Lignes Géodésiques et Segmentation d'images

Laurent D. COHEN

Directeur de Recherche CNRS
CEREMADE, UMR CNRS 7534 Université Paris-9 Dauphine Place du Maréchal de Lattre de Tassigny 75016 Paris, France
http://www.ceremade.dauphine.fr/~cohen
Some joint works with G. Peyré, S. Bougleux, and PhD students R. Ardon, S. Bonneau and F. Benmansour. Collège de France, 16 Janvier 2009

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Overview

- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Paths of minimal energy

Looking for a path along which a feature Potential $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is minimal
example: a vessel dark structure $\mathrm{P}=$ gray level

Input : Start point $p 0=(x 0, y 0)$
End point $p l=(x, y)$
Image
Output: Minimal Path

Paths of minimal energy

Looking for a path along which a feature Potential $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is minimal
example:
contour
$\mathrm{P}=$ gradient based
Input : Start point $p 0=(x 0, y 0)$
End point $p l=(x, y)$
Image
Output: Minimal Path

Minimal Paths: Eikonal Equation

$$
E(C)=\int_{0}^{L} P(C(S)) d s
$$

Potential $\mathrm{P}>0$ takes lower values near interesting features : on contours, dark structures, ...

STEP 1 : search for the surface of minimal action U of $p 0$ as the minimal energy integrated along a path between start point $p 0$ and any point p in the image
Start point $C(0)=p 0$;

$$
U_{p 0}(p)=\operatorname{lnf}_{C(0)=p 0 ; C(L)=p} E(C)=\inf _{C(0)=p 0 ; C(L)=p} \int_{0}^{L} P(C(s)) d s
$$

STEP 2: Back-propagation from the end point $p 1$ to the start point $p 0$:

$$
\text { Simple Gradient Descent along } U_{p 0}
$$

Minimal Paths: Eikonal Equation

STEP 1 : minimal action U of $p 0$ as the minimal energy integrated along a path between start point $p 0$ and any point p in the image

Start point $C(0)=p 0$;

$$
U_{p 0}(p)=\inf _{C(0)=p 0 ; C(L)=p} E(C)=\inf _{C(0)=p 0 ; C(L)=p} \int_{0}^{L} P(C(s)) d s
$$

Solution of Eikonal equation:

$$
\left\|\nabla U_{p 0}(x)\right\|=P(x) \text { and } U_{p 0}(p 0)=0
$$

Example P=1, U Euclidean distance to p0

Minimal Paths: Eikonal Equation

$$
E(C)=\int_{0}^{L} P(C(S)) d s
$$

STEP 2: Back-propagation from the end point $p 2$ to the start point $p 1$:

$$
\text { Simple Gradient Descent along } U_{p 1}
$$

$$
\frac{d C}{d s}(s)=-\nabla U_{p_{1}}(C(s)) \text { with } C(0)=p_{2} .
$$

Theorem 1: (Euler Lagrange of E) Any curve C which is a local minimum of energy E is a solution of

$$
\nabla \mathcal{P}(C) \cdot \vec{n}=\mathcal{P}(C) \kappa
$$

Definition 2 (Critical curves) We say that C is a critical curve of the energy E if C is a solution of the Euler-Lagrange equation (5).

Minimal Paths: Eikonal Equation

Definition 2 (Critical curves) We say that C is a critical curve of the energy E if C is a solution of the Euler-Lagrange equation

$$
\nabla \mathcal{P}(C) \cdot \vec{n}=\mathcal{P}(C) \kappa
$$

Definition 3 (field lines) We will say that \mathcal{C} is a field line of $\nabla U_{p_{1}}$ if it is the solution of the ordinary differential equation

$$
\left\{\begin{array}{l}
\frac{d \mathcal{C}(t)}{d t}=-\nabla U_{p_{1}}(\mathcal{C}(t)) \tag{11}\\
\mathcal{C}(0)=\mathbf{p}
\end{array}\right.
$$

where \mathbf{p} is a point of the image domain.
And we have the following property:
Theorem 4 (Field Lines and Euler-Lagrange equation) If $U_{\mathbf{p}_{1}}$ is solution to the problem $\left\|\nabla U_{\mathbf{p}_{1}}\right\|=\mathcal{P}$ with $U_{\mathbf{p}_{1}}\left(\mathbf{p}_{1}\right)=0$, every line field of $\nabla U_{\mathbf{p}_{1}}$ is a critical curve of the geodesic energy E.

FAST MARCHING in 2D:

very efficient algorithm $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ for Eikonal Equation
Introduced by Sethian / Tsistsiklis
Numerical approximation of $\mathrm{U}(\mathrm{xij})$ as the solution to the discretized problem with upwind finite difference scheme

$$
\begin{aligned}
& \|\nabla U\|=\tilde{P} \\
& \quad \max \left(u-U\left(x_{i-1, j}\right), u-U\left(x_{i+1, j}\right), 0\right)^{2} \\
& +\max \left(u-U\left(x_{i, j-1}\right), u-U\left(x_{i, j+1}\right), 0\right)^{2}=h^{2} \widetilde{P}\left(x_{i, j}\right)^{2}
\end{aligned}
$$

This 2nd order equation induces that :
action U at $\{\mathrm{i}, \mathrm{j}\}$ depends only of the neighbors that have lower actions.
Fast marching introduces order in the selection of the grid points for solving this numerical scheme.

Starting from the initial point p 0 with $\mathrm{U}=0$, the action computed at each point visited can only grow.

Level sets of U can be seen as a Front propagation outwards.

Fast Marching Algorithm

Initialization

potentiol $\tilde{\mathcal{P}}$

+ Far Trial Alive
J. A. Sethian

A fast marching level seł method for monotonically advancing fronts. P.N.A.S., 93:1591-1595, 1996.

Fast Marching Algorithm

Itération \#1

- Find point $\mathbf{x}_{\text {min }}$
(Trial point with smallest value of \mathcal{U}).
- $x_{\text {min }}$ becomes Alive.
- For each of 4 neighbors \mathbf{x} of point $\mathbf{x}_{\text {min }}$: If x is not Alive,

Estimate $\mathcal{U}(\mathbf{x})$ with upwind scheme. x becomes Trial.

potential $\tilde{\mathcal{P}}$

+ Far Trial Alive

Fast Marching Algorithm

Itération \#2

- Find point $\mathbf{x}_{\text {min }}$
(Trial point with smallest value of \mathcal{U}).
- $x_{\text {min }}$ becomes Alive.
- For each of 4 neighbors \mathbf{x} of point $\mathbf{x}_{\text {min }}$: If x is not Alive,

Estimate $\quad \mathcal{U}(\mathbf{x})$ with upwind scheme. x becomes Trial.

potentiol $\tilde{\mathcal{P}}$

minimal action

A fasł marching level seł method for monotonically advancing fronts. P.N.A.S., 93:1591-1595, 1996.

Fast Marching Algorithm

Itération \#k

- Find point $\mathbf{x}_{\text {min }}$
(Trial point with smallest value of \mathcal{U}).
- $x_{\text {min }}$ becomes Alive.
- For each of 4 neighbors \mathbf{x} of point $\mathbf{x}_{\text {min }}$: If \boldsymbol{x} is not Alive,

Estimate $\mathcal{U}(\mathbf{x})$ with upwind scheme. x becomes Trial.

potential $\tilde{\mathcal{P}}$

minimal action

Minimal Path between p1 and p2

Minimal Path between p1 and p2

L. D. Cohen, R. Kimmel

Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision, 25:57-78, 1997.

Minimal Path between p1 and p2

Minimal action $\mathcal{U}_{1}: \Omega \rightarrow \mathbb{R}^{+}$solution of Eikonal equation :
$\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\|=\tilde{\mathcal{P}}(\mathbf{x})$ pour $\mathbf{x} \in \Omega$

$$
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right)=0
$$

\mathcal{U}_{1}

L. D. Cohen, R. Kimmel
 Global minimum for active contour models : a minimal path approach. International Journal of Computer Vision, 25:57-78, 1997.

Minimal Path between p1 and p2

minimal action $\underline{\mathcal{U}_{1}}$
L. D. Cohen, R. Kimmel

Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision, 25:57-78, 1997.

Minimal Path between p1 and p2

minimal path

$$
\mathcal{C}_{\mathbf{P}_{1}, \mathbf{P}_{2}}=\min _{\gamma \in \mathcal{A}_{\mathbf{p}_{1}, \mathbf{p}_{\mathbf{2}}}} \int_{\gamma} \tilde{\mathcal{P}}(\gamma(s)) \mathrm{d} s
$$

Is obtained by solving ODE:

$$
\left\{\begin{aligned}
\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{\mathbf{2}}}(s)}{\partial s} & =-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right) \\
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0) & =\mathbf{p}_{2}
\end{aligned}\right.
$$

\Rightarrow simple gradient descent on \mathcal{U}_{1} from \mathbf{p}_{2} to \mathbf{p}_{1}

minimal action \mathcal{U}_{1}
> L. D. Cohen, R. Kimmel

> Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision, 25:57-78, 1997.

Minimal Path between p1 and p2

Step \#1

$$
\left\{\begin{aligned}
\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\| & =\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right) & =0
\end{aligned}\right.
$$

Minimal Path between p1 and p2

Słep \#1
$\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\|=\tilde{\mathcal{P}}(\mathbf{x})$ pour $\mathbf{x} \in \Omega$
$\mathcal{U}_{1}\left(\mathbf{p}_{1}\right)=0$

Minimal Path between p1 and p2

Step \#1

$$
\begin{aligned}
\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\| & =\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right) & =0
\end{aligned}
$$

Step \#2
gradient descent on $\quad \mathcal{U}_{1}$ for extraction of minimal path $\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}$

$$
\left\{\begin{aligned}
\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)}{\partial s} & =-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right) \\
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0) & =\mathbf{p}_{2}
\end{aligned}\right.
$$

Minimal Path between p1 and p2

Step \#1

$$
\begin{aligned}
\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\| & =\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right) & =0
\end{aligned}
$$

Step \#2

gradient descent on $\quad \mathcal{U}_{1}$ for extraction of minimal path $\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}$

$$
\left\{\begin{aligned}
\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)}{\partial s} & =-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right) \\
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0) & =\mathbf{p}_{2}
\end{aligned}\right.
$$

Minimal Path between p1 and p2

Step \#1

$$
\begin{aligned}
\left\|\nabla \mathcal{U}_{1}(\mathbf{x})\right\| & =\tilde{\mathcal{P}}(\mathbf{x}) \text { pour } \mathbf{x} \in \Omega \\
\mathcal{U}_{1}\left(\mathbf{p}_{1}\right) & =0
\end{aligned}
$$

Step \#2
gradient descent on $\quad \mathcal{U}_{1}$ for extraction of minimal path $\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}$

$$
\left\{\begin{aligned}
\frac{\partial \mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)}{\partial s} & =-\nabla \mathcal{U}_{1}\left(\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(s)\right) \\
\mathcal{C}_{\mathbf{p}_{1}, \mathbf{p}_{2}}(0) & =\mathbf{p}_{2}
\end{aligned}\right.
$$

Minimal paths for 2D segmentation

Energy to minimize

$$
E(\gamma)=\int_{0}^{L} P(\gamma(t)) d t
$$

$$
P: X \in \Omega \rightarrow \frac{1}{1+\alpha \cdot\left|\nabla I_{\sigma}(X)\right|^{2}}
$$

Minimal paths for 2D segmentation

Minimal paths for 2D segmentation

- $P(\mathbf{x})=w+\left(I(\mathbf{x})-I\left(\mathbf{x}_{0}\right)\right)^{2} \Longleftrightarrow$ chemin d'intensité homogène

Chemin

Carte de distance

Simultaneous propagation of two fronts until a shock occurs.

Reference:

T. Deschamps and L. D. Cohen

Minimal paths in 3D images and application to virtual endoscopy,
Proceedings ECCVOO, Dublin, Ireland, 2000.

Examples of 3D Minimal Paths

Colon 3D CT

Trachea 3D CT

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Riemannian Manifolds, Anisotropy and Geodesic Distances

-2D Riemannian manifolds defined over a compact planar domain $\Omega \subset \mathbb{R}^{2}$

- Length of a curve $[0,1] \rightarrow \Omega$

$$
L(\gamma) \stackrel{\text { dof. }}{=} \int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\mathrm{T}} H(\gamma(t)) \gamma^{\prime}(t)} \mathrm{d} t .
$$

with $H: \Omega \rightarrow \mathbb{R}^{2 \times 2}$ a metric tensor field of anisotropy $\alpha: \Omega \rightarrow[0,1]$

- Geodesic distance

$$
d(x, y)=\min _{y \in P(x, y)} L(\gamma), \quad \forall(x, y) \in \mathbb{R}^{2}
$$

- Distance map $U_{s}: \Omega \rightarrow \mathbb{R}$ of a point set $S=\left\{x_{k}\right\}_{k}$

$$
U_{S}(x)=\min _{x_{k} \in S} d\left(x, x_{k}\right), \quad \forall x \in \Omega
$$

Anisotropy and Eikonal Equation

Theorem: $U_{x_{0}}$ is the unique viscosity solution of the Hamilton-Jacobi equation

$$
\left\|\nabla U_{x_{0}}\right\|_{H(x)^{-1}}=1 \quad \text { with } \quad U_{x_{0}}\left(x_{0}\right)=0
$$

where $\|v\|_{A}=\sqrt{v^{\mathrm{T}} A v}$.

Geodesic curve γ between x_{1} and x_{0} solves

$$
\gamma^{\prime}(t)=-\frac{H(\gamma(t))^{-1} \nabla U_{x_{0}}}{\left\|H(\gamma(t))^{-1} \nabla U_{x_{0}}\right\|} \quad \text { with } \quad \gamma(0)=x_{1}
$$

Example: isotropic metric $H(x)=W(x) \mathrm{Id}_{x}$,

$$
\left\|\nabla U_{x_{0}}\right\|=W(x) \quad \text { and } \quad \gamma^{\prime}(t)=-\frac{\nabla U_{x_{0}}}{\left\|\nabla U_{x_{0}}\right\|}
$$

Anisotropy and Geodesics

Anisotropy and Geodesics

Tensor eigen-decomposition:

$$
H(x)=\lambda_{1}(x) e_{1}(x) e_{1}(x)^{\mathrm{T}}+\lambda_{2}(x) e_{2}(x) e_{2}(x)^{\mathrm{T}} \quad \text { with } \quad 0<\lambda_{1} \leqslant \lambda_{2},
$$

Local anisotropy of the metric:
$\alpha(x)=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}+\lambda_{1}}=\frac{\sqrt{(a-b)^{2}+4 c^{2}}}{a+b} \in[0,1] \quad$ for $\quad H(x)=\left(\begin{array}{ll}a & c \\ c & b\end{array}\right)$

Anisotropic Voronoi Segmentation

Voronoi segmentation:

$$
\begin{aligned}
& \Omega=C_{0} \bigcup_{x_{i} \in \mathcal{S}} \mathcal{C}_{i} \text { where } \mathcal{C}_{i}=\left\{x \in \Omega \backslash \forall j \neq i, \quad d\left(x_{i}, x\right) \leqslant d\left(x_{j}, x\right)\right\} \\
& \\
& \text { Outer cell: } \mathcal{C}_{0}=\operatorname{Closure}\left(\Omega^{c}\right) .
\end{aligned}
$$

Perceptual Grouping using Minimal Paths

The potential is an incomplete ellipse and 7 points are given.

Reference:
L. D. Cohen

Multiple Contour Finding and Perceptual Grouping using Minimal Paths. Journal of Mathematical Imaging and Vision, 14:225-236, 2001.

Reference:

L. D. Cohen

Multiple Contour Finding and Perceptual Grouping using Minimal Paths. Journal of Mathematical Imaging and Vision, 14:225-236, 2001.

Perceptual Grouping using Minimal Paths

Perceptual Grouping using Minimal Paths

Using the orientation with anisotropic geodesics

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

3D Minimal Paths for tubular shapes in 2D

2D in space , 1D for radius of vessel

3D Minimal Paths for tubular shapes in 2D Motivation

Orientation dependent Energy

Minimal paths method : looking for a path minimizing the energy

$$
E(\mathcal{C})=\int_{0}^{L} P(\mathcal{C}(s)) d s
$$

Since the tubular structures have directions, we should consider the orientation:

$$
E(\mathcal{C})=\int_{0}^{L} P\left(\mathcal{C}(s), \mathcal{C}^{\prime}(s)\right) d s
$$

3D Minimal Path for tubular shapes in 2D

Figure 1. A tubular surface is presented as the envelope of a family of spheres with continuously changing center points and radii.

Examples of 3D Minimal Paths for tubular shapes in 2D

Anisotropic Fast Marching algorithm to solve

$\\|\nabla \mathcal{U}(x)\\|_{\mathcal{M}}-:$
and back-propagation $\sqrt{\nabla \mathcal{U}(x)^{T} \mathcal{M}^{-1}(x) \nabla \mathcal{U}(x)}=1$ and $\mathcal{U}^{-1} \nabla \mathcal{U}$

Examples of 3D Minimal Paths for tubular shapes in 2D

Examples of 3D Minimal Paths for tubular shapes in 2D 2D in space , 1D for radius of vessel

Examples of 3D Minimal Paths for tubular shapes in 2D

2D in space , 1D for radius of vessel

Examples of 3D Minimal Paths for tubular shapes in 2D
 2D in space , 1D for radius of vessel

Examples of 4D Minimal Paths for tubular shapes in 3D

Examples of 4D Minimal Paths for tubular shapes in 3D

Examples of 4D Minimal Paths for tubular shapes in 3D
 3D in space , 1D for radius of vessel

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping Anistropic Fast Marching and Vessel Segmentation
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Finding a closed contour by growing minimal paths and adding keypoints

Potential \mathcal{P}

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Adding keypoints: Stopping criterion

The propagation must be stopped as soon as the domain visited by the fronts has the same topology as a ring.

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by growing minimal paths and adding keypoints

Finding a closed contour by

 growing minimal paths

Finding a closed contour by growing minimal paths

(a)

(b)

Finding a contour between two points by growing minimal paths

Finding a contour between two points by growing minimal paths

Extension to 3D vessel segmentation

Example of results of the keypoints method in a 3D image of Pulmonary Arteries

㛑

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping Anistropic Fast Marching and Vessel Segmentation Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

3D extension: Finding a closed surface by growing minimal paths. Result is a Geodesic Mesh

- On a 3D synthetic image

3D extension: Finding a closed surface by growing minimal paths. Result is a Geodesic Mesh

- Mesh is completed to a surface using a Transport equation

■ Mesh is completed to a surface using a Transport equation

- Example for a 2D image.

- Example for a 3D sphere: geodesic mesh

- Example for a 3D sphere: geodesic mesh
- Mesh completed to a surface by Transport

- Example for a 3D real image: geodesic mesh

- Example for a 3D real image: geodesic mesh
- Mesh completed to a surface by Transport

Fast Constrained Surface Extraction by Minimal Paths

$>$ Input:

1. 3D image.
2. Two closed curves $(\mathrm{C} 1, \mathrm{C} 2)$ drawn by expert on two slices.
$>$ Goal:

- Fast algorithm to obtain a surface lying on the two curves and segmenting the object of interest.

Solution proposed

From a potential (P) describing the image features

We create a network of paths $S_{C_{1}}^{C_{2}}$ linking the given curves C1 and C2 and globally minimizing

$$
E(C)=\int_{C} P(C) d s
$$

We interpolate them in order to generate the segmenting surface.
$>$ If further precision is needed an active model can be used to refine the segmentation.

Network of Minimal Paths

Interpolated Surface

Refinement with Level Sets

Hypothesis : Ψ satisfies on image domain

$$
\forall p \in \Omega,\left\langle\nabla \Psi(p), \nabla U_{\Gamma_{1}}(p)\right\rangle=0 \quad \Gamma_{2} \subset \Psi^{-1}(0)
$$

I

$$
\forall p \in \Omega, p \in \Psi^{-1}(0) \Rightarrow \mathrm{C}_{\mathrm{r}_{1}}^{p} \subset \Psi^{-1}(0)
$$

$$
\square
$$

$\Psi^{-1}(0)$ is composed only of minimal paths leading to Γ_{1}

Path network : implicit approach as zero level set of solution of a transport equation

Construction of Ψ when Γ_{1} and Γ_{2} are planar (usual case for applications).

$$
\left\{\begin{array}{c}
\forall p \in \Omega,\left\langle\nabla \Psi(p), \nabla U_{\Gamma_{1}}(p)\right\rangle+\mathrm{H}(\Psi)=0 \\
\Gamma_{2} \subset \Psi^{-1}(0)
\end{array}\right.
$$

By choosing $\mathrm{H}(\Psi)=\alpha . \Psi$, we have to solve this problem:
$\boldsymbol{V}_{\eta}^{2}=\left\{p \in \Pi_{2}\right.$ such that $\left.\left|d_{2}(p)\right| \leq \eta\right\}$
$\mathrm{O}=\operatorname{int}(\Omega)-\boldsymbol{V}_{\eta}^{2}$

$$
1
$$

$$
p \in \Psi^{-1}(0) \Rightarrow \mathrm{C}_{\Gamma_{1}}^{p} \subset \Psi^{-1}(0)
$$

$$
S_{\Gamma_{1}}^{\Gamma_{2}} \subset \Psi^{-1}(0)
$$

$$
\begin{array}{llll}
\Psi(p)= & d_{2}(p) & \text { if } & p \in V_{\eta}^{2} \\
\Psi(p)= & \min _{p \in V_{\eta}^{2}}\left(d_{2}(p)\right) & \text { if } & p \in \partial \Omega
\end{array}
$$

Step 1: numerical Resolution of eikonal equation by :
Fast Marching, Group Marching, Fast Sweeping

$$
\left\|\nabla U_{\Gamma_{1}}\right\|=P
$$

Etape 2: Resolution of transport equation

By iterative approach

$$
\left\{\begin{array}{l}
\left\langle\nabla \Psi(p), \nabla U_{\Gamma_{1}}(p)\right\rangle+\alpha . \Psi=0 \\
\Psi=0 \text { on } \Gamma_{2}
\end{array}\right.
$$

By Fast Marching approach.
By Fast Sweeping approach.

$>$ Step 3: Detection of zero level set

- by Marching Cube, Marching Tetrahedra...

Examples of path network : implicit approach as zero level set of a transport equation

Overview

- Minimal Paths, Fast Marching and Front Propagation
- Anistropic Fast Marching and Perceptual Grouping
- Anistropic Fast Marching and Vessel Segmentation
- Closed Contour segmentation as a set of minimal paths in 2D
- Geodesic meshing for 3D surface segmentation
- Fast Marching on surfaces: geodesic lines and Remeshing Isotropic, Adaptive, Anisotropic

Fast Marching on a surface and Remeshing

 Front Propagation on a surface from one point.

Fast Marching on a surface

Geodesic lines on a surface

Example of Voronoi

Sampling with uniform distribution

Choose first point anywhere
update the geodesic distance

choose the furthest point

The two new furthest points

Sampling with uniform distribution

Sampling on a plane

Uniform Remeshing

Non constant speed function

Farthest Point Sampling

Farthest Point Triangulation

Adaptive Remeshing

 samples

Density Given by a Texture

- A texture:
$\mathrm{T}: \mathrm{S} \xrightarrow{\varphi}[0,1]^{2} \xrightarrow{I} \mathrm{IR}$
- Adaptive speed :

$$
F=1 / P(v)=1 /(\varepsilon+|\overrightarrow{\operatorname{grad}}(I)(\varphi(v))|)
$$

Examples of Remeshing

Original mesh

Uniform
Curvature adapted

Examples of Anisotropic Meshing

Isotropic vs. Anisotropic Meshing

Anisotropic Meshing

farthest point strategy

Anisotropic Meshing

farthest point strategy

Thank you !

Publications on your screen:

www.ceremade.dauphine.fr/~cohen

Publications on your screen:

www.ceremade.dauphine.fr/~cohen

Laurent D. Cohen and R. \sim Kimmel. in
International Journal of Computer Vision, August 1997.

, Laurent D. Cohen, In Mathematical

Models in Computer Vision: The Handbook, Nikos Paragios and Yunmei Chen and Olivier Faugeras Editors, Springer 2005.
, Roberto Ardon and Laurent D. Cohen. International Journal on Computer Vision, Special Issue on Variational and Level Set Methods in Computer Vision (VLSM 2003), 69(1):127--136, August 2006.
, Gabriel Peyre and Laurent D. Cohen. International Journal on Computer Vision, Special Issue on Variational and Level Set Methods in Computer Vision (VLSM 2003), 69(1):145--156, August 2006.
, Roberto Ardon, Laurent
D. Cohen and Anthony Yezzi. Applied Mathematics and Optimization, 55(2):127-144, March 2007.
. Sebastien Bougleux and Gabriel
Peyrl'e and Laurent D. Cohen. Proc. tenth European Conference on Computer Vision (ECCV'08)\}, Marseille, France, October 12-18, 2008.
Finding a Closed Boundary by Growing Minimal Paths from a Single Point on 2D or 3D Images. Fethallah
Benmansour and Laurent D. Cohen. Journal of Mathematical Imaging and Vision. To appear, 2009. Geodesic Methods for Shape and Surface Processing, Gabriel Peyre and Laurent D. Cohen in Advances in Computational Vision and Medical Image Processing: Methods and Applications, Springer, 2009. Tubular anisotropy for 3D vessels segmentation. Fethallah Benmansour and Laurent D. Cohen. Preprint, 2009.

Lignes Géodésiques et Segmentation d'images

Laurent D. COHEN

Directeur de Recherche CNRS
CEREMADE, UMR CNRS 7534 Université Paris-9 Dauphine Place du Maréchal de Lattre de Tassigny 75016 Paris, France
http://www.ceremade.dauphine.fr/~cohen
Some joint works with G. Peyré, S. Bougleux, and PhD students R. Ardon, S. Bonneau and F. Benmansour. Collège de France, 16 Janvier 2009

