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equations

beauty

mathematics thermodynamics

P.A.M. Dirac: “This result is too beautiful to be false; it is
more important to have beauty in one's equations than to
have them fit experiment.” (Scientific American, May 1963)
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existence & uniqueness of solutions
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beauty

mathematics thermodynamics

nonequilibrium thermodynamics

provides prerequisites for proofs

via thermodynamic structuregeometric structures
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GENERIC Structure

General equation for the nonequilibrium reversible-irreversible coupling

dA
dt
------- A H,{ } A S,[ ]+=

{A,B} antisymmetric, [A,B] Onsager/Casimir symmetric, 
positive-semidefinite Jacobi identity

S A,{ } 0= H A,[ ] 0=

H(x) energy

S(x) entropy

Poisson bracket Dissipative bracket

metriplectic structure (P. J. Morrison, 1986)
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Physics of the Dissipative Bracket

D
1

2Δt
--------- Δx( )2 =cf.

Einstein
A B,[ ] 1

2kBτ
------------ ΔτA

f
 ΔτB

f =

Frictional properties are related to time-dependent fluctuations:

τ1 τ2

dS
dt
------ S S,[ ]=
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Boundary Thermodynamics

3d variables

2d variables

time evolution

time evolution

sources
boundary
conditions

distance from interface

co
nc

en
tr

at
io

n

excess at interface



Polymer 
Physics

Boundary Thermodynamics

3d variables

2d variables

time evolution

time evolution

sources
boundary
conditions

Conditions at the boundary vs. boundary conditions!

distance from interface
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Example: Diffusion Cell

System: Solute particle 
number densities

• P in the bulk

• p at the wall

δS
δP
------ kB

P
P0
------ ,ln–=

δS
δp
------ kB

p
p0
-----ln–=

kB A B,[ ] Db
∂
∂r
-----δA

δP
------ ∂

∂r
-----δB

δP
------⋅ P 3rd

V Ds
∂
∂r
-----δA

δp
------ ∂

∂r
-----δB

δp
------⋅ p 2rd

W+=

 νs
δA
δp
------ ΩδA

δP
------–

δB
δp
------ ΩδB

δP
------– p 2rd

W+ Ω 1=
νs: ad/desorption rate

Brenner & Ganesan, Phys. Rev. E 61 (2000) 6879
hco, Phys. Rev. E 73 (2006) 036126

wall

wall

reservoir
(P1)

reservoir
(P2)V

W
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Diffusion Cell: Results

A S,[ ] δA
δP
------ dP

dt
-------

irr

3rd⋅
V

δA
δp
------ dp

dt
------

irr

2rd⋅
W Jirr

A 2rd
∂V+ +=

dP
dt
------- ∂

∂r
----- Db

∂P
∂r
------⋅=

dp
dt
------ ∂

∂r
----- Ds

∂p
∂r
------⋅ n Db

∂P
∂r
------⋅–=

n– Db
∂P
∂r
------⋅ νsp HP

p
--------ln=

boundary condition on wall:evolution equations:

H p0 P0⁄=
characteristic length scale

open boundaries: wall:Jirr
A δA

δP
------n Db

∂P
∂r
------⋅–= Jirr

A
0=
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Challenge: How to match the chain rule
and thermodynamic evolution equations?
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Moving Boundaries

Challenge: How to match the chain rule
and thermodynamic evolution equations?

A B,{ }mint ∂a
s

∂Ms
---------- n b̃

g
b

g
–( ) b̃

l
b

l
–( )– b̃

s
b

s
–( ) ∂

∂r 
------- n⋅+ d

2
r⋅

I
 A B↔( )–=

=

b̃
g

ρg ∂

∂ρg
 

---------- Mg ∂

∂Mg
-----------⋅ s

g ∂

∂s
g

 

---------+ + 
  b

g
=

b
g

b̃
g

ρg ρg

Mg Mg

s
g

s
g

εg εg
p

g
+

mass momentum entropy
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Bubble growth in a supersaturated liquid for different solute 
release rates

bubble size interfacial driving force

deviation from Henry’s law: c R( ) Kp
g ξgl

m kB⁄
 
 
 

exp=

hco, D. Bedeaux, and D.C. Venerus, Phys. Rev. E 80 (2009) 021606 



Polymer 
Physics

Next Steps

• Local equilibrium and gauge invariance

• Free boundaries

• Viscoelastic interfaces

• More general relations between bulk and boundary variables

• Variables characterizing the geometry of interfaces

• Functional calculus

• Statistical mechanics
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The quantum master equation obtained from two different thermodynamic arguments is seriously nonlinear. We
argue that, for quantum systems, nonlinearity occurs naturally in the step from reversible to irreversible equations
and we analyze the nature and consequences of the nonlinear contribution. The thermodynamic nonlinearity
naturally leads to canonical equilibrium solutions and extends the range of validity to lower temperatures. We
discuss the Markovian character of the thermodynamic quantum master equation and introduce a solution strategy
based on coupled evolution equations for the eigenstates and eigenvalues of the density matrix. The general ideas
are illustrated for the two-level system and for the damped harmonic oscillator. Several conceptual implications
of the nonlinearity of the thermodynamic quantum master equation are pointed out, including the absence of a
Heisenberg picture and the resulting difficulties with defining multitime correlations.
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quantum
system

classical
environmentweak coupling
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P.A.M. Dirac: “We should thus expect to find that important concepts
in classical mechanics correspond to important concepts in quantum
mechanics, and, from an understanding of the general nature of the
analogy between classical and quantum mechanics, we may hope to
get laws and theorems in quantum mechanics appearing as simple
generalizations of well-known results in classical mechanics”
(The Principles of Quantum Mechanics)
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P.A.M. Dirac: “We should thus expect to find that important concepts
in classical mechanics correspond to important concepts in quantum
mechanics, and, from an understanding of the general nature of the
analogy between classical and quantum mechanics, we may hope to
get laws and theorems in quantum mechanics appearing as simple
generalizations of well-known results in classical mechanics”
(The Principles of Quantum Mechanics)

The order of performing measurements matters
Observables do not commute
Commutators matter in quantum mechanics

Poisson bracket commutator

A B,{ } A B,[ ]q AB BA–=  =ih
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Poisson bracket

commutator

A B,[ ]q AB BA–=

A B,{ }

dissipative bracket

A B,[ ]

?
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Poisson bracket

commutator

A B,[ ]q AB BA–=

A B,{ }

dissipative bracket

canonical correlation
of commutators

A B,[ ]

A Q,[ ]q; B Q,[ ]q ρ
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GENERIC: From Classical to Quantum Systems

Poisson bracket

commutator

A B,[ ]q AB BA–=

A B,{ }

dissipative bracket

canonical correlation
of commutators

A B,[ ]

A Q,[ ]q; B Q,[ ]q ρ

A;B ρ tr ρλ
Aρ1 λ–

B( ) λd
0

1

=canonical correlation (Kubo):
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dρ
dt
------ i

h
--- ρ H,[ ] 1

kB
------ He Se,[ ]

x
Q Q H,[ ]ρ,[ ] He He,[ ]

x
Q Q ρ,[ ],[ ]––=

Nonlinear Thermodynamic Quantum Master Equation

Quantum subsystem:
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dρ
dt
------ i

h
--- ρ H,[ ] 1

kB
------ He Se,[ ]

x
Q Q H,[ ]ρ,[ ] He He,[ ]

x
Q Q ρ,[ ],[ ]––=

Nonlinear Thermodynamic Quantum Master Equation

Quantum subsystem:

Aρ ρλ
Aρ1 λ– λd

0

1

=

nonlinearity
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Nonlinear Thermodynamic Quantum Master Equation

Quantum subsystem:

dρ
dt
------ i

h
--- ρ H,[ ] 1

kB
------ He Se,[ ]

x
Q Q H,[ ]ρ,[ ] He He,[ ]

x
Q Q ρ,[ ],[ ]––=
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Nonlinear Thermodynamic Quantum Master Equation

Quantum subsystem:

Heat bath: H. Grabert, 
Z. Phys. B 49 (1982) 161

dρ
dt
------ i

h
--- ρ H,[ ] 1

kB
------ He Se,[ ]

x
Q Q H,[ ]ρ,[ ] He He,[ ]

x
Q Q ρ,[ ],[ ]––=
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Nonlinear Thermodynamic Quantum Master Equation

Quantum subsystem:

Heat bath: H. Grabert, 
Z. Phys. B 49 (1982) 161

Quantum regression hypothesis:

dρ
dt
------ iLρ–=

Heisenberg picture    A t( ),B[ ] ρ tr Ae
iLt–

B ρ,[ ]( )=

fluctuation-dissipation theorem    A t( ),B[ ] ρ
h

kTe
--------tr Ae

iLt–
LBρ( )=

dρ
dt
------ i

h
--- ρ H,[ ] 1

kB
------ He Se,[ ]

x
Q Q H,[ ]ρ,[ ] He He,[ ]

x
Q Q ρ,[ ],[ ]––=
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Nonlinear Thermodynamic Quantum Master Equation

dρ
dt
------ i

h
--- ρ H,[ ] 1

kB
------ He Se,[ ]

x
Q Q H,[ ]ρ,[ ] He He,[ ]

x
Q Q ρ,[ ],[ ]––=

Quantum subsystem:

plus feedback equation
for the evolution of the classical environment
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Dissipative Quantum Sytems

Nonlinear master equation for the quantum subsystem

Feedback contribution for the evolution of the classical environment

•  stays symmetric and positive-semidefinite

• Canonical equilibrium solutions

• Validity at low temperatures (for weak dissipation)

• Modifies the usual but incorrect “quantum regression 
hypothesis” (H. Grabert, 1982)

ρ t( )
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Take-Home Messages

• There exists a (beautiful) geometric formulation of classical 
nonequilibrium thermodynamics (far away from equilibrium!)

• Boundary thermodynamics allows us to model conditions (physics) at 
the boundaries (and provides boundary conditions)

• The generalization to dissipative quantum systems by Dirac’s 
method of classical analogy is supported nicely by the geometric 
formulation

• We obtain a (beautiful) nonlinear quantum master equation (plus an 
equation for the environment)

• Environments and couplings of enormous generality can be handled, 
including open environments
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ih A B,{ } A B,[ ]q AB BA–= =

equations

beauty

mathematics thermodynamics

dA
dt
------- A H,{ } A S,[ ]+=

A Q,( ); B Q,( ) ρ

3d variables

2d variables

time evolution

time evolution

sources
boundary
conditions
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