Mean Field Games: Numerical Methods

Y. Achdou,

work with I.Capuzzo-Dolcetta

January 22, 2009

Content

- Mean field games: a short and incomplete review
- Numerical schemes
 - Description
 - Finite horizon: existence, bounds, uniqueness
 - Infinite horizon: Existence, bounds, uniqueness
- Numerical procedures and tests
 - Infinite horizon: a long time approximation
 - Finite horizon: a Newton method

I. A short review

Mean field games: infinite horizon

Find $u \in \mathcal{C}^2(\mathbb{T})$, $m \in W^{1,p}(\mathbb{T})$ and $\lambda \in \mathbb{R}$ s.t.

$$\begin{cases} -\nu\Delta u + H(x,\nabla u) + \lambda = V[m], \\ -\nu\Delta m - \operatorname{div}\left(m\frac{\partial H}{\partial p}(x,\nabla u)\right) = 0, \\ \int_{\mathbb{T}} u dx = 0, \quad \int_{\mathbb{T}} m dx = 1, \quad \text{and} \quad m > 0 \quad \text{in } \mathbb{T}. \end{cases}$$
(*)

- \mathbb{T} unit torus of \mathbb{R}^d
- $\nu > 0$
- H is a C^1 Hamiltonian (convex):

$$H(x,p) = \sup_{\alpha \in \mathbb{R}^d} \left(p \cdot \alpha - L(x,\alpha) \right), \quad \text{with} \quad \lim_{|\alpha| \to \infty} \inf_x \frac{L(x,\alpha)}{|\alpha|} = +\infty$$

V is an operator from the space of probability measures on T into a bounded set of Lipschitz functions on T such that
V[m_n] converges uniformly on T to V[m] if m_n weakly converges to m.
Typical examples for V include nonlocal smoothing operators.

Local operators

$$V[m](x) = f(m(x), x)$$

may be considered as well.

(*) has been obtained by J-M. Lasry and P-L. Lions by passing to the limit in stochastic differential games involving a very large number N of identical rational agents (or players) with a (limited) global information

• Dynamics:

$$dX_t^i = \sqrt{2\nu} dW_t^i - \alpha^i dt, \quad X_0^i = x^i \in \mathbb{R}^d$$

• Cost:

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \liminf_{T\to\infty} \frac{1}{T} \mathbb{E}\left(\int_{0}^{T} \left(L(X_{t}^{i},\alpha_{t}^{i}) + V\left[\frac{1}{N-1}\sum_{j\neq i}\delta_{X_{t}^{j}}\right](X_{t}^{i})\right) dt\right)$$

•
$$(\bar{\alpha}^1, \dots, \bar{\alpha}^N)$$
 is a Nash point if $\forall i = 1, \dots, N$,
 $\bar{\alpha}^i = \operatorname{Argmin}_{\alpha^i} J^i(\bar{\alpha}^1, \dots, \bar{\alpha}^{i-1}, \alpha^i, \bar{\alpha}^{i+1}, \dots, \bar{\alpha}^N).$

• Structure assumption on H: there exists $\theta \in (0, 1)$ such that for |p| large,

$$\inf_{x \in \mathbb{T}} \left(\frac{\partial H}{\partial x} \cdot p + \frac{\theta}{d\nu} H^2 \right) > 0$$

(makes it possible to obtain Lipschitz estimate on u with Bernstein inequality).

- There is a system of 2N PDEs
 - N HJB equations for the value functions
 - N Kolmogorov equations for the stationary measures of $(X_t^i)_i$ whose solutions yield Nash equilibria.
- $N \to \infty$, pass to the limit...

Uniqueness for the mean field problem

By contrast with the system of PDEs for N players, the system (*) is well posed under some assumptions:

Theorem (Lasry-Lions) If V is strictly monotone, i.e.

$$\int_{\mathbb{T}} (V[m_1] - V[m_2])(m_1 - m_2) dx \le 0 \Rightarrow m_1 = m_2,$$

then the solution of the mean field system (*) is unique.

Proof

Consider two solutions of (*): (λ_1, u_1, m_1) and (λ_2, u_2, m_2) :

• multiply the first equation by $m_1 - m_2$

$$\int_{\mathbb{T}} \left(\nu \nabla (u_1 - u_2) \cdot \nabla (m_1 - m_2) + (H(x, \nabla u_1) - H(x, \nabla u_2))(m_1 - m_2) \right) dx$$
$$= \int_{\mathbb{T}} (V[m_1] - V[m_2])(m_1 - m_2) dx$$

• multiply the second equation by $u_1 - u_2$

$$0 = \int_{\mathbb{T}} \boldsymbol{\nu} \nabla (u_1 - u_2) \cdot \nabla (m_1 - m_2) dx + \int_{\mathbb{T}} \left(m_1 \frac{\partial H}{\partial p} (x, \nabla u_1) - m_2 \frac{\partial H}{\partial p} (x, \nabla u_2) \right) \cdot \nabla (u_1 - u_2) dx.$$

• subtract:

$$0 = \begin{cases} \int_{\mathbb{T}} m_1 \left(H(x, \nabla u_1) - H(x, \nabla u_2) - \frac{\partial H}{\partial p}(x, \nabla u_1) \cdot \nabla(u_1 - u_2) \right) dx \\ + \int_{\mathbb{T}} m_2 \left(H(x, \nabla u_2) - H(x, \nabla u_1) - \frac{\partial H}{\partial p}(x, \nabla u_2) \cdot \nabla(u_2 - u_1) \right) dx \\ + \int_{\mathbb{T}} (V[m_1] - V[m_2])(m_1 - m_2) dx \end{cases}$$

Since H is convex and V is monotone, the 3 terms vanish.

The strict monotonicity of V implies that $m_1 = m_2$.

The identities $u_1 = u_2$ and $\lambda_1 = \lambda_2$ come from the uniqueness for the HJB equation:

$$-\nu\Delta u + H(x, \nabla u) + \lambda = f$$
 with $\int_{\mathbb{T}} u = 0.$

Finite horizon Nash equilibrium with N players

The N players initial conditions are random, independent, with the same probability distribution m^0 .

Cost of the player *i* at time *t*:

$$\mathbb{E}\left(\int_{t}^{T} \left(L^{i}(X_{s}^{i},\alpha_{s}^{i})+V\left[\frac{1}{N-1}\sum_{j\neq i}\delta_{X_{s}^{j}}\right]\right)ds+V_{0}\left[\frac{1}{N-1}\sum_{j\neq i}\delta_{X_{T}^{j}}\right]\right)$$

 $N \rightarrow \infty$: with the change of variable $t \rightarrow T - t$,

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) = V[m], \\ \frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) = 0, \\ \int_{\mathbb{T}} m dx = 1, \quad \text{and} \quad m > 0 \quad \text{in } \mathbb{T}, \\ u(t = 0) = V_0[m(t = 0)], \qquad m(t = T) = m_{\circ}. \end{cases}$$
(**)

Existence for (**)

```
Theorem (Lasry-Lions)
If
```

- same kind of assumptions on V and V_0 as in the stationary case (V and V_0 are nonlocal smoothing operators).
- H is smooth on $\mathbb{T} \times \mathbb{R}^d$ and

$$\left|\frac{\partial H}{\partial x}(x,p)\right| \le C(1+|p|), \quad \forall x \in \mathbb{T}, \ \forall p \in \mathbb{R}^d,$$

then

(**) has at least a smooth solution.

Uniqueness for (**)

Theorem (Lasry-Lions)

If

the operators V and V_0 are strictly monotone, i.e.

$$\int_{\mathbb{T}} (V[m] - V[\tilde{m}])(m - \tilde{m}) \leq 0 \Rightarrow V[m] = V[\tilde{m}],$$
$$\int_{\mathbb{T}} (V_0[m] - V_0[\tilde{m}])(m - \tilde{m}) \leq 0 \Rightarrow V_0[m] = V_0[\tilde{m}],$$

then

(**) has a unique solution.

II. Finite Horizon: Numerical Methods

Take d = 2:

$$\begin{split} & \int \frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) = V[m], \\ & \frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) = 0, \\ & \int_{\mathbb{T}} m dx = 1, \qquad m > 0 \quad \text{in } \mathbb{T}, \\ & u(t = 0) = V_0[m(t = 0)], \quad m(t = T) = m_{\circ}, \end{split}$$

- Let \mathbb{T}_h be a uniform grid on the torus with mesh step h, and x_{ij} be a generic point in \mathbb{T}_h .
- Uniform time grid: $\Delta t = T/N_T$, $t_n = n\Delta t$.
- The values of u and m at $(x_{i,j}, t_n)$ are resp. approximated by $U_{i,j}^n$ and $M_{i,j}^n$.

Goal: use a fully implicit scheme, robust when $\nu \rightarrow 0$, which guarantees existence, and possibly uniform bounds and uniqueness.

Notation:

• The discrete Laplace operator:

$$(\Delta_h W)_{i,j} = -\frac{1}{h^2} (4W_{i,j} - W_{i+1,j} - W_{i-1,j} - W_{i,j+1} - W_{i,j-1}).$$

• Right-sided finite difference formulas for $\partial_1 w(x_{i,j})$ and $\partial_2 w(x_{i,j})$:

$$(D_1^+W)_{i,j} = \frac{W_{i+1,j} - W_{i,j}}{h}, \text{ and } (D_2^+W)_{i,j} = \frac{W_{i,j+1} - W_{i,j}}{h}.$$

• The set of 4 finite difference formulas at $x_{i,j}$:

$$[D_h W]_{i,j} = \left((D_1^+ W)_{i,j}, (D_1^+ W)_{i-1,j}, (D_2^+ W)_{i,j}, (D_2^+ W)_{i,j-1} \right).$$

Discrete HJB equation

$$\frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) = V[m]$$

$$\downarrow$$

$$\frac{U_{i,j}^{n+1} - U_{i,j}^{n}}{\Delta t} - \nu (\Delta_h U^{n+1})_{i,j} + g(x_{i,j}, [D_h U^{n+1}]_{i,j}) = (V_h[M^{n+1}])_{i,j}$$

$$\bullet$$

$$g(x_{i,j}, [D_h U^{n+1}]_{i,j})$$

$$= g\Big(x_{i,j}, (D_1^+ U^{n+1})_{i,j}, (D_1^+ U^{n+1})_{i-1,j}, (D_2^+ U^{n+1})_{i,j}, (D_2^+ U^{n+1})_{i,j-1}\Big),$$

• for instance,

$$(V_h[M])_{i,j} = V[m_h](x_{i,j}),$$

calling m_h the piecewise constant function on \mathbb{T} taking the value $M_{i,j}$ in the square $|x - x_{i,j}|_{\infty} \leq h/2$.

Classical assumptions on the discrete Hamiltonian g

 $(q_1, q_2, q_3, q_4) \to g(x, q_1, q_2, q_3, q_4).$

- Monotonicity: g is nonincreasing with respect to q_1 and q_3 and nondecreasing with respect to to q_2 and q_4 .
- Consistency:

$$g(x, q_1, q_1, q_3, q_3) = H(x, q), \quad \forall x \in \mathbb{T}, \forall q = (q_1, q_3) \in \mathbb{R}^2$$

• **Differentiability:** g is of class C^1 , and

$$\left|\frac{\partial g}{\partial x}\left(x,(q_1,q_2,q_3,q_4)\right)\right| \le C(1+|q_1|+|q_2|+|q_3|+|q_4|).$$

• Convexity: $(q_1, q_2, q_3, q_4) \rightarrow g(x, q_1, q_2, q_3, q_4)$ is convex.

The discrete version of

$$\frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div}\left(m\frac{\partial H}{\partial p}(x, \nabla v)\right) = 0. \tag{\dagger}$$

It is chosen so that

- each time step leads to a linear system with a matrix
 - whose diagonal coefficients are negative,
 - whose off-diagonal coefficients are nonnegative,

in order to hopefully use some discrete maximum principle.

• The argument for uniqueness should hold in the discrete case, so the discrete Hamiltonian g should be used for (†) as well.

Principle

Discretize

by

$$-\int_{\mathbb{T}} \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) w = \int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w$$

$$h^2 \sum_{i,j} m_{i,j} \nabla_q g(x_{i,j}, [D_h U]_{i,j}) \cdot [D_h W]_{i,j}.$$

This yields the scheme:

$$\begin{split} 0 &= \frac{M_{i,j}^{n+1} - M_{i,j}^{n}}{\Delta t} + \nu(\Delta_{h}M^{n})_{i,j} \\ &+ \frac{1}{h} \begin{cases} M_{i,j}^{n} \frac{\partial g}{\partial q_{1}} \left(x_{i,j}, (D_{1}^{+}U^{n})_{i,j}, (D_{1}^{+}U^{n})_{i-1,j}, (D_{2}^{+}U^{n})_{i,j}, (D_{2}^{+}U^{n})_{i,j-1}\right) \\ -M_{i-1,j}^{n} \frac{\partial g}{\partial q_{1}} \left(x_{i-1,j}, (D_{1}^{+}U^{n})_{i-1,j}, (D_{1}^{+}U^{n})_{i-2,j}, (D_{2}^{+}U^{n})_{i-1,j}, (D_{2}^{+}U^{n})_{i-1,j-1}\right) \\ +M_{i+1,j}^{n} \frac{\partial g}{\partial q_{2}} \left(x_{i+1,j}, (D_{1}^{+}U^{n})_{i+1,j}, (D_{1}^{+}U^{n})_{i,j}, (D_{2}^{+}U^{n})_{i+1,j}, (D_{2}^{+}U^{n})_{i+1,j-1}\right) \\ -M_{i,j}^{n} \frac{\partial g}{\partial q_{2}} \left(x_{i,j}, (D_{1}^{+}U^{n})_{i,j}, (D_{1}^{+}U^{n})_{i-1,j}, (D_{2}^{+}U^{n})_{i,j}, (D_{2}^{+}U^{n})_{i,j-1}\right) \\ &+ \frac{1}{h} \begin{cases} M_{i,j}^{n} \frac{\partial g}{\partial q_{3}} \left(x_{i,j}, (D_{1}^{+}U^{n})_{i,j}, (D_{1}^{+}U^{n})_{i-1,j}, (D_{2}^{+}U^{n})_{i,j}, (D_{2}^{+}U^{n})_{i,j-1}\right) \\ -M_{i,j-1}^{n} \frac{\partial g}{\partial q_{3}} \left(x_{i,j-1}, (D_{1}^{+}U^{n})_{i,j-1}, (D_{1}^{+}U^{n})_{i-1,j-1}, (D_{2}^{+}U^{n})_{i,j-1}, (D_{2}^{+}U^{n})_{i,j-2}\right) \\ +M_{i,j+1}^{n} \frac{\partial g}{\partial q_{4}} \left(x_{i,j+1}, (D_{1}^{+}U^{n})_{i,j+1}, (D_{1}^{+}U^{n})_{i,j+1}, (D_{2}^{+}U^{n})_{i,j-1}\right) \\ -M_{i,j}^{n} \frac{\partial g}{\partial q_{4}} \left(x_{i,j}, (D_{1}^{+}U^{n})_{i,j}, (D_{1}^{+}U^{n})_{i-1,j}, (D_{2}^{+}U^{n})_{i,j-1}\right) \end{cases} \end{cases}$$

Classical discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form

 $H(x,\nabla u) = \psi(x, |\nabla u|),$

a possible choice is the Godunov scheme

$$g(x, q_1, q_2, q_3, q_4) = \psi\left(x, \sqrt{\min(q_1, 0)^2 + \max(q_2, 0)^2 + \min(q_3, 0)^2 + \max(q_4, 0)^2}\right).$$

If $\psi(x, w)$ is convex and nondecreasing w.r.t. w, then g is a convex function of (q_1, q_2, q_3, q_4) ; g is nonincreasing w.r.t. q_1 and q_3 and nondecreasing w.r.t. q_2 and q_4 .

Finally, it can be proven that the global scheme is consistent if H is smooth enough.

Kushner-Dupuis scheme

More generally, if H is given by

$$H(x,p) = \sup_{\alpha \in \mathbb{R}^2} \left(p \cdot \alpha - L(x,\alpha) \right), \quad x \in \mathbb{T}, p \in \mathbb{R}^2,$$

then one may choose g as

$$g(x, q_1, q_2, q_3, q_4) = \sup_{\alpha \in \mathbb{R}^2} \left(-\alpha_1^- q_1 + \alpha_1^+ q_2 - \alpha_2^- q_3 + \alpha_2^+ q_4 - L(x, \alpha) \right).$$

The numerical Hamiltonian g is clearly convex, nonincreasing with respect to q_1 and q_3 and nondecreasing with respect to q_2 and q_4 .

Existence for the discrete problem

Theorem Assume that $M^{N_T} \ge 0$ and that $h^2 \sum_{i,j} M_{i,j}^{N_T} = 1$. Under the assumptions above on V, V_0 and g, the discrete problem has a solution and there is a Lipschitz estimate on U_h^n uniform in n, h and Δt .

Strategy of proof

$$\mathcal{K} = \left\{ (M_{i,j})_{0 \le i,j < N} : h^2 \sum_{i,j} M_{i,j} = 1, M_{i,j} \ge 0 \right\}$$

Apply Brouwer fixed point theorem to a well chosen mapping

$$\chi: \qquad \mathcal{K}^{N_T} \longrightarrow \qquad \mathcal{K}^{N_T}, \\ (M^n)_n \to \quad (U^n)_n \to \quad (M^n)_n$$

Proof: a fixed point method in \mathcal{K}^{N_T} ,

Step 1: a map
$$\Phi : (M^n)_n \to (U^n)_n$$
.

Given $(M_{i,j}^{N_T})$, define the map $\Phi: (M^n)_{0 \le n < N_T} \in \mathcal{K}^{N_T} \to (U^n)_{0 \le n \le N_T}$: $\begin{cases} \frac{U_{i,j}^{n+1} - U_{i,j}^n}{\Delta t} - \nu(\Delta_h U^{n+1})_{i,j} + g(x_{i,j}, [D_h U^{n+1}]_{i,j}) = (V_h[M^{n+1}])_{i,j}, \\ U_{i,j}^0 = V_0[m_h^0](x_{i,j}). \end{cases}$

- Existence is classical: (Leray-Schauder fixed point theorem at each time step, making use of the monotonicity of g, the uniform boundedness assumption on V and of H(·, 0)).
- Uniqueness stems from the monotonicity of g.

Step 2: estimates

• There exists a constant C independent of $(M^n)_n$ and h s.t.

 $||U^n||_{\infty} \le C(1+T).$

- The map Φ is continuous, from the continuity of V and well known results on continuous dependence on the data for monotone schemes.
- There exists a constant L(T) independent of $(M^n)_n$ and h s.t.

 $||D_h U^n||_{\infty} \le L(T), \quad \forall n,$

proved by using the assumption

$$\left|\frac{\partial g}{\partial x}(x, q_1, q_2, q_3, q_4)\right| \le C(1 + |q_1| + |q_2| + |q_3| + |q_4|).$$

Step 3: A map $\chi : (M^n)_n \to (\widetilde{M}^n)_n$

- Choose a positive constant $\mu > 0$ large enough.
- For $(U^n)_n = \Phi((M^n)_n)$, backward linear parabolic problem for \widetilde{M}^n :

$$\begin{cases} \widetilde{M}^{N_{T}} = M^{N_{T}}, \\ -\mu M_{i,j}^{n} = \frac{\widetilde{M}_{i,j}^{n+1} - \widetilde{M}_{i,j}^{n}}{\Delta t} - \nu (\Delta_{h} \widetilde{M}^{n})_{i,j} - \mu \widetilde{M}_{i,j}^{n}} \\ + \frac{1}{h} \begin{pmatrix} \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{1}}(x_{i,j}, [D_{h}U^{n}]_{i,j}) - \widetilde{M}_{i-1,j}^{n} \frac{\partial g}{\partial q_{1}}(x_{i-1,j}, [D_{h}U^{n}]_{i-1,j}) \\ + \widetilde{M}_{i+1,j}^{n} \frac{\partial g}{\partial q_{2}}(x_{i+1,j}, [D_{h}U^{n}]_{i+1,j}) - \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{2}}(x_{i,j}, [D_{h}U^{n}]_{i,j}) \\ + \frac{1}{h} \begin{pmatrix} \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{3}}(x_{i,j}, [D_{h}U^{n}]_{i,j}) - \widetilde{M}_{i,j-1}^{n} \frac{\partial g}{\partial q_{3}}(x_{i,j-1}, [D_{h}U^{n}]_{i,j-1}) \\ + \widetilde{M}_{i,j+1}^{n} \frac{\partial g}{\partial q_{4}}(x_{i,j+1}, [D_{h}U^{n}]_{i,j+1}) - \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{4}}(x_{i,j}, [D_{h}U^{n}]_{i,j}) \end{pmatrix} \end{cases}$$

From the previous estimates on $(U^n)_n$, one can find μ large enough and independent of $(M^n)_n$ such that the iteration matrix is the opposite of a M-matrix, thus **there is a discrete maximum principle.**

Therefore, there exists a unique solution $(\widetilde{M}^n)_n$. Moreover,

$$\begin{split} M^n &\geq 0 \quad \Rightarrow \quad M^n \geq 0, \qquad \quad \forall n, \\ h^2 \sum_{i,j} M^n &= 1 \quad \Rightarrow \quad h^2 \sum_{i,j} \widetilde{M}^n = 1, \qquad \forall n. \end{split}$$

Thus $\widetilde{M}^n \in \mathcal{K}$ for all n. Define the map

$$\chi: \qquad \mathcal{K}^{N_T} \mapsto \mathcal{K}^{N_T}, \\ (M^n)_{0 \le n < N_T} \to (\widetilde{M}^n)_{0 \le n < N_T}$$

Step 4: existence of a fixed point of χ

From the boundedness and continuity of the mapping Φ , and from the fact that g is \mathcal{C}^1 , we obtain that $\chi : \mathcal{K}^{N_T} \mapsto \mathcal{K}^{N_T}$ is continuous.

From Brouwer fixed point theorem, χ has a fixed point, which yields a solution of (**).

Discrete weak maximum principle-1

The discrete version of

$$\frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div}\left(m\frac{\partial H}{\partial p}(x, \nabla v)\right) = 0$$

can be written

$$-M^n - \Delta t A^n M^n = -M^{n+1}.$$

Introduce the semi-norm |||W|||:

$$|||W|||^{2} = \sum_{i,j} \left((D_{1}^{+}W)_{i,j}^{2} + (D_{2}^{+}W)_{i,j}^{2} \right).$$

Discrete Gårding inequality: from the estimates on U^n , there exists $\gamma \ge 0$ (independent of h and Δt) s.t.

$$(A^n W, W)_2 \ge \frac{\nu}{2} |||W|||^2 - \gamma ||W||_2^2, \quad \forall W, \quad \forall n.$$

Discrete weak maximum principle-2

We have also

$$-(A^{n}W, W^{-})_{2} \geq \frac{\nu}{2} |||W^{-}|||^{2} - \gamma ||W^{-}||_{2}^{2}, \qquad \forall W.$$

Taking $(M^n)^-$ as a test-function in the discrete equation yields $(1 - 2\gamma\Delta t) \left\| (M^n)^- \right\|_2^2 + \nu\Delta t \| \| (M^n)^- \| \|^2 \le \left\| (M^{n+1})^- \right\|_2^2,$

so there is a discrete weak maximum principle if $2\gamma\Delta t < 1$.

Uniqueness

Theorem Same assumptions as above on V, V_0 , H and g. Assume also that the operators V_h and $V_{0,h}$ are strictly monotone, i.e.

$$\left(V_h[M] - V_h[\widetilde{M}], M - \widetilde{M} \right)_2 \le 0 \quad \Rightarrow \quad V_h[M] = V_h[\widetilde{M}],$$
$$\left(V_{0,h}[M] - V_{0,h}[\widetilde{M}], M - \widetilde{M} \right)_2 \le 0 \quad \Rightarrow \quad V_{0,h}[M] = V_{0,h}[\widetilde{M}].$$

If $2\gamma\Delta t < 1$, then the discrete problem (slightly modified) has a unique solution.

Proof The choice of the scheme makes it possible to mimic the proof used in the continuous case: uses the convexity assumption on g and the discrete weak maximum principle.

III. Infinite Horizon: A numerical method

$$\begin{cases} -\nu(\Delta_{h}U)_{i,j} + g(x_{i,j}, [D_{h}U]_{i,j}) + \lambda = (V_{h}[M])_{i,j}, \\ \begin{pmatrix} -\nu(\Delta_{h}M)_{i,j} \\ -\frac{1}{h} \begin{pmatrix} M_{i,j} \frac{\partial g}{\partial q_{1}}(x_{i,j}, [D_{h}U]_{i,j}) - M_{i-1,j} \frac{\partial g}{\partial q_{1}}(x_{i-1,j}, [D_{h}U]_{i-1,j}) \\ +M_{i+1,j} \frac{\partial g}{\partial q_{2}}(x_{i+1,j}, [D_{h}U]_{i+1,j}) - M_{i,j} \frac{\partial g}{\partial q_{2}}(x_{i,j}, [D_{h}U]_{i,j}) \end{pmatrix} \\ -\frac{1}{h} \begin{pmatrix} M_{i,j} \frac{\partial g}{\partial q_{3}}(x_{i,j}, [D_{h}U]_{i,j}) - M_{i,j-1} \frac{\partial g}{\partial q_{3}}(x_{i,j-1}, [D_{h}U]_{i,j-1}) \\ +M_{i,j+1} \frac{\partial g}{\partial q_{4}}(x_{i,j+1}, [D_{h}U]_{i,j+1}) - M_{i,j} \frac{\partial g}{\partial q_{4}}(x_{i,j}, [D_{h}U]_{i,j}) \end{pmatrix} \end{pmatrix} \\ M_{i,j} \geq 0, \end{cases}$$

and

$$h^2 \sum_{i,j} M_{i,j} = 1$$
, and $\sum_{i,j} U_{i,j} = 0$.

Existence for the discrete problem: strategy of proof

- Use Brouwer fixed point theorem in the set of discrete probability measures for a mapping $\chi: M \to U \to M$.
- The map $\Phi: M \to U$ consists of solving

$$\begin{cases} -\nu(\Delta_h U)_{i,j} + g(x_{i,j}, [D_h U]_{i,j}) + \lambda = (V_h[M])_{i,j}, \\ \sum_{i,j} U_{i,j} = 0 \end{cases}$$

• (U, λ) is obtained by considering the ergodic approximation:

$$-\nu(\Delta_h U^{(\rho)})_{i,j} + g(x_{i,j}, [D_h U^{(\rho)}]_{i,j}) + \rho U^{(\rho)}_{i,j} = (V_h[M])_{i,j},$$

and passing to the limit as $\rho \rightarrow 0.$

• We need estimates on $U^{(\rho)} - U^{(\rho)}_{0,0}$ uniform in ρ and h.

Difficulty

Continuous problem: the a priori estimate $\|\nabla u\|_{\infty} \leq C$ was obtained with the Bernstein method.

Discrete case: this argument is difficult to reproduce.

We make more restrictive assumptions on H and g to obtain bounds uniform in h.

Possible assumptions on the Hamiltonian

$$H(x,p) = \max_{\alpha \in \mathcal{A}} \Big(p \cdot \alpha - L(x,\alpha) \Big),$$

where

- \mathcal{A} is a compact subset of \mathbb{R}^2 ,
- L is a \mathcal{C}^0 function on $\mathbb{T} \times \mathcal{A}$,

Kushner-Dupuis scheme:

$$g(x, q_1, q_2, q_3, q_4) = \sup_{\alpha \in \mathcal{A}} \left(-\alpha_1^- q_1 + \alpha_1^+ q_2 - \alpha_2^- q_3 + \alpha_2^+ q_4 - L(x, \alpha) \right).$$

Estimates on the discrete ergodic approximation

Proposition (using Kuo-Trudinger(1992) and Camilli-Marchi(2008)) Consider a grid function V and make the assumptions:

- L is a continuous function, A is compact,
- $q \mapsto g(x,q)$ is a \mathcal{C}^1 function on \mathbb{R}^4 ,
- $||V||_{\infty}$ is bounded uniformly w.r.t h.

For any real number $\rho > 0$, there exists a unique grid function U^{ρ} such that

$$\rho U_{i,j}^{\rho} - \nu (\Delta_h U^{\rho})_{i,j} + g(x_{i,j}, [D_h U^{\rho}]_{i,j}) = V_{i,j},$$

and there exist two constants δ , $\delta \in (0, 1)$ and C, C > 0, uniform in h and ρ s.t.

$$|U^{\rho}(\xi) - U^{\rho}(\xi')| \le C|\xi - \xi'|^{\delta}, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

Estimates on the discrete ergodic approximation

Proposition (using Krylov(2007) and Camilli-Marchi(2008)) Same assumptions as before, and furthermore

- L is uniformly Lipschitz continuous w.r.t. x,
- $||D_h V||_{\infty}$ is bounded uniformly w.r.t h,

For any real number $\rho > 0$, there exists a unique grid function U^{ρ} such that

$$\rho U_{i,j}^{\rho} - \nu (\Delta_h U^{\rho})_{i,j} + g(x_{i,j}, [D_h U^{\rho}]_{i,j}) = V_{i,j},$$

and there exists a constant C, C > 0, uniform in h and ρ s.t.

$$|U^{\rho}(\xi) - U^{\rho}(\xi')| \le C|\xi - \xi'|, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

The map Φ **:** $M \to U$

Proposition

Under the first set of assumptions, there exists a unique grid function U and a real number λ such that

$$\begin{cases} -\nu(\Delta_h U)_{i,j} + g(x_{i,j}, [D_h U]_{i,j}) + \lambda = (V_h[M])_{i,j}, \\ \sum_{i,j} U_{i,j} = 0, \end{cases}$$

and there exist two constants δ , $\delta \in (0, 1)$ and C, C > 0, uniform in h s.t.

$$|U(\xi) - U(\xi')| \le C|\xi - \xi'|^{\delta}, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

Under the second set of assumptions,

$$|U(\xi) - U(\xi')| \le C|\xi - \xi'|, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

Existence and uniqueness for the stationary problem

Theorem Under the above assumptions on V and g, the discrete stationary problem has at least a solution and we have either a uniform Hölder or a Lipschitz estimate on u_h , depending on the assumptions.

Remark Existence is still OK if for $\gamma > 1$,

$$g(x, q_1, q_2, q_3, q_4) \ge \alpha((q_1)_-^2 + (q_2)_+^2 + (q_3)_-^2 + (q_4)_+^2)^{\gamma/2} - C,$$

but no bounds on u_h uniform in h.

Uniqueness: Ok if

$$\left(V_h[M] - V_h[\widetilde{M}], M - \widetilde{M}\right)_2 \le 0 \Rightarrow M = \widetilde{M}.$$

Convergence

The same method used for uniqueness can be used for proving convergence of the discrete scheme under some assumptions on consistency and stronger assumptions on V_h .

Example

If there exist s > 0 such that

$$h^2\left(V_h[M] - V_h[\widetilde{M}], M - \widetilde{M}\right)_2 \ge c \|V_h[M] - V_h[\widetilde{M}]\|_{\infty}^s,$$

then uniform convergence for u, convergence of λ and a convergence related to V for m.

Uses the Hölder or Lipschitz estimates on U_h uniform w.r.t. h.

The case when V is a local operator

$$V[m](x) = F(m(x), x),$$

Same assumptions on H, g as above.

- Existence for the discrete problem: OK
- If F is a bounded and C¹ function on ℝ × T, uniform bounds for some Hölder norm of u_h.

IV. Infinite Horizon: long time approximation

Long time approximation (Eductive strategy, see Guéant-Lasry)

$$\begin{cases} \frac{\partial \tilde{u}}{\partial t} - \nu \Delta \tilde{u} + H(x, \nabla \tilde{u}) &= V[\tilde{m}], \\ \frac{\partial \tilde{m}}{\partial t} - \nu \Delta \tilde{m} - \operatorname{div} \left(\tilde{m} \frac{\partial H}{\partial p}(x, \nabla \tilde{u}) \right) &= 0, \\ \tilde{u}(0, x) = \tilde{u}_0(x), \quad \tilde{m}(0, x) &= \tilde{m}_0(x), \end{cases}$$

with $\int_{\mathbb{T}} \tilde{m}_0 = 1$ and $\tilde{m}_0 \ge 0$. We expect that

$$\lim_{t \to \infty} \left(\tilde{u}(t, x) - \lambda t \right) = u(x), \qquad \lim_{t \to \infty} \tilde{m}(t, x) = m(x),$$

Same thing at the discrete level.

We use a semi-implicit linearized scheme. It requires the numerical solution of a linearized problem. Linearizing must be done carefully and is not always possible. In such cases, an explicit method can be used.

$$\nu = 1$$
, $H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2$, $F(x, m) = m^2$

$$H(x,0) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1).$$

$$\nu = 1$$
, left: u , right m .

Convergence as $h \to 0$

$$\nu = 0.01,$$

$$H(x,p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2, \quad F(x,m) = m^2.$$

 $\nu = 0.01$, left: u, right m. Note that the supports of ∇u and of m tend to be disjoint as $\nu \to 0$.

$$V[m](x) = F(m(x)) = -\log(m(x)).$$

Same Hamiltonian as before. We now take $\nu = 0.1$.

Deterministic limit $\nu \to 0$

Theorem (Lasry-Lions) If

•
$$H(x,p) \ge H(x,0) = 0$$
,

•
$$V[m] = F(m) + f_0(x)$$
 where $F' > 0$,

then

$$\lim_{\nu \to 0} (\lambda_{\nu}, m_{\nu}) = (\lambda, m),$$

where

$$m(x) = (F^{-1}(\lambda - f_0(x)))^+$$
 and $\int_{\mathbb{T}} m dx = 1.$

$$\nu = 0.001,$$
$$H(x, p) = |p|^2,$$
$$V[m](x) = 4\cos(4\pi x) + m(x)$$

left: u, right m. The supports of ∇u and of m tend to be disjoint. $m(x) \approx (\lambda - 4\cos(4\pi x))^+$

$$\nu = 0.1,$$

$$H(x,p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^{3/2},$$

$$F(x,m) = 200(1-\Delta)^{-1}(1-\Delta)^{-1}m$$

left: u, right m.

$$\nu = 0.001,$$

$$H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2,$$

$$F(x, m) = (1 - \Delta)^{-1}(1 - \Delta)^{-1}m$$

left: u, right m.

$$\nu = 0.1,$$

$$H(x,p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + (0.6 + 0.59\cos(2\pi x))|p|^{3/2},$$

$$F(x,m) = 200(1 - \Delta)^{-1}(1 - \Delta)^{-1}m$$

left: u, right m.

V. Finite Horizon: a Newton method

Difficulty: time dependent problem with conditions at both initial and final times

$$\begin{aligned} \mathcal{F}_U(\mathcal{U},\mathcal{M}) &= 0, \\ \mathcal{F}_M(\mathcal{U},\mathcal{M}) &= 0, \end{aligned}$$

Solution procedure: Newton method

$$\begin{pmatrix} \mathcal{U}^{n+1} \\ \mathcal{M}^{n+1} \end{pmatrix} = \begin{pmatrix} \mathcal{U}^{n} \\ \mathcal{M}^{n} \end{pmatrix} - \begin{pmatrix} A_{U,U}(\mathcal{U}^{n}, \mathcal{M}^{n}) & A_{U,M}(\mathcal{U}^{n}, \mathcal{M}^{n}) \\ A_{M,U}(\mathcal{U}^{n}, \mathcal{M}^{n}) & A_{M,M}(\mathcal{U}^{n}, \mathcal{M}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{M}^{n}) \\ \mathcal{F}_{M}(\mathcal{U}^{n}, \mathcal{M}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{M}^{n}) \\ \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{M}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{M}^{n}) \\ \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{M}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{M}^{n}) \\ \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{M}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{H}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{n}, \mathcal{H}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{H}^{n}, \mathcal{H}^{n}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal$$

where

 $A_{U,U}(\mathcal{U},\mathcal{M}) = D_{\mathcal{U}}\mathcal{F}_{\mathcal{U}}(\mathcal{U},\mathcal{M}), \qquad A_{U,M}(\mathcal{U},\mathcal{M}) = D_{\mathcal{M}}\mathcal{F}_{\mathcal{U}}(\mathcal{U},\mathcal{M}),$ $A_{M,U}(\mathcal{U},\mathcal{M}) = D_{\mathcal{U}}\mathcal{F}_{\mathcal{M}}(\mathcal{U},\mathcal{M}), \qquad A_{M,M}(\mathcal{U},\mathcal{M}) = D_{\mathcal{M}}\mathcal{F}_{\mathcal{M}}(\mathcal{U},\mathcal{M}).$

The linear systems

The most time consuming part of the procedure lies in solving the system of linear equations

$$\left(\begin{array}{cc}A_{U,U} & A_{U,M}\\A_{M,U} & A_{M,M}\end{array}\right)\left(\begin{array}{c}\mathcal{U}\\\mathcal{M}\end{array}\right) = \left(\begin{array}{c}G_{U}\\G_{M}\end{array}\right)$$

The matrix A_{UU} is block-lower triangular and block-bidiagonal. The matrix A_{UM} is block-diagonal.

The matrix A_{MM} is block-upper triangular and block-bidiagonal. The matrix A_{MU} is block-diagonal. The chosen procedure is as follows:

1. solve first $A_{U,U}\widetilde{\mathcal{U}} = G_U$. This is done by sequentially solving

$$D_k \widetilde{U}^k = -L_k \widetilde{U}^{k-1} + G_U^k, \tag{1}$$

i.e. marching in time in the forward direction. (1) are solved with efficient direct solvers.

2. Introducing $\overline{\mathcal{U}} = \mathcal{U} - \widetilde{\mathcal{U}}$,

$$\begin{pmatrix} A_{U,U} & A_{U,M} \\ A_{M,U} & A_{M,M} \end{pmatrix} \begin{pmatrix} \overline{\mathcal{U}} \\ \mathcal{M} \end{pmatrix} = \begin{pmatrix} 0 \\ G_M - A_{M,U} \widetilde{\mathcal{U}} \end{pmatrix},$$

which implies

$$\left(A_{M,M} - A_{M,U}A_{U,U}^{-1}A_{U,M}\right)\mathcal{M} = G_M - A_{M,U}\widetilde{\mathcal{U}}.$$
 (2)

(2) is solved by an iterative method, e.g. BiCGStab.

$$\nu = 1, \quad T = 1, \quad \Delta t = h = 1/50,$$

$$m(T) = 1$$

$$H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2,$$

$$F(x, m) = m^2, \quad V_0[m](x) = m^2 + \cos(\pi x_1)\cos(\pi x_2).$$

Convergence of the Newton method(left) and of a linear solver (right)

The L^2 norm of m_h (right) and u_h (left) vs. $50 \times$ time

Same test except

$$\nu = 0.01, \quad \Delta t = 1/200.$$

Convergence of the Newton method(left) and of a linear solver (right) 500,000 m unknowns in the nonlinear system.

The L^2 norm of m_h (right) and u_h (left) vs. $200 \times$ time

Perspectives

- Obtain estimates on $||D_h U||_{\infty}$ uniform in *h* with more general assumptions in the stationary case (important for stability and convergence).
- When convergence is OK, prove error estimates?
- Better understand the Newton method in the finite horizon case.
- Tackle practically relevant situations.

A different strategy

Alternative numerical approach with a reformulation into an optimization problem (A.Lachapelle, J. Salomon, G.Turinici).