation from the end point *p1* to the start point *p0*: Simple Gradient Descent along U_{p0}

STEP 1 : minimal action U of p0 as the minimal energy integrated along a path between start point p0 and any point p in the image

Start point C(0) = p0; $U_{p0}(p) = \inf_{C(0)=p0; C(L)=p} E(C) = \inf_{C(0)=p0; C(L)=p} \int_{0}^{L} P(C(s)) ds$ Solution of Eikonal equation: $\left\| \nabla U_{p0}(x) \right\| = P(x) \text{ and } U_{p0}(p0) = 0$

Example P=1, U Euclidean distance to p0

$$E(C) = \int_0^L P(C(s)) ds$$

STEP 2: Back-propagation from the end point *p*² to the start point *p*¹:

Simple Gradient Descent along U

$$\frac{dC}{ds}(s) = -\nabla U_{p_1}(C(s)) \text{ with } C(0) = p_2.$$

Theorem 1: (Euler Lagrange of E) Any curve C which is a local minimum of energy E is a solution of $\nabla \mathcal{D}(\mathcal{O}) = \overline{\mathcal{O}}(\mathcal{O})$

$$\nabla \mathcal{P}(C) \cdot \vec{n} = \mathcal{P}(C)\kappa$$

Definition 2 (Critical curves) We say that C is a critical curve of the energy E if C is a solution of the Euler-Lagrange equation (5).

Definition 2 (Critical curves) We say that C is a critical curve of the energy E if C is a solution of the Euler-Lagrange equation $\nabla \mathcal{D}(\mathcal{O}) = \nabla \mathcal{D}(\mathcal{O})$

 $\nabla \mathcal{P}(C) \cdot \vec{n} = \mathcal{P}(C)\kappa$

Definition 3 (field lines) We will say that C is a field line of ∇U_{p_1} if it is the solution of the ordinary differential equation

$$\begin{cases}
\frac{d\mathcal{C}(t)}{dt} = -\nabla U_{p_1} \left(\mathcal{C}(t) \right) \\
\mathcal{C}(0) = \mathbf{p}.
\end{cases}$$
(11)

where \mathbf{p} is a point of the image domain.

And we have the following property:

Theorem 4 (Field Lines and Euler-Lagrange equation) If $U_{\mathbf{p}_1}$ is solution to the problem $\|\nabla U_{\mathbf{p}_1}\| = \mathcal{P}$ with $U_{\mathbf{p}_1}(\mathbf{p}_1) = 0$, every line field of $\nabla U_{\mathbf{p}_1}$ is a critical curve of the geodesic energy E.

FAST MARCHING in 2D:

very efficient algorithm O(NlogN) for Eikonal Equation

Introduced by Sethian / Tsistsiklis

Numerical approximation of U(xij) as the solution to the discretized problem with upwind finite difference scheme

 $\left\|\nabla U\right\| = \widetilde{P}$

29/01/2009 21:20

$$\max\left(u - U(x_{i-1,j}), u - U(x_{i+1,j}), 0\right)^{2} + \max\left(u - U(x_{i,j-1}), u - U(x_{i,j+1}), 0\right)^{2} = h^{2} \widetilde{P}(x_{i,j})^{2}$$

This 2nd order equation induces that : action U at {i,j} depends only of the neighbors that have lower actions. Fast marching introduces order in the selection of the grid points for solving this numerical scheme.

> Starting from the initial point p0 with U = 0, the action computed at each point visited can only grow.

Level sets of U can be seen as a Front propagation outwards. Laurent COHEN, Collège de France, 2009

J. A. Sethian

Itération #1

• Find point \mathbf{x}_{min}

(Trial point with smallest value of \mathcal{U}).

- **x**_{min} becomes Alive.
- For each of 4 neighbors \mathbf{x} of point \mathbf{x}_{min} :
 - If **x** is not Alive,

Estimate $\mathcal{U}(\mathbf{x})$ with upwind scheme.

x becomes Trial.

J. A. Sethian

Itération #2

• Find point \mathbf{x}_{min}

(Trial point with smallest value of \mathcal{U}).

- **x**_{min} becomes Alive.
- For each of 4 neighbors \mathbf{x} of point \mathbf{x}_{min} :
 - If **x** is not Alive,

Estimate $\mathcal{U}(\mathbf{x})$ with upwind scheme.

x becomes Trial.

J. A. Sethian

Itération #k

• Find point \mathbf{x}_{min}

(Trial point with smallest value of \mathcal{U}).

- **x**_{min} becomes Alive.
- For each of 4 neighbors \mathbf{x} of point \mathbf{x}_{min} :
 - If **x** is not Alive,
 - Estimate $\mathcal{U}(\mathbf{x})$ with upwind scheme.

x becomes Trial.

J. A. Sethian

29/01/2009 21:20

Minimal action $\mathcal{U}_1: \Omega \to \mathbb{R}^+$ solution of Eikonal equation :

$$\begin{cases} \|\nabla \mathcal{U}_1(\mathbf{x})\| = \tilde{\mathcal{P}}(\mathbf{x}) \text{ pour } \mathbf{x} \in \Omega \\ \\ \mathcal{U}_1(\mathbf{p}_1) = 0 \end{cases}$$

minimal action \mathcal{U}_1

minimal path

$$\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2} = \min_{\gamma \in \mathcal{A}_{\mathbf{p}_1,\mathbf{p}_2}} \int_{\gamma} \tilde{\mathcal{P}}(\gamma(s)) \mathrm{d}s$$

0

Is obtained by solving ODE:

$$\begin{cases} \frac{\partial \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)}{\partial s} = -\nabla \mathcal{U}_1(\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)) \\ \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(0) = \mathbf{p}_2 \end{cases}$$

⇒ simple gradient descent on
 U₁ from p₂ to p₁

minimal action \mathcal{U}_1

Step #1

$$\begin{cases} \|\nabla \mathcal{U}_1(\mathbf{x})\| = \tilde{\mathcal{P}}(\mathbf{x}) \text{ pour } \mathbf{x} \in \Omega \\ \\ \mathcal{U}_1(\mathbf{p}_1) = 0 \end{cases}$$

potential $\mathcal{P}_{\text{Laurent COHEN, Collège de France, 2009}$

Step #1

$$\begin{cases} \|\nabla \mathcal{U}_1(\mathbf{x})\| = \tilde{\mathcal{P}}(\mathbf{x}) \text{ pour } \mathbf{x} \in \Omega \\ \\ \mathcal{U}_1(\mathbf{p}_1) = 0 \end{cases}$$

29/01/2009 21:20 minimal action \mathcal{U}_1 ent COHEN, Collège de France, 2009

Step #1

$$\left\{ \begin{array}{l} \|\nabla \mathcal{U}_1(\mathbf{x})\| = \tilde{\mathcal{P}}(\mathbf{x}) \text{ pour } \mathbf{x} \in \Omega \\ \\ \mathcal{U}_1(\mathbf{p}_1) = 0 \end{array} \right.$$

Step #2gradient descent on \mathcal{U}_1 forextraction of minimal path $\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}$

$$\begin{cases} \frac{\partial \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)}{\partial s} = -\nabla \mathcal{U}_1(\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)) \\ \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(0) = \mathbf{p}_2 \end{cases}$$

29/01/2009 21:20 minimal action \mathcal{U}_1 ent COHEN, Collège de France, 2009

Step #1

$$\left\{ \begin{array}{l} \|\nabla \mathcal{U}_1(\mathbf{x})\| = \tilde{\mathcal{P}}(\mathbf{x}) \text{ pour } \mathbf{x} \in \Omega \\ \\ \mathcal{U}_1(\mathbf{p}_1) = 0 \end{array} \right.$$

Step #2gradient descent on \mathcal{U}_1 forextraction of minimal path $\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}$

$$\begin{cases} \frac{\partial \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)}{\partial s} = -\nabla \mathcal{U}_1(\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)) \\ \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(0) = \mathbf{p}_2 \end{cases}$$

29/01/2009 21:20 minimal action \mathcal{U}_1 ent COHEN, Collège de France, 2009

Step #1

$$\left\{ \begin{array}{l} \|\nabla \mathcal{U}_1(\mathbf{x})\| = \tilde{\mathcal{P}}(\mathbf{x}) \text{ pour } \mathbf{x} \in \Omega \\ \\ \mathcal{U}_1(\mathbf{p}_1) = 0 \end{array} \right.$$

Step #2gradient descent on \mathcal{U}_1 forextraction of minimal path $\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}$

$$\begin{cases} \frac{\partial \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)}{\partial s} = -\nabla \mathcal{U}_1(\mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(s)) \\ \mathcal{C}_{\mathbf{p}_1,\mathbf{p}_2}(0) = \mathbf{p}_2 \end{cases}$$

29/01/2009 21:20

Minimal paths for 2D segmentation

Energy to minimize

$$E(\gamma) = \int_0^L P(\gamma(t)) dt$$

$$P: X \in \Omega \to \frac{1}{1 + \alpha \cdot |\nabla I_{\sigma}(X)|^2}$$

29/01/2009 21:20

Minimal paths for 2D segmentation

29/01/2009 21:20

Minimal paths for 2D segmentation

► $P(\mathbf{x}) = w + (I(\mathbf{x}) - I(\mathbf{x}_0))^2 \Longrightarrow$ chemin d'intensité homogène

29/01/2009 21:20

Simultaneous propagation of two fronts until a shock occurs.

Reference: T. Deschamps and L. D. Cohen <u>Minimal paths in 3D images and application to virtual endoscopy.</u> *Proceedings ECCV'00*, Dublin, Ireland, 2000.

29/01/2009 21:20

Examples of 3D Minimal Paths

Colon 3D CT

Trachea 3D CT

29/01/2009 21:20

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Riemannian Manifolds, Anisotropy and Geodesic Distances

2D Riemannian manifolds defined over a compact planar domain Ω⊂ℝ²
 Length of a curve [0,1]→Ω

$$L(\gamma) \stackrel{\text{\tiny def.}}{=} \int_0^1 \sqrt{\gamma'(t)^{\mathrm{T}} H(\gamma(t)) \gamma'(t)} \mathrm{d}t.$$

with $H:\Omega \to \mathbb{R}^{2\times 2}$ a metric tensor field of anisotropy $\alpha:\Omega \to [0,1]$ • Geodesic distance

$$d(x, y) = \min_{\gamma \in P(x, y)} L(\gamma), \quad \forall (x, y) \in \mathbb{R}^2$$

• Distance map $U_s: \Omega \to \mathbb{R}$ of a point set $S = \{x_k\}_k$
 $U_s(x) = \min_{x, \in S} d(x, x_k), \quad \forall x \in \Omega$

Anisotropy and Eikonal Equation

Theorem: U_{x_0} is the unique viscosity solution of the Hamilton-Jacobi equation

 $\|\nabla U_{x_0}\|_{H(x)^{-1}} = 1$ with $U_{x_0}(x_0) = 0$, where $\|v\|_A = \sqrt{v^T A v}$.

Geodesic curve γ between x_1 and x_0 solves $\gamma'(t) = -\frac{H(\gamma(t))^{-1} \nabla U_{x_0}}{\|H(\gamma(t))^{-1} \nabla U_{x_0}\|} \quad \text{with} \quad \gamma(0) = x_1.$

Example: isotropic metric $H(x) = W(x) \operatorname{Id}_x$,

 $\|\nabla U_{x_0}\| = W(x)$ and $\gamma'(t) = -\frac{\nabla U_{x_0}}{\|\nabla U_{x_0}\|}.$

Anisotropy and Geodesics

Anisotropy and Geodesics

Tensor eigen-decomposition:

 $H(x) = \lambda_1(x)e_1(x)e_1(x)^{\mathrm{T}} + \lambda_2(x)e_2(x)e_2(x)^{\mathrm{T}} \quad \text{with} \quad 0 < \lambda_1 \leq \lambda_2,$

Local anisotropy of the metric:

Anisotropic Voronoi Segmentation

Voronoi segmentation:

$$\Omega = C_0 \bigcup_{x_i \in \mathcal{S}} \mathcal{C}_i \quad \text{where} \quad \mathcal{C}_i = \{x \in \Omega \setminus \forall j \neq i, \quad d(x_i, x) \leq d(x_j, x)\}$$

Outer cell: $\mathcal{C}_0 = \text{Closure}(\Omega^c).$

The potential is an incomplete ellipse and 7 points are given.

Reference: L. D. Cohen <u>Multiple Contour Finding and Perceptual Grouping using Minimal Paths.</u> *Journal of Mathematical Imaging and Vision*, **14**:225-236, 2001.

29/01/2009 21:20

Reference: L. D. Cohen <u>Multiple Contour Finding and Perceptual Grouping using Minimal Paths.</u> *Journal of Mathematical Imaging and Vision*, **14**:225-236, 2001.

29/01/2009 21:20

Perceptual Grouping using Minimal Paths

Using the orientation with anisotropic geodesics

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

3D Minimal Paths for tubular shapes in 2D

2D in space, 1D for radius of vessel

3D Minimal Paths for tubular shapes in 2D Motivation

Orientation dependent Energy

Minimal paths method : looking for a path minimizing the energy

 $E(\mathcal{C}) = \int_0^L P(\mathcal{C}(s)) ds$

Since the tubular structures have directions, we should consider the orientation:

 $E(\mathcal{C}) = \int_0^L P(\mathcal{C}(s),\mathcal{C}'(s)) ds$

68

3D Minimal Path for tubular shapes in 2D

Figure 1. A tubular surface is presented as the envelope of a family of spheres with continuously changing center points and radii. 29/01/2009 21:20 Laurent COHEN, Collège de France, 2009 Examples of 3D Minimal Paths for tubular shapes in 2D Anisotropic Fast Marching algorithm to solve $\|\nabla \mathcal{U}(x)\|_{\mathcal{M}^{-1}} = \sqrt{\nabla \mathcal{U}(x)^T \mathcal{M}^{-1}(x) \nabla \mathcal{U}(x)} = 1 \text{ and } \mathcal{U}_{p_0}(p_0) = 0$

and back-propagation $\mathcal{C}' \propto \mathcal{M}^{-1} \nabla \mathcal{U}$

Examples of 3D Minimal Paths for tubular shapes in 2D

29/01/2009 21:20

Examples of 3D Minimal Paths for tubular shapes in 2D 2D in space, 1D for radius of vessel

Examples of 3D Minimal Paths for tubular shapes in 2D 2D in space, 1D for radius of vessel

Examples of 3D Minimal Paths for tubular shapes in 2D

2D in space, 1D for radius of vessel

Examples of 4D Minimal Paths for tubular shapes in 3D

29/01/2009 21:20

Examples of 4D Minimal Paths for tubular shapes in 3D

Examples of 4D Minimal Paths for tubular shapes in 3D

3D in space, 1D for radius of vessel

29/01/2009 21:20

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Adding keypoints: Stopping criterion

The propagation must be stopped as soon as the domain visited by the fronts has the same topology as a ring.

Finding a closed contour by growing minimal paths

29/01/2009 21:20

Finding a closed contour by growing minimal paths

29/01/2009 21:20

Finding a contour between two points by growing minimal paths

Finding a contour between two points by growing minimal paths

Extension to 3D vessel segmentation

Example of results of the keypoints method in a 3D image of Pulmonary Arteries

29/01/2009 21:20

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

3D extension: Finding a closed surface by growing minimal paths. Result is a Geodesic Mesh

• On a 3D synthetic image

29/01/2009 21:20

3D extension: Finding a closed surface by growing minimal paths. Result is a Geodesic Mesh

Mesh is completed to a surface using a Transport equation

 Mesh is completed to a surface using a Transport equation
 Example for a 2D image.

29/01/2009 21:20

Example for a 3D sphere: geodesic mesh

Example for a 3D sphere: geodesic mesh Mesh completed to a surface by Transport

Example for a 3D real image: geodesic mesh

29/01/200

Example for a 3D real image: geodesic mesh Mesh completed to a surface by Transport

29/01/2009 21:20

Fast Constrained Surface Extraction by Minimal Paths

Input:

- 1. 3D image.
- 2. Two closed curves (C1,C2) drawn

by expert on two slices.

Goal:

• Fast algorithm to obtain a surface lying on the two curves and segmenting the object of interest.

29/01/2009 21:20

Solution proposed

From a potential (P) describing the image features

We create a network of paths $S_{C_1}^{C_2}$ linking the given curves C1 and C2 and globally minimizing

 $E(C) = \int_C P(C) ds$

We interpolate them in order to generate the segmenting surface.

If further precision is needed an active model can be used to refine the segmentation.

Potential (P)

Network of Minimal Paths

Interpolated Surface

Refinement with Level Sets

29/01/2009 21:20

Hypothesis : Ψ satisfies on image domain

$$\forall p \in \Omega, \langle \nabla \Psi(p), \nabla U_{\Gamma_1}(p) \rangle = 0 \qquad \Gamma_2 \subset \Psi^{-1}(0)$$

$$\forall p \in \Omega, p \in \Psi^{-1}(0) \Rightarrow C_{\Gamma_1}^p \subset \Psi^{-1}(0)$$
Ψ⁻¹(0) is composed only of minimal paths leading to Γ1

29/01/2009 21:20

Path network : implicit approach as zero level set of solution of a transport equation

Construction of Ψ when Γ_1 and Γ_2 are planar (usual case for applications).

Step 1: numerical Resolution of eikonal equation by : *Fast Marching, Group Marching, Fast Sweeping*

Etape 2: Resolution of transport equation

- By iterative approach
- By Fast Marching approach.
- By Fast Sweeping approach.

- **Step 3:** Detection of zero level set
 - by Marching Cube, Marching Tetrahedra...

Examples of path network : implicit approach as zero level set of a transport equation

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Fast Marching on a surface and Remeshing Front Propagation on a surface from one point.

Fast Marching on a surface

29/01/2009 21:20

Geodesic lines on a surface

29/01/2009 21:20

Example of Voronoi

29/01/2009 21:20

Sampling with uniform distribution

Choose first point anywhere

update the geodesic distance

Laurent COHEN, Collège de France, 2009

The two new

furthest points

Sampling with uniform distribution

29/01/2009 21:20

Sampling on a plane

29/01/2009 21:20

Uniform Remeshing

Non constant speed function

Farthest Point Sampling

Farthest Point Triangulation

Adaptive Remeshing

Density	Given by a Texture
A texture:	$T: S \xrightarrow{\varphi} [0,1]^2 \xrightarrow{I} IR$
Adaptive speed	$F = 1/P(v) = 1/\left(\varepsilon + \left \overrightarrow{\operatorname{grad}}(I)(\varphi(v))\right \right)$

29/01/2009 21:20

Examples of Remeshing

Original mesh

Uniform

Curvature adapted

29/01/2009 21:20

Examples of Anisotropic Meshing

Isotropic vs. Anisotropic Meshing

Anisotropic Meshing

29/01/2009 21:20

Anisotropic Meshing

29/01/2009 21:20

Thank you ! Cohen@ceremade.dauphine.fr

Publications on your screen: www.ceremade.dauphine.fr/~cohen

29/01/2009 21:20

Publications on your screen:

www.ceremade.dauphine.fr/~cohen

<u>Global minimum for active contour models: A minimal path approach</u> Laurent D. Cohen and R.~Kimmel. in International Journal of Computer Vision, August 1997.

<u>Minimal Paths and Fast Marching Methods for Image Analysis.</u>, Laurent~D. Cohen, In Mathematical Models in Computer Vision: The Handbook, Nikos Paragios and Yunmei Chen and Olivier Faugeras Editors, Springer 2005.

<u>Fast Constrained Surface Extraction by Minimal Paths.</u>, Roberto Ardon and Laurent D. Cohen. International Journal on Computer Vision, Special Issue on Variational and Level Set Methods in Computer Vision (VLSM 2003), 69(1):127--136, August 2006.

<u>Geodesic Remeshing Using Front Propagation.</u>, Gabriel Peyre and Laurent D. Cohen. International Journal on Computer Vision, Special Issue on Variational and Level Set Methods in Computer Vision (VLSM 2003), 69(1):145--156, August 2006.

<u>A new implicit method for surface segmentation by minimal paths in {3D} images.</u>, Roberto Ardon, Laurent D. Cohen and Anthony Yezzi. Applied Mathematics and Optimization, 55(2):127-144, March 2007. <u>Anisotropic Geodesics for Perceptual Grouping and Domain Meshing</u>. Sebastien Bougleux and Gabriel Peyr\'e and Laurent D. Cohen. Proc. tenth European Conference on Computer Vision (ECCV'08)}, Marseille, France, October 12-18, 2008.

Finding a Closed Boundary by Growing Minimal Paths from a Single Point on 2D or 3D Images. Fethallah Benmansour and Laurent D. Cohen. Journal of Mathematical Imaging and Vision. To appear, 2009. <u>Geodesic Methods for Shape and Surface Processing</u>, Gabriel Peyre and Laurent D. Cohen in Advances in Computational Vision and Medical Image Processing: Methods and Applications, Springer, 2009. Tubular anisotropy for 3D vessels segmentation. Fethallah Benmansour and Laurent D. Cohen. Preprint, 2009.

Lignes Géodésiques et Segmentation d'images

Laurent D. COHEN

Directeur de Recherche CNRS CEREMADE, UMR CNRS 7534 Université Paris-9 Dauphine Place du Maréchal de Lattre de Tassigny 75016 Paris, France <u>Cohen@ceremade.dauphine.fr</u>

http://www.ceremade.dauphine.fr/~cohen Some joint works with G. Peyré, S. Bougleux, and PhD students R. Ardon, S. Bonneau and F. Benmansour. Collège de France, 16 Janvier 2009

29/01/2009 21:20

