Mean Field Games: Numerical Methods

Y. Achdou,
work with I.Capuzzo-Dolcetta

January 22, 2009

Content

- Mean field games: a short and incomplete review
- Numerical schemes
- Description
- Finite horizon: existence, bounds, uniqueness
- Infinite horizon: Existence, bounds, uniqueness
- Numerical procedures and tests
- Infinite horizon: a long time approximation
- Finite horizon: a Newton method
I. A short review

Mean field games: infinite horizon

Find $u \in \mathcal{C}^{2}(\mathbb{T}), m \in W^{1, p}(\mathbb{T})$ and $\lambda \in \mathbb{R}$ s.t.

$$
\left\{\begin{array}{l}
-\nu \Delta u+H(x, \nabla u)+\lambda=V[m] \tag{*}\\
-\nu \Delta m-\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right)=0, \\
\int_{\mathbb{T}} u d x=0, \quad \int_{\mathbb{T}} m d x=1, \quad \text { and } \quad m>0 \quad \text { in } \mathbb{T} .
\end{array}\right.
$$

- \mathbb{T} unit torus of \mathbb{R}^{d}
- $\nu>0$
- H is a \mathcal{C}^{1} Hamiltonian (convex):

$$
H(x, p)=\sup _{\alpha \in \mathbb{R}^{d}}(p \cdot \alpha-L(x, \alpha)), \quad \text { with } \quad \lim _{|\alpha| \rightarrow \infty} \inf _{x} \frac{L(x, \alpha)}{|\alpha|}=+\infty
$$

- V is an operator from the space of probability measures on \mathbb{T} into a bounded set of Lipschitz functions on \mathbb{T} such that
$V\left[m_{n}\right]$ converges uniformly on \mathbb{T} to $V[m]$ if m_{n} weakly converges to m.
Typical examples for V include nonlocal smoothing operators.

Local operators

$$
V[m](x)=f(m(x), x)
$$

may be considered as well.
(*) has been obtained by J-M. Lasry and P-L. Lions by passing to the limit in stochastic differential games involving a very large number N of identical rational agents (or players) with a (limited) global information

- Dynamics:

$$
d X_{t}^{i}=\sqrt{2 \nu} d W_{t}^{i}-\alpha^{i} d t, \quad X_{0}^{i}=x^{i} \in \mathbb{R}^{d}
$$

- Cost:

$$
J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)=\liminf _{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left(\int_{0}^{T}\left(L\left(X_{t}^{i}, \alpha_{t}^{i}\right)+V\left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X_{t}^{j}}\right]\left(X_{t}^{i}\right)\right) d t\right)
$$

- $\left(\bar{\alpha}^{1}, \ldots, \bar{\alpha}^{N}\right)$ is a Nash point if $\quad \forall i=1, \ldots, N$,

$$
\bar{\alpha}^{i}=\operatorname{Argmin} J^{i}\left(\bar{\alpha}^{1}, \ldots, \bar{\alpha}^{i-1}, \alpha^{i}, \bar{\alpha}^{i+1}, \ldots, \bar{\alpha}^{N}\right) .
$$

- Structure assumption on H : there exists $\theta \in(0,1)$ such that for $|p|$ large,

$$
\inf _{x \in \mathbb{T}}\left(\frac{\partial H}{\partial x} \cdot p+\frac{\theta}{d \nu} H^{2}\right)>0
$$

(makes it possible to obtain Lipschitz estimate on u with Bernstein inequality).

- There is a system of $2 N$ PDEs
- N HJB equations for the value functions
- N Kolmogorov equations for the stationary measures of $\left(X_{t}^{i}\right)_{i}$ whose solutions yield Nash equilibria.
- $N \rightarrow \infty$, pass to the limit...

Uniqueness for the mean field problem

By contrast with the system of PDEs for N players, the system (*) is well posed under some assumptions:

Theorem (Lasry-Lions) If V is strictly monotone, i.e.

$$
\int_{\mathbb{T}}\left(V\left[m_{1}\right]-V\left[m_{2}\right]\right)\left(m_{1}-m_{2}\right) d x \leq 0 \Rightarrow m_{1}=m_{2}
$$

then the solution of the mean field system $\left(^{*}\right)$ is unique.

Proof

Consider two solutions of (*): $\left(\lambda_{1}, u_{1}, m_{1}\right)$ and $\left(\lambda_{2}, u_{2}, m_{2}\right)$:

- multiply the first equation by $m_{1}-m_{2}$

$$
\begin{aligned}
& \int_{\mathbb{T}}\left(\nu \nabla\left(u_{1}-u_{2}\right) \cdot \nabla\left(m_{1}-m_{2}\right)+\left(H\left(x, \nabla u_{1}\right)-H\left(x, \nabla u_{2}\right)\right)\left(m_{1}-m_{2}\right)\right) d x \\
= & \int_{\mathbb{T}}\left(V\left[m_{1}\right]-V\left[m_{2}\right]\right)\left(m_{1}-m_{2}\right) d x
\end{aligned}
$$

- multiply the second equation by $u_{1}-u_{2}$

$$
\begin{aligned}
0= & \int_{\mathbb{T}} \nu \nabla\left(u_{1}-u_{2}\right) \cdot \nabla\left(m_{1}-m_{2}\right) d x \\
& +\int_{\mathbb{T}}\left(m_{1} \frac{\partial H}{\partial p}\left(x, \nabla u_{1}\right)-m_{2} \frac{\partial H}{\partial p}\left(x, \nabla u_{2}\right)\right) \cdot \nabla\left(u_{1}-u_{2}\right) d x
\end{aligned}
$$

- subtract:
$0=\left\{\begin{array}{l}\int_{\mathbb{T}} m_{1}\left(H\left(x, \nabla u_{1}\right)-H\left(x, \nabla u_{2}\right)-\frac{\partial H}{\partial p}\left(x, \nabla u_{1}\right) \cdot \nabla\left(u_{1}-u_{2}\right)\right) d x \\ +\int_{\mathbb{T}} m_{2}\left(H\left(x, \nabla u_{2}\right)-H\left(x, \nabla u_{1}\right)-\frac{\partial H}{\partial p}\left(x, \nabla u_{2}\right) \cdot \nabla\left(u_{2}-u_{1}\right)\right) d x \\ +\int_{\mathbb{T}}\left(V\left[m_{1}\right]-V\left[m_{2}\right]\right)\left(m_{1}-m_{2}\right) d x\end{array}\right.$
Since H is convex and V is monotone, the 3 terms vanish.

The strict monotonicity of V implies that $m_{1}=m_{2}$.

The identities $u_{1}=u_{2}$ and $\lambda_{1}=\lambda_{2}$ come from the uniqueness for the HJB equation:

$$
-\nu \Delta u+H(x, \nabla u)+\lambda=f \quad \text { with } \quad \int_{\mathbb{T}} u=0
$$

Finite horizon Nash equilibrium with N players

The N players initial conditions are random, independent, with the same probability distribution m^{0}.
Cost of the player i at time t :
$\mathbb{E}\left(\int_{t}^{T}\left(L^{i}\left(X_{s}^{i}, \alpha_{s}^{i}\right)+V\left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X_{s}^{j}}\right]\right) d s+V_{0}\left[\frac{1}{N-1} \sum_{j \neq i} \delta_{X_{T}^{j}}\right]\right)$
$N \rightarrow \infty$: with the change of variable $t \rightarrow T-t$,

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=V[m] \tag{**}\\
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right)=0 \\
\int_{\mathbb{T}} m d x=1, \quad \text { and } \quad m>0 \quad \text { in } \mathbb{T}, \\
u(t=0)=V_{0}[m(t=0)], \quad m(t=T)=m_{0}
\end{array}\right.
$$

Existence for (**)

Theorem (Lasry-Lions)

If

- same kind of assumptions on V and V_{0} as in the stationary case (V and V_{0} are nonlocal smoothing operators).
- H is smooth on $\mathbb{T} \times \mathbb{R}^{d}$ and

$$
\left|\frac{\partial H}{\partial x}(x, p)\right| \leq C(1+|p|), \quad \forall x \in \mathbb{T}, \quad \forall p \in \mathbb{R}^{d}
$$

then
$\left({ }^{* *}\right)$ has at least a smooth solution.

Uniqueness for ${ }^{(* *)}$

Theorem (Lasry-Lions)
If
the operators V and V_{0} are strictly monotone, i.e.

$$
\begin{aligned}
& \int_{\mathbb{T}}(V[m]-V[\tilde{m}])(m-\tilde{m}) \leq 0 \Rightarrow V[m]=V[\tilde{m}], \\
& \int_{\mathbb{T}}\left(V_{0}[m]-V_{0}[\tilde{m}]\right)(m-\tilde{m}) \leq 0 \Rightarrow V_{0}[m]=V_{0}[\tilde{m}]
\end{aligned}
$$

then
(**) has a unique solution.

II. Finite Horizon: Numerical Methods

Take $d=2$:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=V[m] \tag{**}\\
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right)=0 \\
\int_{\mathbb{T}} m d x=1, \quad m>0 \quad \text { in } \mathbb{T} \\
u(t=0)=V_{0}[m(t=0)], \quad m(t=T)=m_{\circ}
\end{array}\right.
$$

- Let \mathbb{T}_{h} be a uniform grid on the torus with mesh step h, and $x_{i j}$ be a generic point in \mathbb{T}_{h}.
- Uniform time grid: $\Delta t=T / N_{T}, t_{n}=n \Delta t$.
- The values of u and m at $\left(x_{i, j}, t_{n}\right)$ are resp. approximated by $U_{i, j}^{n}$ and $M_{i, j}^{n}$.

Goal: use a fully implicit scheme, robust when $\nu \rightarrow 0$, which guarantees existence, and possibly uniform bounds and uniqueness.

Notation:

- The discrete Laplace operator:

$$
\left(\Delta_{h} W\right)_{i, j}=-\frac{1}{h^{2}}\left(4 W_{i, j}-W_{i+1, j}-W_{i-1, j}-W_{i, j+1}-W_{i, j-1}\right)
$$

- Right-sided finite difference formulas for $\partial_{1} w\left(x_{i, j}\right)$ and $\partial_{2} w\left(x_{i, j}\right)$:

$$
\left(D_{1}^{+} W\right)_{i, j}=\frac{W_{i+1, j}-W_{i, j}}{h}, \quad \text { and } \quad\left(D_{2}^{+} W\right)_{i, j}=\frac{W_{i, j+1}-W_{i, j}}{h}
$$

- The set of 4 finite difference formulas at $x_{i, j}$:

$$
\left[D_{h} W\right]_{i, j}=\left(\left(D_{1}^{+} W\right)_{i, j},\left(D_{1}^{+} W\right)_{i-1, j},\left(D_{2}^{+} W\right)_{i, j},\left(D_{2}^{+} W\right)_{i, j-1}\right)
$$

Discrete HJB equation

$$
\begin{aligned}
& \qquad \frac{\partial u}{\partial t}-\nu \Delta u+H(x, \nabla u)=V[m] \\
& \downarrow \\
& \frac{U_{i, j}^{n+1}-U_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} U^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)=\left(V_{h}\left[M^{n+1}\right]\right)_{i, j} \\
& \qquad \\
& =g\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right) \\
& =g\left(x_{i, j},\left(D_{1}^{+} U^{n+1}\right)_{i, j},\left(D_{1}^{+} U^{n+1}\right)_{i-1, j},\left(D_{2}^{+} U^{n+1}\right)_{i, j},\left(D_{2}^{+} U^{n+1}\right)_{i, j-1}\right)
\end{aligned}
$$

- for instance,

$$
\left(V_{h}[M]\right)_{i, j}=V\left[m_{h}\right]\left(x_{i, j}\right)
$$

calling m_{h} the piecewise constant function on \mathbb{T} taking the value $M_{i, j}$ in the square $\left|x-x_{i, j}\right|_{\infty} \leq h / 2$.

Classical assumptions on the discrete Hamiltonian g

$$
\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right) .
$$

- Monotonicity: g is nonincreasing with respect to q_{1} and q_{3} and nondecreasing with respect to to q_{2} and q_{4}.
- Consistency:

$$
g\left(x, q_{1}, q_{1}, q_{3}, q_{3}\right)=H(x, q), \quad \forall x \in \mathbb{T}, \forall q=\left(q_{1}, q_{3}\right) \in \mathbb{R}^{2}
$$

- Differentiability: g is of class \mathcal{C}^{1}, and

$$
\left|\frac{\partial g}{\partial x}\left(x,\left(q_{1}, q_{2}, q_{3}, q_{4}\right)\right)\right| \leq C\left(1+\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|+\left|q_{4}\right|\right)
$$

- Convexity: $\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \rightarrow g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)$ is convex.

The discrete version of

$$
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla v)\right)=0
$$

It is chosen so that

- each time step leads to a linear system with a matrix
- whose diagonal coefficients are negative,
- whose off-diagonal coefficients are nonnegative,
in order to hopefully use some discrete maximum principle.
- The argument for uniqueness should hold in the discrete case, so the discrete Hamiltonian g should be used for (\dagger) as well.

Principle

Discretize

$$
-\int_{\mathbb{T}} \operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla u)\right) w=\int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w
$$

by

$$
h^{2} \sum_{i, j} m_{i, j} \nabla_{q} g\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right) \cdot\left[D_{h} W\right]_{i, j}
$$

This yields the scheme:

$$
0=\frac{M_{i, j}^{n+1}-M_{i, j}^{n}}{\Delta t}+\nu\left(\Delta_{h} M^{n}\right)_{i, j}
$$

$$
\begin{aligned}
& +\frac{1}{h}\left\{\begin{array}{l}
M_{i, j}^{n} \frac{\partial g}{\partial q_{1}}\left(x_{i, j},\left(D_{1}^{+} U^{n}\right)_{i, j},\left(D_{1}^{+} U^{n}\right)_{i-1, j},\left(D_{2}^{+} U^{n}\right)_{i, j},\left(D_{2}^{+} U^{n}\right)_{i, j-1}\right) \\
-M_{i-1, j}^{n} \frac{\partial g}{\partial q_{1}}\left(x_{i-1, j},\left(D_{1}^{+} U^{n}\right)_{i-1, j},\left(D_{1}^{+} U^{n}\right)_{i-2, j},\left(D_{2}^{+} U^{n}\right)_{i-1, j},\left(D_{2}^{+} U^{n}\right)_{i-1, j-1}\right) \\
+M_{i+1, j}^{n} \frac{\partial g}{\partial q_{2}}\left(x_{i+1, j},\left(D_{1}^{+} U^{n}\right)_{i+1, j},\left(D_{1}^{+} U^{n}\right)_{i, j},\left(D_{2}^{+} U^{n}\right)_{i+1, j},\left(D_{2}^{+} U^{n}\right)_{i+1, j-1}\right) \\
-M_{i, j}^{n} \frac{\partial g}{\partial q_{2}}\left(x_{i, j},\left(D_{1}^{+} U^{n}\right)_{i, j},\left(D_{1}^{+} U^{n}\right)_{i-1, j},\left(D_{2}^{+} U^{n}\right)_{i, j},\left(D_{2}^{+} U^{n}\right)_{i, j-1}\right)
\end{array}\right. \\
& +\frac{1}{h}\left\{\begin{array}{l}
M_{i, j}^{n} \frac{\partial g}{\partial q_{3}}\left(x_{i, j},\left(D_{1}^{+} U^{n}\right)_{i, j},\left(D_{1}^{+} U^{n}\right)_{i-1, j},\left(D_{2}^{+} U^{n}\right)_{i, j},\left(D_{2}^{+} U^{n}\right)_{i, j-1}\right) \\
-M_{i, j-1}^{n} \frac{\partial g}{\partial q_{3}}\left(x_{i, j-1},\left(D_{1}^{+} U^{n}\right)_{i, j-1},\left(D_{1}^{+} U^{n}\right)_{i-1, j-1},\left(D_{2}^{+} U^{n}\right)_{i, j-1},\left(D_{2}^{+} U^{n}\right)_{i, j-2}\right) \\
+M_{i, j+1}^{n} \frac{\partial g}{\partial q_{4}}\left(x_{i, j+1},\left(D_{1}^{+} U^{n}\right)_{i, j+1},\left(D_{1}^{+} U^{n}\right)_{i, j+1},\left(D_{2}^{+} U^{n}\right)_{i, j+1},\left(D_{2}^{+} U^{n}\right)_{i, j}\right) \\
-M_{i, j}^{n} \frac{\partial g}{\partial q_{4}}\left(x_{i, j},\left(D_{1}^{+} U^{n}\right)_{i, j},\left(D_{1}^{+} U^{n}\right)_{i-1, j},\left(D_{2}^{+} U^{n}\right)_{i, j},\left(D_{2}^{+} U^{n}\right)_{i, j-1}\right)
\end{array}\right.
\end{aligned}
$$

Classical discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form

$$
H(x, \nabla u)=\psi(x,|\nabla u|)
$$

a possible choice is the Godunov scheme

$$
\begin{aligned}
& g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)= \\
& \psi\left(x, \sqrt{\min \left(q_{1}, 0\right)^{2}+\max \left(q_{2}, 0\right)^{2}+\min \left(q_{3}, 0\right)^{2}+\max \left(q_{4}, 0\right)^{2}}\right)
\end{aligned}
$$

If $\psi(x, w)$ is convex and nondecreasing w.r.t. w, then g is a convex function of $\left(q_{1}, q_{2}, q_{3}, q_{4}\right) ; g$ is nonincreasing w.r.t. q_{1} and q_{3} and nondecreasing w.r.t. q_{2} and q_{4}.

Finally, it can be proven that the global scheme is consistent if H is smooth enough.

Kushner-Dupuis scheme

More generally, if H is given by

$$
H(x, p)=\sup _{\alpha \in \mathbb{R}^{2}}(p \cdot \alpha-L(x, \alpha)), \quad x \in \mathbb{T}, p \in \mathbb{R}^{2}
$$

then one may choose g as

$$
g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)=\sup _{\alpha \in \mathbb{R}^{2}}\left(-\alpha_{1}^{-} q_{1}+\alpha_{1}^{+} q_{2}-\alpha_{2}^{-} q_{3}+\alpha_{2}^{+} q_{4}-L(x, \alpha)\right)
$$

The numerical Hamiltonian g is clearly convex, nonincreasing with respect to q_{1} and q_{3} and nondecreasing with respect to q_{2} and q_{4}.

Existence for the discrete problem

Theorem Assume that $M^{N_{T}} \geq 0$ and that $h^{2} \sum_{i, j} M_{i, j}^{N_{T}}=1$. Under the assumptions above on V, V_{0} and g, the discrete problem has a solution and there is a Lipschitz estimate on U_{h}^{n} uniform in n, h and Δt.

Strategy of proof

$$
\mathcal{K}=\left\{\left(M_{i, j}\right)_{0 \leq i, j<N}: h^{2} \sum_{i, j} M_{i, j}=1, M_{i, j} \geq 0\right\}
$$

Apply Brouwer fixed point theorem to a well chosen mapping

$$
\begin{array}{llll}
\chi: & \mathcal{K}^{N_{T}} & \longrightarrow & \mathcal{K}^{N_{T}} \\
& \left(M^{n}\right)_{n} \rightarrow & \left(U^{n}\right)_{n} \rightarrow & \left(M^{n}\right)_{n}
\end{array}
$$

Proof: a fixed point method in $\mathcal{K}^{N_{T}}$,

Step 1: a map $\Phi: \quad\left(M^{n}\right)_{n} \rightarrow\left(U^{n}\right)_{n}$.

Given $\left(M_{i, j}^{N_{T}}\right)$, define the map $\Phi:\left(M^{n}\right)_{0 \leq n<N_{T}} \in \mathcal{K}^{N_{T}} \rightarrow\left(U^{n}\right)_{0 \leq n \leq N_{T}}:$

$$
\left\{\begin{array}{l}
\frac{U_{i, j}^{n+1}-U_{i, j}^{n}}{\Delta t}-\nu\left(\Delta_{h} U^{n+1}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U^{n+1}\right]_{i, j}\right)=\left(V_{h}\left[M^{n+1}\right]\right)_{i, j}, \\
U_{i, j}^{0}=V_{0}\left[m_{h}^{0}\right]\left(x_{i, j}\right) .
\end{array}\right.
$$

- Existence is classical: (Leray-Schauder fixed point theorem at each time step, making use of the monotonicity of g, the uniform boundedness assumption on V and of $H(\cdot, 0)$).
- Uniqueness stems from the monotonicity of g.

Step 2: estimates

- There exists a constant C independent of $\left(M^{n}\right)_{n}$ and h s.t.

$$
\left\|U^{n}\right\|_{\infty} \leq C(1+T)
$$

- The map Φ is continuous, from the continuity of V and well known results on continuous dependence on the data for monotone schemes.
- There exists a constant $L(T)$ independent of $\left(M^{n}\right)_{n}$ and h s.t.

$$
\left\|D_{h} U^{n}\right\|_{\infty} \leq L(T), \quad \forall n
$$

proved by using the assumption

$$
\left|\frac{\partial g}{\partial x}\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)\right| \leq C\left(1+\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|+\left|q_{4}\right|\right)
$$

Step 3: A map $\chi: \quad\left(M^{n}\right)_{n} \rightarrow\left(\widetilde{M^{n}}\right)_{n}$

- Choose a positive constant $\mu>0$ large enough.
- For $\left(U^{n}\right)_{n}=\Phi\left(\left(M^{n}\right)_{n}\right)$, backward linear parabolic problem for \widetilde{M}^{n} :

$$
\left\{\begin{aligned}
\widetilde{M}^{N_{T}}= & M^{N_{T}}, \\
-\mu M_{i, j}^{n}= & \frac{\widetilde{M}_{i, j}^{n+1}-\widetilde{M}_{i, j}^{n}-\nu\left(\Delta_{h} \widetilde{M}^{n}\right)_{i, j}-\mu \widetilde{M}_{i, j}^{n}}{\Delta t} \\
& +\frac{1}{h}\binom{\widetilde{M}_{i, j}^{n} \frac{\partial g}{\partial q_{1}}\left(x_{i, j},\left[D_{h} U^{n}\right]_{i, j}\right)-\widetilde{M}_{i-1, j}^{n} \frac{\partial g}{\partial q_{1}}\left(x_{i-1, j},\left[D_{h} U^{n}\right]_{i-1, j}\right)}{+\widetilde{M_{i+1, j}^{n}} \frac{\partial g}{\partial q_{2}}\left(x_{i+1, j},\left[D_{h} U^{n}\right]_{i+1, j}\right)-\widetilde{M}_{i, j}^{n} \frac{\partial g}{\partial q_{2}}\left(x_{i, j},\left[D_{h} U^{n}\right]_{i, j}\right)} \\
& +\frac{1}{h}\binom{\widetilde{M}_{i, j}^{n} \frac{\partial g}{\partial q_{3}}\left(x_{i, j},\left[D_{h} U^{n}\right]_{i, j}\right)-\widetilde{M}_{i, j-1}^{n} \frac{\partial g}{\partial q_{3}}\left(x_{i, j-1},\left[D_{h} U^{n}\right]_{i, j-1}\right)}{+\widetilde{M}_{i, j+1}^{n} \frac{\partial g}{\partial q_{4}}\left(x_{i, j+1},\left[D_{h} U^{n}\right]_{i, j+1}\right)-\widetilde{M}_{i, j}^{n} \frac{\partial g}{\partial q_{4}}\left(x_{i, j},\left[D_{h} U^{n}\right]_{i, j}\right)}
\end{aligned}\right.
$$

From the previous estimates on $\left(U^{n}\right)_{n}$, one can find μ large enough and independent of $\left(M^{n}\right)_{n}$ such that the iteration matrix is the opposite of a M-matrix, thus there is a discrete maximum principle.

Therefore, there exists a unique solution $\left(\widetilde{M^{n}}\right)_{n}$.
Moreover,

$$
\begin{aligned}
M^{n} \geq 0 & \Rightarrow \widetilde{M}^{n} \geq 0, & & \forall n \\
h^{2} \sum_{i, j} M^{n}=1 & \Rightarrow h^{2} \sum_{i, j} \widetilde{M}^{n}=1, & & \forall n
\end{aligned}
$$

Thus $\widetilde{M}^{n} \in \mathcal{K}$ for all n. Define the map

$$
\begin{aligned}
\chi: \quad \mathcal{K}^{N_{T}} & \mapsto \quad \mathcal{K}^{N_{T}} \\
\left(M^{n}\right)_{0 \leq n<N_{T}} & \rightarrow \quad\left(\widetilde{M}^{n}\right)_{0 \leq n<N_{T}}
\end{aligned}
$$

Step 4: existence of a fixed point of χ

From the boundedness and continuity of the mapping Φ, and from the fact that g is \mathcal{C}^{1}, we obtain that $\chi: \mathcal{K}^{N_{T}} \mapsto \mathcal{K}^{N_{T}}$ is continuous.

From Brouwer fixed point theorem, χ has a fixed point, which yields a solution of $(* *)$.

Discrete weak maximum principle-1

The discrete version of

$$
\frac{\partial m}{\partial t}+\nu \Delta m+\operatorname{div}\left(m \frac{\partial H}{\partial p}(x, \nabla v)\right)=0
$$

can be written

$$
-M^{n}-\Delta t A^{n} M^{n}=-M^{n+1}
$$

Introduce the semi-norm $|||W|||$:

$$
\|\|W\|\|^{2}=\sum_{i, j}\left(\left(D_{1}^{+} W\right)_{i, j}^{2}+\left(D_{2}^{+} W\right)_{i, j}^{2}\right)
$$

Discrete Gårding inequality: from the estimates on U^{n}, there exists $\gamma \geq 0$ (independent of h and Δt) s.t.

$$
\left(A^{n} W, W\right)_{2} \geq \frac{\nu}{2}\| \| W\| \|^{2}-\gamma\|W\|_{2}^{2}, \quad \forall W, \quad \forall n
$$

Discrete weak maximum principle-2

We have also

$$
-\left(A^{n} W, W^{-}\right)_{2} \geq \frac{\nu}{2}\| \| W^{-}\| \|^{2}-\gamma\left\|W^{-}\right\|_{2}^{2}, \quad \forall W .
$$

Taking $\left(M^{n}\right)^{-}$as a test-function in the discrete equation yields

$$
(1-2 \gamma \Delta t)\left\|\left(M^{n}\right)^{-}\right\|_{2}^{2}+\nu \Delta t \mid\left\|\left(M^{n}\right)^{-}\right\|\left\|^{2} \leq\right\|\left(M^{n+1}\right)^{-} \|_{2}^{2},
$$

so there is a discrete weak maximum principle if $2 \gamma \Delta t<1$.

Uniqueness

Theorem Same assumptions as above on V, V_{0}, H and g. Assume also that the operators V_{h} and $V_{0, h}$ are strictly monotone, i.e.

$$
\begin{array}{rlll}
\left(V_{h}[M]-V_{h}[\widetilde{M}], M-\widetilde{M}\right)_{2} \leq 0 & \Rightarrow & V_{h}[M]=V_{h}[\widetilde{M}], \\
\left(V_{0, h}[M]-V_{0, h}[\widetilde{M}], M-\widetilde{M}\right)_{2} \leq 0 & \Rightarrow & V_{0, h}[M]=V_{0, h}[\widetilde{M}] .
\end{array}
$$

If $2 \gamma \Delta t<1$, then the discrete problem (slightly modified) has a unique solution.

Proof The choice of the scheme makes it possible to mimic the proof used in the continuous case: uses the convexity assumption on g and the discrete weak maximum principle.
III. Infinite Horizon: A numerical method

$$
\left\{\begin{array}{l}
-\nu\left(\Delta_{h} U\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)+\lambda=\left(V_{h}[M]\right)_{i, j}, \\
-\frac{1}{h}\binom{M_{i, j} \frac{\partial g}{\partial q_{1}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)-M_{i-1, j} \frac{\partial g}{\partial q_{1}}\left(x_{i-1, j},\left[D_{h} U\right]_{i-1, j}\right)}{+M_{i+1, j} \frac{\partial g}{\partial q_{2}}\left(x_{i+1, j},\left[D_{h} U\right]_{i+1, j}\right)-M_{i, j} \frac{\partial g}{\partial q_{2}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)} \\
-\frac{1}{h}\binom{M_{i, j} \frac{\partial g}{\partial q_{3}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)-M_{i, j-1} \frac{\partial g}{\partial q_{3}}\left(x_{i, j-1},\left[D_{h} U\right]_{i, j-1}\right)}{+M_{i, j+1} \frac{\partial g}{\partial q_{4}}\left(x_{i, j+1},\left[D_{h} U\right]_{i, j+1}\right)-M_{i, j} \frac{\partial g}{\partial q_{4}}\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)}
\end{array}\right)=0,
$$

and

$$
h^{2} \sum_{i, j} M_{i, j}=1, \quad \text { and } \sum_{i, j} U_{i, j}=0
$$

Existence for the discrete problem: strategy of proof

- Use Brouwer fixed point theorem in the set of discrete probability measures for a mapping $\chi: \quad M \rightarrow U \rightarrow M$.
- The map $\Phi: \quad M \rightarrow U$ consists of solving

$$
\left\{\begin{array}{l}
-\nu\left(\Delta_{h} U\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)+\lambda=\left(V_{h}[M]\right)_{i, j} \\
\sum_{i, j} U_{i, j}=0
\end{array}\right.
$$

- (U, λ) is obtained by considering the ergodic approximation:

$$
-\nu\left(\Delta_{h} U^{(\rho)}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U^{(\rho)}\right]_{i, j}\right)+\rho U_{i, j}^{(\rho)}=\left(V_{h}[M]\right)_{i, j},
$$

and passing to the limit as $\rho \rightarrow 0$.

- We need estimates on $U^{(\rho)}-U_{0,0}^{(\rho)}$ uniform in ρ and h.

Difficulty

Continuous problem: the a priori estimate $\|\nabla u\|_{\infty} \leq C$ was obtained with the Bernstein method.

Discrete case: this argument is difficult to reproduce.

We make more restrictive assumptions on H and g to obtain bounds uniform in h.

Possible assumptions on the Hamiltonian

$$
H(x, p)=\max _{\alpha \in \mathcal{A}}(p \cdot \alpha-L(x, \alpha)),
$$

where

- \mathcal{A} is a compact subset of \mathbb{R}^{2},
- L is a \mathcal{C}^{0} function on $\mathbb{T} \times \mathcal{A}$,

Kushner-Dupuis scheme:

$$
g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right)=\sup _{\alpha \in \mathcal{A}}\left(-\alpha_{1}^{-} q_{1}+\alpha_{1}^{+} q_{2}-\alpha_{2}^{-} q_{3}+\alpha_{2}^{+} q_{4}-L(x, \alpha)\right) .
$$

Estimates on the discrete ergodic approximation

Proposition (using Kuo-Trudinger(1992) and Camilli-Marchi(2008))
Consider a grid function V and make the assumptions:

- L is a continuous function, \mathcal{A} is compact,
- $q \mapsto g(x, q)$ is a \mathcal{C}^{1} function on \mathbb{R}^{4},
- $\|V\|_{\infty}$ is bounded uniformly w.r.t h.

For any real number $\rho>0$, there exists a unique grid function U^{ρ} such that

$$
\rho U_{i, j}^{\rho}-\nu\left(\Delta_{h} U^{\rho}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U^{\rho}\right]_{i, j}\right)=V_{i, j}
$$

and there exist two constants $\delta, \delta \in(0,1)$ and $C, C>0$, uniform in h and ρ s.t.

$$
\left|U^{\rho}(\xi)-U^{\rho}\left(\xi^{\prime}\right)\right| \leq C\left|\xi-\xi^{\prime}\right|^{\delta}, \quad \forall \xi, \xi^{\prime} \in \mathbb{T}_{h}
$$

Estimates on the discrete ergodic approximation

Proposition (using Krylov(2007) and Camilli-Marchi(2008))
Same assumptions as before, and furthermore

- L is uniformly Lipschitz continuous w.r.t. x,
- $\left\|D_{h} V\right\|_{\infty}$ is bounded uniformly w.r.t h,

For any real number $\rho>0$, there exists a unique grid function U^{ρ} such that

$$
\rho U_{i, j}^{\rho}-\nu\left(\Delta_{h} U^{\rho}\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U^{\rho}\right]_{i, j}\right)=V_{i, j},
$$

and there exists a constant $C, C>0$, uniform in h and ρ s.t.

$$
\left|U^{\rho}(\xi)-U^{\rho}\left(\xi^{\prime}\right)\right| \leq C\left|\xi-\xi^{\prime}\right|, \quad \forall \xi, \xi^{\prime} \in \mathbb{T}_{h}
$$

The map $\Phi: M \rightarrow U$

Proposition

Under the first set of assumptions, there exists a unique grid function U and a real number λ such that

$$
\left\{\begin{array}{l}
-\nu\left(\Delta_{h} U\right)_{i, j}+g\left(x_{i, j},\left[D_{h} U\right]_{i, j}\right)+\lambda=\left(V_{h}[M]\right)_{i, j} \\
\sum_{i, j} U_{i, j}=0
\end{array}\right.
$$

and there exist two constants $\delta, \delta \in(0,1)$ and $C, C>0$, uniform in h s.t.

$$
\left|U(\xi)-U\left(\xi^{\prime}\right)\right| \leq C\left|\xi-\xi^{\prime}\right|^{\delta}, \quad \forall \xi, \xi^{\prime} \in \mathbb{T}_{h}
$$

Under the second set of assumptions,

$$
\left|U(\xi)-U\left(\xi^{\prime}\right)\right| \leq C\left|\xi-\xi^{\prime}\right|, \quad \forall \xi, \xi^{\prime} \in \mathbb{T}_{h}
$$

Existence and uniqueness for the stationary problem

Theorem Under the above assumptions on V and g, the discrete stationary problem has at least a solution and we have either a uniform Hölder or a Lipschitz estimate on u_{h}, depending on the assumptions.

Remark Existence is still OK if for $\gamma>1$,

$$
g\left(x, q_{1}, q_{2}, q_{3}, q_{4}\right) \geq \alpha\left(\left(q_{1}\right)_{-}^{2}+\left(q_{2}\right)_{+}^{2}+\left(q_{3}\right)_{-}^{2}+\left(q_{4}\right)_{+}^{2}\right)^{\gamma / 2}-C
$$

but no bounds on u_{h} uniform in h.

Uniqueness: Ok if

$$
\left(V_{h}[M]-V_{h}[\widetilde{M}], M-\widetilde{M}\right)_{2} \leq 0 \Rightarrow M=\widetilde{M}
$$

Convergence

The same method used for uniqueness can be used for proving convergence of the discrete scheme under some assumptions on consistency and stronger assumptions on V_{h}.

Example

If there exist $s>0$ such that

$$
h^{2}\left(V_{h}[M]-V_{h}[\widetilde{M}], M-\widetilde{M}\right)_{2} \geq c\left\|V_{h}[M]-V_{h}[\widetilde{M}]\right\|_{\infty}^{s},
$$

then uniform convergence for u, convergence of λ and a convergence related to V for m.

Uses the Hölder or Lipschitz estimates on U_{h} uniform w.r.t. h.

The case when V is a local operator

$$
V[m](x)=F(m(x), x)
$$

Same assumptions on H, g as above.

- Existence for the discrete problem: OK
- If F is a bounded and \mathcal{C}^{1} function on $\mathbb{R} \times \mathbb{T}$, uniform bounds for some Hölder norm of u_{h}.
IV. Infinite Horizon: long time approximation

Long time approximation (Eductive strategy, see Guéant-Lasry)

$$
\left\{\begin{aligned}
\frac{\partial \tilde{u}}{\partial t}-\nu \Delta \tilde{u}+H(x, \nabla \tilde{u}) & =V[\tilde{m}] \\
\frac{\partial \tilde{m}}{\partial t}-\nu \Delta \tilde{m}-\operatorname{div}\left(\tilde{m} \frac{\partial H}{\partial p}(x, \nabla \tilde{u})\right) & =0 \\
\tilde{u}(0, x)=\tilde{u}_{0}(x), \quad \tilde{m}(0, x) & =\tilde{m}_{0}(x)
\end{aligned}\right.
$$

with $\int_{\mathbb{T}} \tilde{m}_{0}=1 \quad$ and $\quad \tilde{m}_{0} \geq 0$.
We expect that

$$
\lim _{t \rightarrow \infty}(\tilde{u}(t, x)-\lambda t)=u(x), \quad \lim _{t \rightarrow \infty} \tilde{m}(t, x)=m(x)
$$

Same thing at the discrete level.
We use a semi-implicit linearized scheme. It requires the numerical solution of a linearized problem. Linearizing must be done carefully and is not always possible. In such cases, an explicit method can be used.

$$
\nu=1, \quad H(x, p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{2}, \quad F(x, m)=m^{2}
$$

$$
H(x, 0)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)
$$

$\nu=1, \quad$ Convergence $\frac{1}{t} \int_{\mathbb{T}} \tilde{u}(x, t) d x \rightarrow \lambda$ as $t \rightarrow \infty$.
Very long time steps are used near convergence.
1.08 ппппппп
1.07 …...."

1.04
. 03 " " " " "

.01 "|" "" ""
0.99 ппншпи
0.98 п!!"!

0.95
0.94 пи"и"
0.93 |||||||

0.9 แாแாแா

$$
\nu=1, \quad \text { left: } u, \quad \text { right } m
$$

Convergence as $h \rightarrow 0$

$$
\begin{aligned}
\nu & =0.01 \\
H(x, p) & =\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{2}, \quad F(x, m)=m^{2}
\end{aligned}
$$

$$
\nu=0.01, \quad \text { Convergence } \frac{1}{t} \int_{\mathbb{T}} \tilde{u}(x, t) d x \rightarrow \lambda \text { as } t \rightarrow \infty
$$

Note that the supports of ∇u and of m tend to be disjoint as $\nu \rightarrow 0$.

$$
V[m](x)=F(m(x))=-\log (m(x))
$$

Same Hamiltonian as before. We now take $\nu=0.1$.

left: u, right m.
The measure m_{h} concentrates near the minimum of u_{h}.

Deterministic limit $\nu \rightarrow 0$

Theorem (Lasry-Lions)

If

- $H(x, p) \geq H(x, 0)=0$,
- $V[m]=F(m)+f_{0}(x)$ where $F^{\prime}>0$,
then

$$
\lim _{\nu \rightarrow 0}\left(\lambda_{\nu}, m_{\nu}\right)=(\lambda, m)
$$

where

$$
m(x)=\left(F^{-1}\left(\lambda-f_{0}(x)\right)\right)^{+} \quad \text { and } \quad \int_{\mathbb{T}} m d x=1
$$

$$
\begin{aligned}
\nu & =0.001 \\
H(x, p) & =|p|^{2} \\
V[m](x) & =4 \cos (4 \pi x)+m(x)
\end{aligned}
$$

left: u, right m.
The supports of ∇u and of m tend to be disjoint.

$$
m(x) \approx(\lambda-4 \cos (4 \pi x))^{+}
$$

A nonlocal operator V

$$
\begin{gathered}
\nu=0.1 \\
H(x, p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{3 / 2} \\
F(x, m)=200(1-\Delta)^{-1}(1-\Delta)^{-1} m
\end{gathered}
$$

left: u, right m.

$$
\begin{gathered}
\nu=0.1 \\
H(x, p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+(0.6+0.59 \cos (2 \pi x))|p|^{3 / 2} \\
F(x, m)=200(1-\Delta)^{-1}(1-\Delta)^{-1} m \\
\text { left: } u, \text { right } m
\end{gathered}
$$

V. Finite Horizon: a Newton method

Difficulty: time dependent problem with conditions at both initial and final times

$$
\left\{\begin{array}{l}
\mathcal{F}_{U}(\mathcal{U}, \mathcal{M})=0 \\
\mathcal{F}_{M}(\mathcal{U}, \mathcal{M})=0
\end{array}\right.
$$

Solution procedure: Newton method
$\binom{\mathcal{U}^{n+1}}{\mathcal{M}^{n+1}}=\binom{\mathcal{U}^{n}}{\mathcal{M}^{n}}-\left(\begin{array}{ll}A_{U, U}\left(\mathcal{U}^{n}, \mathcal{M}^{n}\right) & A_{U, M}\left(\mathcal{U}^{n}, \mathcal{M}^{n}\right) \\ A_{M, U}\left(\mathcal{U}^{n}, \mathcal{M}^{n}\right) & A_{M, M}\left(\mathcal{U}^{n}, \mathcal{M}^{n}\right)\end{array}\right)^{-1}\binom{\mathcal{F}_{U}\left(\mathcal{U}^{n}, \mathcal{M}^{n}\right)}{\mathcal{F}_{M}\left(\mathcal{U}^{n}, \mathcal{M}^{n}\right)}$
where

$$
\begin{aligned}
A_{U, U}(\mathcal{U}, \mathcal{M}) & =D_{\mathcal{U}} \mathcal{F}_{\mathcal{U}}(\mathcal{U}, \mathcal{M}), & A_{U, M}(\mathcal{U}, \mathcal{M}) & =D_{\mathcal{M}} \mathcal{F}_{\mathcal{U}}(\mathcal{U}, \mathcal{M}) \\
A_{M, U}(\mathcal{U}, \mathcal{M}) & =D_{\mathcal{U}} \mathcal{F}_{\mathcal{M}}(\mathcal{U}, \mathcal{M}), & & A_{M, M}(\mathcal{U}, \mathcal{M})
\end{aligned}=D_{\mathcal{M}} \mathcal{F}_{\mathcal{M}}(\mathcal{U}, \mathcal{M}) .
$$

The linear systems

The most time consuming part of the procedure lies in solving the system of linear equations

$$
\left(\begin{array}{cc}
A_{U, U} & A_{U, M} \\
A_{M, U} & A_{M, M}
\end{array}\right)\binom{\mathcal{U}}{\mathcal{M}}=\binom{G_{U}}{G_{M}} .
$$

The matrix $A_{U U}$ is block-lower triangular and block-bidiagonal.
The matrix $A_{U M}$ is block-diagonal.
The matrix $A_{M M}$ is block-upper triangular and block-bidiagonal.
The matrix $A_{M U}$ is block-diagonal.

The chosen procedure is as follows:

1. solve first $A_{U, U} \widetilde{\mathcal{U}}=G_{U}$. This is done by sequentially solving

$$
\begin{equation*}
D_{k} \widetilde{U}^{k}=-L_{k} \widetilde{U}^{k-1}+G_{U}^{k} \tag{1}
\end{equation*}
$$

i.e. marching in time in the forward direction. (1) are solved with efficient direct solvers.
2. Introducing $\overline{\mathcal{U}}=\mathcal{U}-\widetilde{\mathcal{U}}$,

$$
\left(\begin{array}{ll}
A_{U, U} & A_{U, M} \\
A_{M, U} & A_{M, M}
\end{array}\right)\binom{\overline{\mathcal{U}}}{\mathcal{M}}=\binom{0}{G_{M}-A_{M, U} \tilde{\mathcal{U}}}
$$

which implies

$$
\begin{equation*}
\left(A_{M, M}-A_{M, U} A_{U, U}^{-1} A_{U, M}\right) \mathcal{M}=G_{M}-A_{M, U} \widetilde{\mathcal{U}} \tag{2}
\end{equation*}
$$

(2) is solved by an iterative method, e.g. BiCGStab.

$$
\nu=1, \quad T=1, \quad \Delta t=h=1 / 50
$$

$$
m(T)=1
$$

$$
H(x, p)=\sin \left(2 \pi x_{2}\right)+\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+|p|^{2}
$$

$$
F(x, m)=m^{2}, \quad V_{0}[m](x)=m^{2}+\cos \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)
$$

Convergence of the Newton method(left) and of a linear solver (right)

The L^{2} norm of m_{h} (right) and u_{h} (left) vs. $50 \times$ time

Same test except

$$
\nu=0.01, \quad \Delta t=1 / 200
$$

Convergence of the Newton method(left) and of a linear solver (right) $500,000 \mathrm{~m}$ unknowns in the nonlinear system.

The L^{2} norm of m_{h} (right) and u_{h} (left) vs. $200 \times$ time

Perspectives

- Obtain estimates on $\left\|D_{h} U\right\|_{\infty}$ uniform in h with more general assumptions in the stationary case (important for stability and convergence).
- When convergence is OK, prove error estimates?
- Better understand the Newton method in the finite horizon case.
- Tackle practically relevant situations.

A different strategy

Alternative numerical approach with a reformulation into an optimization problem (A.Lachapelle, J. Salomon, G.Turinici).

