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I. A short review
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Mean field games: infinite horizon

Findu ∈ C2(T),m ∈W 1,p(T) andλ ∈ R s.t.




− ν∆u+H(x,∇u) + λ = V [m],

− ν∆m− div

(
m
∂H

∂p
(x,∇u)

)
= 0,

∫

T

udx = 0,

∫

T

mdx = 1, and m > 0 in T.

(∗)

• T unit torus ofRd

• ν > 0

• H is aC1 Hamiltonian (convex):

H(x, p) = sup
α∈Rd

(p · α− L(x, α)) , with lim
|α|→∞

inf
x

L(x, α)

|α| = +∞
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• V is an operatorfrom the space of probability measures onT into a
bounded set of Lipschitz functions onT such that

V [mn] converges uniformly onT to V [m] if mn weakly converges tom.

Typical examples forV include nonlocal smoothing operators.

Local operators

V [m](x) = f(m(x), x)

may be considered as well.
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(∗) has been obtained by J-M. Lasry and P-L. Lions by passing to the limit
in stochastic differential games involving a very large number N of
identical rational agents (or players) with a(limited) global information

• Dynamics:

dXi
t =

√
2νdW i

t − αidt, Xi
0 = xi ∈ R

d

• Cost:

J
i(α1

, . . . , α
N ) = lim inf

T→∞

1

T
E

0
@

Z T

0

0
@L(Xi

t , α
i
t) + V

2
4 1

N − 1

X

j 6=i

δ
X

j
t

3
5 (Xi

t)

1
A dt

1
A

• (ᾱ1, . . . , ᾱN ) is a Nash point if ∀i = 1, . . . , N ,

ᾱi = Argmin
αi

J i(ᾱ1, . . . , ᾱi−1, αi, ᾱi+1, . . . , ᾱN ).
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• Structure assumption onH: there existsθ ∈ (0, 1) such that for|p|
large,

inf
x∈T

(
∂H

∂x
· p+

θ

dν
H2

)
> 0

(makes it possible to obtain Lipschitz estimate onu with Bernstein

inequality).

• There is a system of2N PDEs

– N HJB equations for the value functions

– N Kolmogorov equations for the stationary measures of(Xi
t)i

whose solutions yield Nash equilibria.

• N → ∞, pass to the limit...
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Uniqueness for the mean field problem

By contrast with the system of PDEs forN players, the system (*) is well

posed under some assumptions:

Theorem (Lasry-Lions)If V is strictly monotone, i.e.
∫

T

(V [m1] − V [m2])(m1 −m2)dx ≤ 0 ⇒ m1 = m2,

then the solution of the mean field system (*) is unique.
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Proof

Consider two solutions of (*):(λ1, u1,m1) and(λ2, u2,m2):

• multiply the first equation bym1 −m2

∫

T

(
ν∇(u1 − u2) · ∇(m1 −m2) + (H(x,∇u1) −H(x,∇u2))(m1 −m2)

)
dx

=

∫

T

(V [m1] − V [m2])(m1 −m2)dx

• multiply the second equation byu1 − u2

0 =

∫

T

ν∇(u1 − u2) · ∇(m1 −m2)dx

+

∫

T

(
m1

∂H

∂p
(x,∇u1) −m2

∂H

∂p
(x,∇u2)

)
· ∇(u1 − u2)dx.
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• subtract:

0 =

8
>>>>><
>>>>>:

Z

T

m1

„
H(x,∇u1) − H(x,∇u2) −

∂H

∂p
(x,∇u1) · ∇(u1 − u2)

«
dx

+

Z

T

m2

„
H(x,∇u2) − H(x,∇u1) −

∂H

∂p
(x,∇u2) · ∇(u2 − u1)

«
dx

+

Z

T

(V [m1] − V [m2])(m1 − m2)dx

SinceH is convex andV is monotone, the 3 terms vanish.

The strict monotonicity ofV implies thatm1 = m2.

The identitiesu1 = u2 andλ1 = λ2 come from the uniqueness for the HJB
equation:

−ν∆u+H(x,∇u) + λ = f with
∫

T

u = 0.
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Finite horizon Nash equilibrium with N players
TheN players initial conditions are random, independent, with the same
probability distributionm0.
Cost of the playeri at timet:

E




∫ T

t


Li(Xi

s, α
i
s) + V


 1

N − 1

∑

j 6=i

δXj
s





 ds+ V0


 1

N − 1

∑

j 6=i

δXj

T







N → ∞ : with the change of variablet→ T − t,




∂u

∂t
− ν∆u+H(x,∇u) = V [m],

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇u)

)
= 0,

∫

T

mdx = 1, and m > 0 in T,

u(t = 0) = V0[m(t = 0)], m(t = T ) = m◦.

(∗∗)
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Existence for (**)

Theorem (Lasry-Lions)

If

• same kind of assumptions onV andV0 as in the stationary case (V and

V0 are nonlocal smoothing operators).

• H is smooth onT × R
d and

∣∣∣∣
∂H

∂x
(x, p)

∣∣∣∣ ≤ C(1 + |p|), ∀x ∈ T, ∀p ∈ R
d,

then

(**) has at least a smooth solution.
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Uniqueness for (**)

Theorem (Lasry-Lions)

If

the operatorsV andV0 are strictly monotone, i.e.
∫

T

(V [m] − V [m̃])(m− m̃) ≤ 0 ⇒ V [m] = V [m̃],

∫

T

(V0[m] − V0[m̃])(m− m̃) ≤ 0 ⇒ V0[m] = V0[m̃],

then

(**) has a unique solution.
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II. Finite Horizon: Numerical Methods
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Taked = 2:




∂u

∂t
− ν∆u+H(x,∇u) = V [m],

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇u)

)
= 0,

∫

T

mdx = 1, m > 0 in T,

u(t = 0) = V0[m(t = 0)], m(t = T ) = m◦,

(∗∗)

• Let Th be a uniform grid on the torus with mesh steph, andxij be a

generic point inTh.

• Uniform time grid:∆t = T/NT , tn = n∆t.

• The values ofu andm at (xi,j , tn) are resp. approximated byUn
i,j and

Mn
i,j .
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Goal: use a fully implicit scheme,robust whenν → 0, which guarantees
existence,and possiblyuniform bounds and uniqueness.

Notation:
• The discrete Laplace operator:

(∆hW )i,j = − 1

h2
(4Wi,j −Wi+1,j −Wi−1,j −Wi,j+1 −Wi,j−1).

• Right-sided finite difference formulas for∂1w(xi,j) and∂2w(xi,j):

(D+
1 W )i,j =

Wi+1,j −Wi,j

h
, and (D+

2 W )i,j =
Wi,j+1 −Wi,j

h
.

• The set of 4 finite difference formulas atxi,j :

[DhW ]i,j =
(
(D+

1 W )i,j, (D
+
1 W )i−1,j, (D

+
2 W )i,j, (D

+
2 W )i,j−1

)
.
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Discrete HJB equation

∂u

∂t
− ν∆u+H(x,∇u) = V [m]

↓
Un+1

i,j − Un
i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) =

(
Vh[Mn+1]

)
i,j

•
g(xi,j , [DhU

n+1]i,j)

=g
“
xi,j , (D

+

1 U
n+1)i,j , (D

+

1 U
n+1)i−1,j , (D

+

2 U
n+1)i,j , (D

+

2 U
n+1)i,j−1

”
,

• for instance,

(Vh[M ])i,j = V [mh](xi,j),

callingmh the piecewise constant function onT taking the valueMi,j

in the square|x− xi,j |∞ ≤ h/2.
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Classical assumptions on the discrete Hamiltoniang

(q1, q2, q3, q4) → g (x, q1, q2, q3, q4) .

• Monotonicity: g is nonincreasing with respect toq1 andq3 and
nondecreasing with respect to toq2 andq4.

• Consistency:

g (x, q1, q1, q3, q3) = H(x, q), ∀x ∈ T, ∀q = (q1, q3) ∈ R
2.

• Differentiability: g is of classC1, and
∣∣∣∣
∂g

∂x

(
x, (q1, q2, q3, q4)

)∣∣∣∣ ≤ C(1 + |q1| + |q2| + |q3| + |q4|).

• Convexity: (q1, q2, q3, q4) → g (x, q1, q2, q3, q4) is convex.
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The discrete version of

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇v)

)
= 0. (†)

It is chosen so that

• each time step leads to a linear system with a matrix

– whose diagonal coefficients are negative,

– whose off-diagonal coefficients are nonnegative,

in order to hopefully use somediscrete maximum principle.

• The argument for uniqueness should hold in the discrete case, sothe
discrete Hamiltonian g should be used for(†) as well.
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Principle

Discretize

−
∫

T

div

(
m
∂H

∂p
(x,∇u)

)
w =

∫

T

m
∂H

∂p
(x,∇u) · ∇w

by

h2
∑

i,j

mi,j∇qg(xi,j , [DhU ]i,j) · [DhW ]i,j.
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This yields the scheme:

0 =
Mn+1

i,j − Mn
i,j

∆t
+ ν(∆hM

n)i,j

+
1

h

8
>>>>>>>><
>>>>>>>>:

M
n
i,j

∂g

∂q1

`
xi,j , (D

+

1 U
n)i,j , (D

+

1 U
n)i−1,j , (D

+

2 U
n)i,j , (D

+

2 U
n)i,j−1

´

−M
n
i−1,j

∂g

∂q1

`
xi−1,j , (D

+

1 U
n)i−1,j , (D

+

1 U
n)i−2,j , (D

+

2 U
n)i−1,j , (D

+

2 U
n)i−1,j−1

´

+M
n
i+1,j

∂g

∂q2

`
xi+1,j , (D

+

1 U
n)i+1,j , (D

+

1 U
n)i,j , (D

+

2 U
n)i+1,j , (D

+

2 U
n)i+1,j−1

´

−M
n
i,j

∂g

∂q2

`
xi,j , (D

+

1 U
n)i,j , (D

+

1 U
n)i−1,j , (D

+

2 U
n)i,j , (D

+

2 U
n)i,j−1

´

+
1

h

8
>>>>>>>><
>>>>>>>>:

M
n
i,j

∂g

∂q3

`
xi,j , (D

+

1 U
n)i,j , (D

+

1 U
n)i−1,j , (D

+

2 U
n)i,j , (D

+

2 U
n)i,j−1

´

−M
n
i,j−1

∂g

∂q3

`
xi,j−1, (D

+

1 U
n)i,j−1, (D

+

1 U
n)i−1,j−1, (D

+

2 U
n)i,j−1, (D

+

2 U
n)i,j−2

´

+M
n
i,j+1

∂g

∂q4

`
xi,j+1, (D

+

1 U
n)i,j+1, (D

+

1 U
n)i,j+1, (D

+

2 U
n)i,j+1, (D

+

2 U
n)i,j

´

−M
n
i,j

∂g

∂q4

`
xi,j , (D

+

1 U
n)i,j , (D

+

1 U
n)i−1,j , (D

+

2 U
n)i,j , (D

+

2 U
n)i,j−1

´
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Classical discrete Hamiltoniansg can be chosen.

For example, if the Hamiltonian is of the form

H(x,∇u) = ψ(x, |∇u|),

a possible choice is theGodunov scheme

g(x, q1, q2, q3, q4) =

ψ
(
x,

√
min(q1, 0)2 + max(q2, 0)2 + min(q3, 0)2 + max(q4, 0)2

)
.

If ψ(x,w) is convex and nondecreasing w.r.t.w, theng is a convex function
of (q1, q2, q3, q4); g is nonincreasing w.r.t.q1 andq3 and nondecreasing
w.r.t. q2 andq4.

Finally, it can be proven that the global scheme is consistent if H is smooth
enough.
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Kushner-Dupuis scheme

More generally, ifH is given by

H(x, p) = sup
α∈R2

(p · α− L(x, α)) , x ∈ T, p ∈ R
2,

then one may chooseg as

g(x, q1, q2, q3, q4) = sup
α∈R2

(
−α−

1 q1 + α+
1 q2 − α−

2 q3 + α+
2 q4 − L(x, α)

)
.

The numerical Hamiltoniang is clearly convex, nonincreasing with respect

to q1 andq3 and nondecreasing with respect toq2 andq4.
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Existence for the discrete problem

Theorem Assume thatMNT ≥ 0 and thath2
∑

i,j M
NT

i,j = 1. Under the
assumptions above onV , V0 andg, the discrete problem has a solution
and there is a Lipschitz estimate onUn

h uniform in n, h and ∆t.

Strategy of proof

K =



(Mi,j)0≤i,j<N : h2

∑

i,j

Mi,j = 1,Mi,j ≥ 0



 .

Apply Brouwer fixed point theorem to a well chosen mapping

χ : KNT −→ KNT ,

(Mn)n → (Un)n → (Mn)n.
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Proof: a fixed point method in KNT ,

Step 1: a mapΦ : (Mn)n → (Un)n.

Given(MNT

i,j ), define the mapΦ: (Mn)0≤n<NT
∈ KNT → (Un)0≤n≤NT

:




Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) =

(
Vh[Mn+1]

)
i,j
,

U0
i,j = V0[m

0
h](xi,j).

• Existence is classical: (Leray-Schauder fixed point theorem at each

time step, making use of the monotonicity ofg, the uniform

boundedness assumption onV and ofH(·, 0)).

• Uniqueness stems from the monotonicity ofg.
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Step 2: estimates
• There exists a constantC independent of(Mn)n andh s.t.

‖Un‖∞ ≤ C(1 + T ).

• The mapΦ is continuous,from the continuity ofV and well known

results on continuous dependence on the data for monotone schemes.

• There exists a constantL(T ) independent of(Mn)n andh s.t.

‖DhU
n‖∞ ≤ L(T ), ∀n,

proved by using the assumption
∣∣∣∣
∂g

∂x
(x, q1, q2, q3, q4)

∣∣∣∣ ≤ C(1 + |q1| + |q2| + |q3| + |q4|).
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Step 3: A mapχ : (Mn)n → (M̃n)n

• Choose a positive constantµ > 0 large enough.
• For (Un)n = Φ((Mn)n), backward linear parabolic problem for̃Mn:
8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

fMNT = MNT ,

−µM
n
i,j =

fMn+1

i,j − fMn
i,j

∆t
− ν(∆h

fMn)i,j − µfMn
i,j

+
1

h

0
B@

fMn
i,j

∂g

∂q1

(xi,j , [DhU
n]i,j) − fMn

i−1,j
∂g

∂q1

(xi−1,j , [DhU
n]i−1,j)

+fMn
i+1,j

∂g

∂q2

(xi+1,j , [DhU
n]i+1,j) − fMn

i,j
∂g

∂q2

(xi,j , [DhU
n]i,j)

1
CA

+
1

h

0
B@

fMn
i,j

∂g

∂q3

(xi,j , [DhU
n]i,j) − fMn

i,j−1

∂g

∂q3

(xi,j−1, [DhU
n]i,j−1)

+fMn
i,j+1

∂g

∂q4

(xi,j+1, [DhU
n]i,j+1) − fMn

i,j
∂g

∂q4

(xi,j , [DhU
n]i,j)

1
CA
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From the previous estimates on(Un)n, one can findµ large enough and
independent of(Mn)n such that the iteration matrix is the opposite of a
M-matrix, thusthere is a discrete maximum principle.

Therefore, there exists a unique solution(M̃n)n.
Moreover,

Mn ≥ 0 ⇒ M̃n ≥ 0, ∀n,
h2

∑
i,j M

n = 1 ⇒ h2
∑

i,j M̃
n = 1, ∀n.

ThusM̃n ∈ K for all n. Define the map

χ : KNT 7→ KNT ,

(Mn)0≤n<NT
→ (M̃n)0≤n<NT
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Step 4: existence of a fixed point ofχ

From the boundedness and continuity of the mappingΦ, and from the fact

thatg is C1, we obtain thatχ : KNT 7→ KNT is continuous.

From Brouwer fixed point theorem,χ has a fixed point, which yields a

solution of (**).
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Discrete weak maximum principle-1
The discrete version of

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇v)

)
= 0

can be written
−Mn − ∆tAnMn = −Mn+1.

Introduce the semi-norm|||W |||:

|||W |||2 =
∑

i,j

(
(D+

1 W )2i,j + (D+
2 W )2i,j

)
.

Discrete Gårding inequality: from the estimates onUn, there existsγ ≥ 0

(independent ofh and∆t) s.t.

(AnW,W )2 ≥ ν

2
|||W |||2 − γ‖W‖2

2, ∀W, ∀n.
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Discrete weak maximum principle-2

We have also

−(AnW,W−)2 ≥ ν

2
|||W−|||2 − γ‖W−‖2

2, ∀W.

Taking(Mn)− as a test-function in the discrete equation yields

(1 − 2γ∆t)
∥∥(Mn)−

∥∥2

2
+ ν∆t|||(Mn)−|||2 ≤

∥∥(Mn+1)−
∥∥2

2
,

so there is adiscrete weak maximum principle if2γ∆t < 1.
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Uniqueness

Theorem Same assumptions as above onV , V0,H andg. Assume also that

the operatorsVh andV0,h are strictly monotone, i.e.
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≤ 0 ⇒ Vh[M ] = Vh[M̃ ],

(
V0,h[M ] − V0,h[M̃ ],M − M̃

)
2
≤ 0 ⇒ V0,h[M ] = V0,h[M̃ ].

If 2γ∆t < 1, then the discrete problem (slightly modified) has a unique

solution.

Proof The choice of the scheme makes it possible to mimic the proof used

in the continuous case: uses the convexity assumption ong and the discrete

weak maximum principle.
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III. Infinite Horizon: A numerical method
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8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ,
0
BBBBBBBBBBB@

−ν(∆hM)i,j

−
1

h

0
B@

Mi,j
∂g

∂q1

(xi,j , [DhU ]i,j) − Mi−1,j
∂g

∂q1

(xi−1,j , [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2

(xi+1,j , [DhU ]i+1,j) − Mi,j
∂g

∂q2

(xi,j , [DhU ]i,j)

1
CA

−
1

h

0
B@

Mi,j
∂g

∂q3

(xi,j , [DhU ]i,j) − Mi,j−1

∂g

∂q3

(xi,j−1, [DhU ]i,j−1)

+Mi,j+1

∂g

∂q4

(xi,j+1, [DhU ]i,j+1) − Mi,j
∂g

∂q4

(xi,j , [DhU ]i,j)

1
CA

1
CCCCCCCCCCCA

= 0,

Mi,j ≥ 0,

and

h2
∑

i,j

Mi,j = 1, and
∑

i,j

Ui,j = 0.
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Existence for the discrete problem: strategy of proof

• Use Brouwer fixed point theorem in the set of discrete probability

measures for a mappingχ : M → U →M .

• The mapΦ : M → U consists of solving




−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ,∑
i,j Ui,j = 0

• (U, λ) is obtained by consideringthe ergodic approximation:

−ν(∆hU
(ρ))i,j + g(xi,j , [DhU

(ρ)]i,j) + ρU
(ρ)
i,j = (Vh[M ])i,j ,

and passing to the limit asρ→ 0.

• We need estimates onU (ρ) − U
(ρ)
0,0 uniform inρ andh.
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Difficulty
Continuous problem: the a priori estimate‖∇u‖∞ ≤ C was obtained with

the Bernstein method.

Discrete case: this argument is difficult to reproduce.

We make more restrictive assumptions onH andg to obtain bounds

uniform inh.
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Possible assumptions on the Hamiltonian

H(x, p) = max
α∈A

(
p · α− L(x, α)

)
,

where

• A is a compact subset ofR
2,

• L is aC0 function onT ×A,

Kushner-Dupuis scheme:

g(x, q1, q2, q3, q4) = sup
α∈A

(
−α−

1 q1 + α+
1 q2 − α−

2 q3 + α+
2 q4 − L(x, α)

)
.
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Estimates on the discrete ergodic approximation

Proposition (using Kuo-Trudinger(1992) and Camilli-Marchi(2008))
Consider a grid functionV and make the assumptions:

• L is a continuous function,A is compact,

• q 7→ g(x, q) is aC1 function onR
4,

• ‖V ‖∞ is bounded uniformly w.r.th.

For any real numberρ > 0, there exists a unique grid functionUρ such that

ρUρ
i,j − ν(∆hU

ρ)i,j + g(xi,j , [DhU
ρ]i,j) = Vi,j ,

and there exist two constantsδ, δ ∈ (0, 1) andC, C > 0, uniform inh andρ
s.t.

|Uρ(ξ) − Uρ(ξ′)| ≤ C|ξ − ξ′|δ, ∀ξ, ξ′ ∈ Th.
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Estimates on the discrete ergodic approximation

Proposition (using Krylov(2007) and Camilli-Marchi(2008))

Same assumptions as before, and furthermore

• L is uniformly Lipschitz continuous w.r.t.x,

• ‖DhV ‖∞ is bounded uniformly w.r.th,

For any real numberρ > 0, there exists a unique grid functionUρ such that

ρUρ
i,j − ν(∆hU

ρ)i,j + g(xi,j , [DhU
ρ]i,j) = Vi,j ,

and there exists a constantC, C > 0, uniform inh andρ s.t.

|Uρ(ξ) − Uρ(ξ′)| ≤ C|ξ − ξ′|, ∀ξ, ξ′ ∈ Th.
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The mapΦ: M → U

Proposition
Under the first set of assumptions, there exists a unique gridfunctionU and

a real numberλ such that




−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ,∑
i,j Ui,j = 0,

and there exist two constantsδ, δ ∈ (0, 1) andC, C > 0, uniform inh s.t.

|U(ξ) − U(ξ′)| ≤ C|ξ − ξ′|δ, ∀ξ, ξ′ ∈ Th.

Under the second set of assumptions,

|U(ξ) − U(ξ′)| ≤ C|ξ − ξ′|, ∀ξ, ξ′ ∈ Th.
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Existence and uniqueness for the stationary problem

Theorem Under the above assumptions onV andg, the discrete stationary
problem has at least a solutionand we haveeither a uniform Ḧolder or a
Lipschitz estimate onuh, depending on the assumptions.

Remark Existence is still OK if forγ > 1,

g(x, q1, q2, q3, q4) ≥ α((q1)
2
− + (q2)

2
+ + (q3)

2
− + (q4)

2
+)γ/2 − C,

but no bounds onuh uniform inh.

Uniqueness: Ok if
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≤ 0 ⇒M = M̃.
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Convergence

The same method used for uniqueness can be used for proving convergence

of the discrete scheme under some assumptions on consistency and stronger

assumptions onVh.

Example
If there exists > 0 such that

h2
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≥ c‖Vh[M ] − Vh[M̃ ]‖s

∞,

thenuniform convergence foru, convergence ofλ and a convergence

related toV for m.

Uses the Ḧolder or Lipschitz estimates onUh uniform w.r.t.h.
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The case whenV is a local operator

V [m](x) = F (m(x), x),

Same assumptions onH, g as above.

• Existence for the discrete problem: OK

• If F is a bounded andC1 function onR × T, uniform bounds for some

Hölder norm ofuh.
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IV. Infinite Horizon: long time approximation
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Long time approximation (Eductive strategy, see Guéant-Lasry)





∂ũ

∂t
− ν∆ũ+H(x,∇ũ) = V [m̃],

∂m̃

∂t
− ν∆m̃− div

(
m̃
∂H

∂p
(x,∇ũ)

)
= 0,

ũ(0, x) = ũ0(x), m̃(0, x) = m̃0(x),

with
∫

T
m̃0 = 1 and m̃0 ≥ 0.

We expect that

lim
t→∞

(ũ(t, x) − λt) = u(x), lim
t→∞

m̃(t, x) = m(x),

Same thing at the discrete level.
We use a semi-implicit linearized scheme. It requires the numerical solution
of a linearized problem. Linearizing must be done carefullyand is not
always possible. In such cases, an explicit method can be used.
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ν = 1, H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2, F (x,m) = m2
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ν = 0.01,

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2, F (x,m) = m2.
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Note that the supports of∇u and ofm tend to be disjoint asν → 0.
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V [m](x) = F (m(x)) = − log(m(x)).

Same Hamiltonian as before. We now takeν = 0.1.
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The measuremh concentrates near the minimum ofuh.
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Deterministic limit ν → 0

Theorem (Lasry-Lions)

If

• H(x, p) ≥ H(x, 0) = 0,

• V [m] = F (m) + f0(x) whereF ′ > 0,

then

lim
ν→0

(λν ,mν) = (λ,m),

where

m(x) =
(
F−1(λ− f0(x))

)+
and

∫

T

mdx = 1.
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ν = 0.001,

H(x, p) = |p|2,

V [m](x) = 4 cos(4πx) + m(x)

"u.gp" "m.gp"

left: u, rightm.
The supports of∇u and ofm tend to be disjoint.

m(x) ≈ (λ− 4 cos(4πx))+
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A nonlocal operator V
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"u.gp" "m.gp"

ν = 0.001,

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2,

F (x, m) = (1 − ∆)−1(1 − ∆)−1m

left: u, right m.
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V. Finite Horizon: a Newton method
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Difficulty: time dependent problem with conditions at both initial and final

times 



FU (U ,M) = 0,

FM (U ,M) = 0,

Solution procedure: Newton method
0
@ Un+1

Mn+1

1
A=

0
@ Un

Mn

1
A−

0
@ AU,U (Un,Mn) AU,M (Un,Mn)

AM,U (Un,Mn) AM,M (Un,Mn)

1
A

−10
@ FU (Un,Mn)

FM (Un,Mn)

1
A

where

AU,U (U ,M) = DUFU (U ,M), AU,M (U ,M) = DMFU (U ,M),

AM,U (U ,M) = DUFM(U ,M), AM,M (U ,M) = DMFM(U ,M).
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The linear systems
The most time consuming part of the procedure lies in solvingthe system of

linear equations

 AU,U AU,M

AM,U AM,M





 U

M


 =


 GU

GM


 .

The matrixAUU is block-lower triangular and block-bidiagonal.

The matrixAUM is block-diagonal.

The matrixAMM is block-upper triangular and block-bidiagonal.

The matrixAMU is block-diagonal.
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The chosen procedure is as follows:

1. solve firstAU,U Ũ = GU . This is done by sequentially solving

DkŨ
k = −LkŨ

k−1 +Gk
U , (1)

i.e. marching in time in the forward direction. (1) are solved with
efficient direct solvers.

2. IntroducingU = U − Ũ ,

 AU,U AU,M

AM,U AM,M





 U

M


 =


 0

GM −AM,U Ũ


 ,

which implies
(
AM,M −AM,UA

−1
U,UAU,M

)
M = GM −AM,U Ũ . (2)

(2) is solved by an iterative method, e.g. BiCGStab.
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ν = 1, T = 1, ∆t = h = 1/50,

m(T ) = 1

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2,
F (x,m) = m2, V0[m](x) = m2 + cos(πx1) cos(πx2).
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Same test except

ν = 0.01, ∆t = 1/200.
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Perspectives

• Obtain estimates on‖DhU‖∞ uniform inh with more general

assumptions in the stationary case (important for stability and

convergence).

• When convergence is OK, prove error estimates?

• Better understand the Newton method in the finite horizon case.

• Tackle practically relevant situations.

A different strategy
Alternative numerical approach with a reformulation into an optimization

problem (A.Lachapelle, J. Salomon, G.Turinici).
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