Contrôle par feedback en optique quantique

Mazyar Mirrahimi

INRIA Rocquencourt

10 Avril 2009

Mazyar Mirrahimi (INRIA)

Contrôle par feedback en optique quantique

10 Avril 2009 1 / 40

A (10) A (10)

Plan de l'exposé

Modèles stochastiques en physique quantique

2 1er type d'expériences de feedback quantique : systèmes de spin N en collaboration avec R. van Handel (Princeton) et H. Mabuchi (Stanford)

 3 2ème type d'expériences de feedback quantique : états de Fock dans une cavité micro-onde en collaboration avec P. Rouchon (Mines), I. Dotsenko (ENS), M. Brune (ENS), S. Haroche (ENS, CdF), J-M. Raimond (ENS)

4 Conclusion

4 3 5 4 3 5 5

État quantique

(fonction d'onde, matrice densité, fonction de Wigner)

État de connaissance d'un observateur du système physique

Système quantique isolé dans une boite noire

Équation de Schrödinger

$$irac{d}{dt}\Psi=H\Psi,$$

$$\begin{split} \Psi \in \mathcal{H} &: \text{fonction d'onde,} \\ H &: \text{opérateur hermitien,} \\ \|\Psi\|_{\mathcal{H}} = 1. \end{split}$$

ou de façon équivalente

$$i\frac{d}{dt}\rho = [H,\rho],$$

$$\label{eq:relation} \begin{split} \rho : \text{l'opérateur de projection} \\ & \text{sur } \Psi \\ [H,\rho] = H\rho - \rho H, \ \ \text{Tr} \left(\rho\right) = 1. \end{split}$$

Système quantique ouvert dans une boite noire

Système à 2 niveaux : $\mathcal{H} = \mathbb{C}^2$

Émission spontanée : couplage avec les fluctuations quantiques du vide

> État de connaissance $\stackrel{\leftrightarrow}{\leftrightarrow}$ Équation de Lindblad

$$egin{aligned} & rac{d}{dt}
ho = -i[H,
ho] \ & + rac{\Gamma}{2}(2\sigma
ho\sigma^{\dagger} - \sigma^{\dagger}\sigma
ho -
ho\sigma^{\dagger}\sigma), \end{aligned}$$

 $\sigma = \left| \boldsymbol{g} \right\rangle \left\langle \boldsymbol{e} \right|.$

Mesure et postulat de projection

Détecteur parfait

Probabilité d'un click entre *t* **et** *t*+*dt* :

 $\Gamma \operatorname{Tr} \left(\left| \boldsymbol{e} \right\rangle \left\langle \boldsymbol{e} \right| \rho(t) \right) dt = \Gamma \operatorname{Tr} \left(\sigma \rho(t) \sigma^{\dagger} \right) dt.$

Click du photo-détecteur :

$$egin{aligned} &
ho(t+\mathit{d}t) = \ket{g}ig\langle g
vert = rac{\sigma
ho(t)\sigma^{\dagger}}{\mathrm{Tr}(\sigma
ho(t)\sigma^{\dagger})} \ & ext{ou} ext{ de façon équivalente} \ & ext{d}
ho = rac{\sigma
ho(t)\sigma^{\dagger}}{\mathrm{Tr}(\sigma
ho^{\dagger})} -
ho \end{aligned}$$

Pas de click du photo-détecteur :

pas de saut \leftrightarrow de l'information

$$\partial_t \rho = -i[H, \rho] - \frac{\Gamma}{2} (\sigma^{\dagger} \sigma \rho + \rho \sigma^{\dagger} \sigma) + \Gamma \operatorname{Tr} \left(\sigma \rho \sigma^{\dagger} \right) \rho.$$

Système mesuré et équation maîtresse stochastique Incrément de Poisson :

$$dN = \begin{cases} 1 & \text{avec la probabilité} \quad \Gamma \operatorname{Tr} \left(\sigma \rho \sigma^{\dagger} \right) dt, \\ 0 & \text{sinon.} \end{cases}$$

En particulier

$$\mathbb{E}(dN) = \Gamma \operatorname{Tr}\left(\sigma \rho \sigma^{\dagger}\right) dt.$$

Équation maîtresse stochastique :

$$d\rho = -i[H,\rho]dt - \frac{\Gamma}{2}(\sigma^{\dagger}\sigma\rho + \rho\sigma^{\dagger}\sigma)dt + \Gamma \operatorname{Tr}\left(\sigma\rho\sigma^{\dagger}\right)\rho dt + \left(\frac{\sigma\rho\sigma^{\dagger}}{\operatorname{Tr}\left(\sigma\rho\sigma^{\dagger}\right)} - \rho\right)dN_{t}$$

Moyenne d'ensemble :

$$\frac{d}{dt}\mathbb{E}(\rho) = -i[H,\mathbb{E}(\rho)] - \frac{\Gamma}{2}(\sigma^{\dagger}\sigma\mathbb{E}(\rho) + \mathbb{E}(\rho)\sigma^{\dagger}\sigma - 2\sigma\mathbb{E}(\rho)\sigma^{\dagger})$$

Équation de Lindblad

Plan de l'exposé

Modèles stochastiques en physique quantique

2 1er type d'expériences de feedback quantique : systèmes de spin N en collaboration avec R. van Handel (Princeton) et H. Mabuchi (Stanford)

 3 2ème type d'expériences de feedback quantique : états de Fock dans une cavité micro-onde en collaboration avec P. Rouchon (Mines), I. Dotsenko (ENS), M. Brune (ENS), S. Haroche (ENS, CdF), J-M. Raimond (ENS)

4 Conclusion

4 3 5 4 3 5 5

Schéma de l'expérience

Équation maîtresse stochastique

Opérateur de la mesure : *L*, Hamiltonien : *H*,

$$d\rho = -i[H,\rho]dt + \frac{1}{2}(2L\rho L^{\dagger} - L^{\dagger}L\rho - \rho L^{\dagger}L)dt + (L\rho_t + \rho_t L^* - \operatorname{Tr}(\rho_t(L+L^*))\rho_t)dW_t.$$

où

$$dW_t = dY_t - \operatorname{Tr}\left(\rho_t(L+L^*)\right) dt$$

est un processus de Wiener !!

R. van Handel, J.K. Stockton et H. Mabuchi, IEEE. Trans. Automat. Control, 50, 768-780 (2005).

< 回 > < 三 > < 三 >

Système de moments angulaires

Configuration des champs optique et magnétique pour qu'ils n'interagissent qu'avec les degrés de liberté des moments angulaires collectifs des atomes

$$d\rho_t = -i[H, \rho_t]dt + \frac{1}{2}(2L\rho_t L^{\dagger} - L^{\dagger}L\rho_t - \rho_t L^{\dagger}L)dt + (L\rho_t + \rho_t L^* - \operatorname{Tr}(\rho_t(L+L^*))\rho_t)dW_t.$$

Un système de spin N : $\mathcal{H} = \mathbb{C}^{2N+1}$

Matrice densité : $\rho_t \in \mathbb{C}^{2N+1}$, Hamiltonien : $H = u(t)J_y$, Opérateur de mesure : $L = J_z$.

Système de moments angulaires

$$d\rho_t = -iu_t[J_y, \rho_t]dt + (J_z\rho_tJ_z - \frac{1}{2}J_z^2\rho_t - \frac{1}{2}\rho_tJ_z^2)dt + (J_z\rho_t + \rho_tJ_z - 2\operatorname{Tr}(J_z\rho_t)\rho_t)dW_t$$

où

$$J_{z} = \begin{pmatrix} -N & & & & 0 \\ & -N+1 & & & \\ & & \ddots & & \\ & & & N-1 & \\ 0 & & & & N \end{pmatrix}, J_{y} = \begin{pmatrix} 0 & -ic_{N-1} & & 0 \\ ic_{-N} & 0 & -ic_{N-2} & & \\ & \ddots & \ddots & \ddots & \\ & & & ic_{N-2} & 0 & -ic_{-N} \\ 0 & & & & ic_{N-1} & 0 \end{pmatrix}$$

avec

$$c_j = \frac{1}{2}\sqrt{(N-j)(N+j+1)}, \qquad j = -N, \cdots, N.$$

э

Évolution libre

États d'équilibre : $(\psi_j)_{j=-N}^N$, états propres de J_z .

$u(t) \equiv 0$

J.K. Stockton, R. van Handel and H. Mabuchi, Phys. Rev. A 70, 022106, (2004). **Question :** faire mieux que la préparation non-déterministe ...

Contrôle Lyapunov pour stabiliser ρ_f

Choisir u_t pour que $\mathbb{E}(V(\rho_t))$ soit décroissante, avec :

$$V(\rho_t) = 1 - \operatorname{Tr}\left(\rho_t \rho_f\right).$$

Générateur infinitésimal de la chaîne de Markov

$$\mathcal{A}V(\rho_t) = u_t \mathrm{Tr}\left(i[J_y, \rho_t]\rho_f\right)\}.$$

Une approach possible :

$$u_t = -\mathrm{Tr}\left(i[F_y, \rho_t]\rho_f\right)$$

Alors $V(\rho_t)$ devient une super-martingale...

Quelques propriétés

$V(\rho_t) \in [0, 1]$ super-martingale bornée

• $\lim_{t\to\infty} V(\rho_t)$ existe presque sûrement ;

• $\mathbb{P} - \lim_{t\to\infty} \mathcal{A}V(\rho_t) = 0$, i.e. $\mathcal{A}V(\rho_t) \to 0$ en probabilité;

• Inégalité de Doob : pour $\alpha < 1$

$$\mathbb{P}\left(\sup_{0\leq t<\infty} V(\rho_t) \geq \alpha\right) \leq \frac{V(\rho_0)}{\alpha}$$

A (10) A (10)

Théorème d'invariance de Kushner

Sous les hypothèses de continuité

- le processus ρ_t est Feller continu (E(f(ρ_t) | ρ₀) est continue par rapport à ρ₀ pour toute fonction f continue);
- $\mathbb{P}(\|\rho_t \rho_0\| > \epsilon) \to 0$ lorsque $t \to 0$;

le processus ρ_t converge en probabilité vers le plus grand ensemble invariant inclus dans { $AV(\rho) = 0$ }.

Application au système de moments angulaires

$$d\rho_t = -iu_t[J_y, \rho_t]dt + (J_z\rho_tJ_z - \frac{1}{2}J_z^2\rho_t - \frac{1}{2}\rho_tJ_z^2)dt + (J_z\rho_t + \rho_tJ_z - 2\operatorname{Tr}(J_z\rho_t)\rho_t)dW_t$$

Générateur infinitésimal avec $u_t = -\text{Tr}\left(i[F_y, \rho_t]\rho_f\right)$

$$\mathcal{A}V(\rho_t) = -\left|\operatorname{Tr}\left(i[F_y, \rho_t]\rho_f\right)\right|^2.$$

Ensemble ω -limit

$$\{\rho_{m}=\psi_{m}\psi_{m}^{*}\}.$$

Mazyar Mirrahimi (INRIA)

Contrôle par feedback en optique quantique

10 Avril 2009 17 / 40

A (B) > A (B) > A (B)

Mauvais attracteurs

Pas de stabilisation quasi-globale ...

 $V(\rho_t)$ converge presque sûrement vers un variable aléatoire prenant comme valeur soit 0 soit 1.

Mazyar Mirrahimi (INRIA)

Contrôle par feedback en optique quantique

10 Avril 2009 18 / 40

Changement de stratégie

Éviter les mauvais attracteurs, en prenant un contrôle constant autour de V = 1.

Nouveau feedback

Rajout d'une hystérésis pour avoir une équation bien-posée

•
$$u_t = -\text{Tr} (i[J_y, \rho_t]\rho_f) \text{ si } V \le 1 - \gamma;$$

• $u_t = 1 \text{ si } V \ge 1 - \gamma/2;$
• $i \rho_t \in \mathcal{B} = \{\rho : 1 - \gamma < V < 1 - \gamma/2\}, \text{ alors } u_t = -\text{Tr} (i[J_y, \rho_t]\rho_f)$
si la dernière entrée de ρ_t dans \mathcal{B} a été à travers la frontière
 $V = 1 - \gamma, \text{ et } u_t = 1 \text{ sinon.}$

Simulations de Monte-Carlo

Fonction de Lyapunov pour 10 trajectoires aléatoires

10 Avril 2009 21 / 40

A b

Schéma de preuve

3 étapes :

- $u \equiv 1$ assure la sortie des trajectoires de S_1 .
- ② ∃ γ t.q. avec $u \equiv 1$ l'espérance du temps de sortie de $S_{>1-\gamma}$ est fini.
- La probabilité de convergence vers ρ_f lorsque l'état initial est dans S_{≤1-γ} est plus que p > 0.

Étapes 1 et 2

Théorème de support de Strook-Varadhan+ Contrôlabilité en temps T

 $\exists t \in [0, T] \text{ t.q. } \mathbb{P}(V(\rho_t) \neq 1) > 0 \text{ ou de façon équivalente} \\ \min_{t \in [0, T]} \mathbb{E}(V(\rho_t)) < 1$

Par continuité $\exists \gamma$ t.q. $\min_{t \in [0,T]} \mathbb{E}(V(\rho_t)) < 1 - \gamma$ pour $\rho_0 \in \overline{S_{\geq 1-\gamma}}$

Par le Théorème de Dynkin $\sup_{\rho_0 \in S_{>1-\gamma}} \mathbb{E} \tau_{\rho_0}(S_{>1-\gamma}) < \infty$ où $\tau_{\rho_0}(S_{>1-\gamma})$ est le temps de sortie du processus de l'ensemble $(S_{>1-\gamma})$.

< 回 > < 回 > < 回 > …

Inégalité de Doob

$$\mathbb{P}\{\sup_{0\leq t<\infty}V(\rho_t)\geq 1-\gamma/2\mid V(\rho_0)\leq 1-\gamma\}\leq 1-\rho=\frac{1-\gamma}{1-\gamma/2}<1.$$

Théorème d'invariance de Kushner

Les trajectoires qui restent dans $\mathcal{S}_{\leq 1-\gamma/2}$ convergent presque sûrement vers $\rho_{\rm f}.$

Plan de l'exposé

Modèles stochastiques en physique quantique

2 1er type d'expériences de feedback quantique : systèmes de spin N en collaboration avec R. van Handel (Princeton) et H. Mabuchi (Stanford)

 3 2ème type d'expériences de feedback quantique : états de Fock dans une cavité micro-onde en collaboration avec P. Rouchon (Mines), I. Dotsenko (ENS), M. Brune (ENS), S. Haroche (ENS, CdF), J-M. Raimond (ENS)

4 Conclusion

Schéma de l'expérience

S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J. M. Raimond et S. Haroche, Nature 455, 510-514 (2008).

A (10) A (10) A (10)

Système stochastique discret de dimension infinie Espace de Hilbert : $\mathcal{H} = \{\sum_{n=0}^{\infty} c_n | n \rangle \mid (c_n)_{n=0}^{\infty} \in l^2(\mathbb{C})\}$ État du système : ρ_k la matrice densité après la mesure de l'atome *k* Dynamique :

$$\rho_{k+1/2} = D(\alpha)\rho_k D(\alpha)^{\dagger}$$

$$\rho_{k+1} = \frac{M_{s_k}\rho_{k+1/2}M_{s_k}^{\dagger}}{\operatorname{Tr}\left(M_{s_k}\rho_{k+1/2}M_{s_k}^{\dagger}\right)}, \qquad s_k = g, e.$$

où

- α est le contrôle et D(α) est un opérateur unitaire (semi-groupe d'évolution cohérente),
- *M_g* et *M_e* sont les opérateurs de mesures, fonction du résultat de la mesure dans l'état |*g*⟩ ou |*e*⟩,
- la probabilité de mesurer l'atome *k* dans l'état $|g\rangle$ (resp. $|e\rangle$) est donnée par Tr $\left(M_g \rho_{k+1/2} M_g^{\dagger}\right)$ (resp. Tr $\left(M_e \rho_{k+1/2} M_e^{\dagger}\right)$).

Opérateurs physiques

Opérateurs d'annihilation et de création :

$$a = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \cdots & 0 & \cdots \\ 0 & 0 & \sqrt{2} & 0 & \cdots & 0 & \cdots \\ 0 & 0 & 0 & \sqrt{3} & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \sqrt{n} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \sqrt{n} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad a^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & \cdots \\ \sqrt{1} & 0 & 0 & 0 & \cdots & \cdots \\ 0 & \sqrt{2} & 0 & \cdots & \cdots \\ 0 & \sqrt{2} & 0 & \cdots & \cdots \\ 0 & 0 & \sqrt{3} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \sqrt{n+1} & 0 \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Opérateur de comptage de photons :

$$\mathcal{N}=a^{\dagger}a=\text{diag}(0,1,2,3,\cdots).$$

avec les domaines :

$$\mathcal{D}(\boldsymbol{a}) = \mathcal{D}(\boldsymbol{a}^{\dagger}) = \{\sum_{n=0}^{\infty} c_n | n \rangle \mid (c_n)_{n=0}^{\infty} \in h^1(\mathbb{C})\}$$
$$\mathcal{D}(\mathcal{N}) = \{\sum_{n=0}^{\infty} c_n | n \rangle \mid (c_n)_{n=0}^{\infty} \in h^2(\mathbb{C})\}$$

où
$$h^k(\mathbb{C}) = \{(c_n)_{n=0}^{\infty} \in l^2(\mathbb{C}) \mid \sum_{n=0}^{\infty} n^k |c_n|^2 < \infty\}.$$

Opérateurs d'évolution

Opérateur de déplacement :

$$D(\alpha) = \exp(\alpha(a^{\dagger} - a)), \quad \text{pour } \alpha \in \mathbb{R},$$

l'opérateur $a^{\dagger} - a$ étant anti-autoadjoint et avec un domaine dense dans \mathcal{H} , il définit un groupe fortement continu d'isometries sur \mathcal{H} .

Opérateurs de mesure :

$$M_{g} = \cos(\frac{\phi_{R} + \Phi(\mathcal{N})}{2}) = \text{diag}(\cos(\frac{\phi_{R} + \Phi(0)}{2}), \cos(\frac{\phi_{R} + \Phi(1)}{2}), \cos(\frac{\phi_{R} + \Phi(2)}{2}), \cdots),$$
$$M_{e} = \sin(\frac{\phi_{R} + \Phi(\mathcal{N})}{2}) = \text{diag}(\sin(\frac{\phi_{R} + \Phi(0)}{2}), \sin(\frac{\phi_{R} + \Phi(1)}{2}), \sin(\frac{\phi_{R} + \Phi(2)}{2}), \cdots),$$

avec les domaines $\mathcal{D}(M_g) = \mathcal{D}(M_e) = \mathcal{H}$.

Problème de stabilisation

État initial : état cohérent $|\alpha_0\rangle = D(\alpha_0) |0\rangle$.

État cible : état de Fock $|N_f\rangle$.

Contrôle : α_k l'injection cohérente après la mesure de l'atome k - 1. Sortie : atome mesuré dans l'état $|g\rangle$ ou $|e\rangle$.

Stratégie de contrôle :

$$\alpha_{k+1} = \begin{cases} c \operatorname{Tr} \left(\left[\left| N_{f} \right\rangle \left\langle N_{f} \right|, a^{\dagger} - a \right] \rho_{k} \right) & \text{si} \quad \left\langle N_{f} \right| \rho_{k} \left| N_{f} \right\rangle \geq \epsilon, \\ C & \text{sinon} \end{cases}$$

où c > 0 est une constante suffisamment petite.

Simulations de Monte-Carlo

La moyenne des populations, $F_n(\rho_k) = \text{Tr}(|n\rangle \langle n| \rho_k)$, sur 10⁴ trajectoires de Monte-Carlo quantiques en boucle fermée.

Vers une preuve

Fonction de Lyapunov

$$V(\rho_k) = 1 - \operatorname{Tr}(|N_f\rangle \langle N_f | \rho_k).$$

Nous avons

$$\rho_{k+1} = \begin{cases} \frac{M_g \rho_{k+1/2} M_g^{\dagger}}{\text{Tr}\left(M_g \rho_{k+1/2} M_g^{\dagger}\right)}, & \text{avec la probabilité} \quad \text{Tr}\left(M_g \rho_{k+1/2} M_g^{\dagger}\right), \\ \frac{M_e \rho_{k+1/2} M_e^{\dagger}}{\text{Tr}\left(M_e \rho_{k+1/2} M_e^{\dagger}\right)}, & \text{avec la probabilité} \quad \text{Tr}\left(M_e \rho_{k+1/2} M_e^{\dagger}\right), \end{cases}$$

Donc

$$\mathbb{E}(V(\rho_{k+1}) \mid \rho_{k+1/2}) = 1 - \operatorname{Tr}\left(\left|N_{f}\right\rangle \left\langle N_{f}\right| M_{g}\rho_{k+1/2}M_{g}^{\dagger}\right) - \operatorname{Tr}\left(\left|N_{f}\right\rangle \left\langle N_{f}\right| M_{e}\rho_{k+1/2}M_{e}^{\dagger}\right)$$
$$= 1 - \operatorname{Tr}\left(\left|N_{f}\right\rangle \left\langle N_{f}\right| \rho_{k+1/2}\right) = V(\rho_{k+1/2}),$$

car

$$M_g^{\dagger} \ket{N_f} \langle N_f \ket{M_g + M_e^{\dagger} \ket{N_f}} \langle N_f \ket{M_e} = \ket{N_f} \langle N_f |.$$

э

Vers une preuve (suite) De plus

$$ho_{k+1/2} = D(lpha_k)
ho_k D(-lpha_k), \qquad \text{où } lpha_k = c \operatorname{Tr}\left(\left[\left|N_f
ight
angle \left\langle N_f \right|, a^{\dagger} - a\right]
ho_k\right),$$

et nous pouvons démontrer dans \mathcal{H} , que

$$D(\alpha)\rho D(-\alpha) = \rho - \alpha[\rho, \mathbf{a}^{\dagger} - \mathbf{a}] + O(\alpha^2).$$

Donc

$$V(\rho_{k+1/2}) = V(\rho_k) - c \left| \operatorname{Tr} \left(\left[\left| N_f \right\rangle \left\langle N_f \right|, a^{\dagger} - a \right] \rho_k \right) \right|^2 + \left| \operatorname{Tr} \left(\left[\left| N_f \right\rangle \left\langle N_f \right|, a^{\dagger} - a \right] \rho_k \right) \right|^2 O(c^2),$$

car $[|N_f\rangle \langle N_f|, a^{\dagger} - a]$ est un opérateur borné sur \mathcal{H} .

Pour c > 0 suffisamment petit

$$V(\rho_{k+1/2}) \leq V(\rho_k) \implies \mathbb{E}(V(\rho_{k+1}) \mid \rho_k) \leq V(\rho_k)$$

 $V(\rho_k)$ est une super-martingale

Mazyar Mirrahimi (INRIA)

Contrôle par feedback en optique quantique

Vers une preuve (suite)

Nous avons la convergence presque sûre pour toute approximation Galerkin de dimension finie.

Obstacle principal pour passer à la dimension infinie

Pour avoir le Théorème d'invariance de Kushner en dimension infinie, il faut montrer que : Pour toute $\epsilon > 0$, il existe un compact \mathcal{B}_{ϵ} de \mathcal{H} tel que

 $\mathbb{P}(\rho_k \text{ sort du compact } \mathcal{B}_{\epsilon}) \leq \epsilon.$

Une idée (semblable au cas déterministe)

Trouver une nouvelle fonction de Lyapunov $\mathcal{V}(\rho)$ telle que $\mathcal{V}(\rho_k)$ soit aussi une super-martingale avec pour tout ϵ

$$\mathcal{C}_{\epsilon} = \{
ho \in \mathcal{H} \mid \mathcal{V}(
ho) < rac{1}{\epsilon}\}$$

compact. Alors par l'inégalité de Doob

 $\mathbb{P}(\rho_k \text{ sort du compact } C_{\epsilon}) \leq \epsilon \mathcal{V}(\rho_0).$

< 回 > < 回 > < 回 >

Plan de l'exposé

Modèles stochastiques en physique quantique

2 1er type d'expériences de feedback quantique : systèmes de spin N en collaboration avec R. van Handel (Princeton) et H. Mabuchi (Stanford)

 3 2ème type d'expériences de feedback quantique : états de Fock dans une cavité micro-onde en collaboration avec P. Rouchon (Mines), I. Dotsenko (ENS), M. Brune (ENS), S. Haroche (ENS, CdF), J-M. Raimond (ENS)

4 Conclusion

Conclusion : vers une expérience physique

Cette boucle de feedback devrait être testée expérimentalement au sein du LKB (ENS)

Propriétés importantes du boucle de feedback

Tout d'abord, une approximation Galerkin à une vingtaine de photons montre une bonne robustesse aux erreurs expérimentales :

- retard pur (4 atomes entre la cavité et le détecteur) compensé par une version quantique du prédicteur de Smith....;
- détecteur se trompe une fois sur 10 et ne détecte rien 2 fois sur 10;
- pas d'atome 4 fois sur 10 à l'étape k;
- absorption par les parois de la cavité d'un photon de temps en temps.

Deuxièmement, L'algorithme de feedback est simple et nous avons le temps de faire les calculs entre 2 pulses

Conclusion : robustesse en simulation

Simulation de Monte-Carlo avec un retard pur de 4 atomes, une efficacité de détecteur de 80%, un taux de détection fausse de 10%, un taux d'occupation de 40%, et une durée de vie de cavité de 15 ms.

Conclusion : garanties théoriques

Forte motivation pour étudier le système en boucle fermée avec le filtre quantique, le feedback (structure usuelle de l'observateur-contrôleur), la convergence (principe de séparation) et la robustesse,

- en dimension finie convergence OK, robustesse (OK en simulation mais pas de preuve pour l'instant).
- en dimension infinie convergence et robustesse?

Détection homodyne

Détection homodyne de l'observable physique L

$$\mathbb{E}(dN_1 - dN2) = \frac{1}{2} \left(\operatorname{Tr} \left((L + \alpha)\rho(L + \alpha)^{\dagger} \right) - \operatorname{Tr} \left((L - \alpha)\rho(L - \alpha)^{\dagger} \right) \right) dt$$
$$= \alpha^2 \operatorname{Tr} \left((L + L^{\dagger})\rho(L + L^{\dagger}) \right) dt.$$

Limite $\alpha \to \infty$ ($|\alpha|^2$ nombre moyen de photon venant de la lumière cohérente)

$$dN_1 - dN_2 \longrightarrow \alpha^2 \operatorname{Tr}\left((L+L^{\dagger})\rho(L+L^{\dagger})\right) dt + \alpha \sqrt{\operatorname{Tr}\left((L+L^{\dagger})\rho(L+L^{\dagger})\right)} dW_t.$$

4 **A b b b b**