Méthodes d'Analyse multifractale pour la classification de signaux et d'images Stéphane Jaffard

Université Paris Est Créteil (France)

Collaboration avec:

Patrice Abry CNRS, Laboratoire de Physique, ENS Lyon Herwig Wendt CNRS IRIT, Toulouse

> Séminaire de Mathématiques Appliquées Collège de France 27 janvier 2012

Signaux et images partout irréguliers

Turbulence pleinement développée

Trafic internet

600

 $\Delta = 3.2 \text{ ms}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Niveaux de gris

Canal rouge

Canal Saturation

La nature, les sciences et les arts fournissent de nombreux exemples de fonctions "rugueuses"

La fonction d'échelle $\zeta_f(p)$ (N. Kolmogorov 1941) Définition heuristique

$$\int |f(x+\delta) - f(x)|^p dx \sim |\delta|^{\zeta_f(p)} \quad \text{quand} \quad \delta \to 0$$

La fonction d'échelle $\zeta_f(p)$ (N. Kolmogorov 1941) Définition heuristique

$$\int |f(x+\delta) - f(x)|^p dx \sim |\delta|^{\zeta_t(p)} \quad \text{quand} \quad \delta \to 0$$

Définition utilisée en traitement du signal

$$\int |f(x+\delta) - f(x)|^p dx = |\delta|^{\zeta_f(p) + o(1)} \quad \text{quand} \quad \delta \to 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Autosimilarité en moyenne dans la limite des petites échelles

La fonction d'échelle $\zeta_f(p)$ (N. Kolmogorov 1941) Définition heuristique

$$\int |f(x+\delta) - f(x)|^p dx \sim |\delta|^{\zeta_t(p)} \quad \text{quand} \quad \delta \to 0$$

Définition utilisée en traitement du signal

$$\int |f(x+\delta) - f(x)|^p dx = |\delta|^{\zeta_f(p) + o(1)} \quad \text{quand} \quad \delta \to 0$$

Autosimilarité en moyenne dans la limite des petites échelles

Définition mathématique générale

$$\zeta_f(p) = \liminf_{\delta \to 0} \quad \frac{\log\left(\int |f(x+\delta) - f(x)|^p dx\right)}{\log(|\delta|)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Fonction d'échelle du FBM

 $B_H(x)$ est l'unique processus gaussien centré tel que

$$\mathbb{E}(|B_{H}(x) - B_{H}(y)|^{2}) = |x - y|^{2H}$$

Donc

$$egin{aligned} |B_{\mathcal{H}}(x+\delta)-B_{\mathcal{H}}(x)| &\sim |\delta|^{\mathcal{H}} \ &\int |B_{\mathcal{H}}(x+\delta)-B_{\mathcal{H}}(x)|^{\mathcal{P}} dx &\sim |\delta|^{\mathcal{H}\mathcal{P}} \end{aligned}$$

FBM d'exposant H = 1/3

・ロット (雪) (日) (日)

э

Fonction d'échelle du FBM

 $B_H(x)$ est l'unique processus gaussien centré tel que

$$\mathbb{E}(|B_{H}(x) - B_{H}(y)|^{2}) = |x - y|^{2H}$$

Donc

$$egin{aligned} |B_{H}(x+\delta)-B_{H}(x)| &\sim |\delta|^{H} \ &\int |B_{H}(x+\delta)-B_{H}(x)|^{p} dx &\sim |\delta|^{Hp} \end{aligned}$$

FBM d'exposant H = 1/3

Fonction d'échelle du FBM : $\forall p > 0, \zeta_f(p) = Hp$

Fonction d'échelle du FBM

 $B_H(x)$ est l'unique processus gaussien centré tel que

$$\mathbb{E}(|B_{H}(x) - B_{H}(y)|^{2}) = |x - y|^{2H}$$

Donc

$$egin{aligned} |B_{\mathcal{H}}(x+\delta)-B_{\mathcal{H}}(x)| &\sim |\delta|^{\mathcal{H}} \ &\int |B_{\mathcal{H}}(x+\delta)-B_{\mathcal{H}}(x)|^{p} dx &\sim |\delta|^{\mathcal{H}p} \end{aligned}$$

FBM d'exposant H = 1/3

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Fonction d'échelle du FBM : $\forall p > 0, \zeta_f(p) = Hp$

La fonction d'échelle de la turbulence est strictement concave

Fonction d'échelle et espaces fonctionnels

Espaces de Lipschitz

Soient $s \in (0, 1)$, et $p \in [1, \infty[$ $f \in Lip(s, L^p)$ si $f \in L^p$ et si $\exists C > 0$ tels que

$$\forall \delta > 0, \qquad \int |f(x+\delta) - f(x)|^p dx \leq C |\delta|^{sp}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fonction d'échelle et espaces fonctionnels

Espaces de Lipschitz

Soient $s \in (0, 1)$, et $p \in [1, \infty[$ $f \in Lip(s, L^p)$ si $f \in L^p$ et si $\exists C > 0$ tels que

$$orall \delta > 0, \qquad \int |f(x+\delta) - f(x)|^p dx \leq C |\delta|^{sp}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Si $\zeta_f(p) < p$, $\zeta_f(p) = \sup\{s : f \in Lip(s/p, L^p)\}$

Bases d'ondelettes sur \mathbb{R}

Une base d'ondelettes sur \mathbb{R} est engendrée par une fonction ψ régulières et bien localisées telle que les

$$2^{j/2}\psi(2^jx-k), j\in\mathbb{Z}, k\in\mathbb{Z}$$

forment une base orthonormée de $L^2(\mathbb{R})$

Ondelettes de Daubechies

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bases d'ondelettes en dimension 2

Une base d'ondelettes sur \mathbb{R}^2 est de la forme

 $2^{j}\psi^{i}(2^{j}x-k), \qquad i=1,2,3, \ j\in\mathbb{Z}, \ k\in\mathbb{Z}^{d}$

où les ψ^i sont trois fonctions régulières et bien localisées

$$\psi^1(x_1,x_2)=\theta(x_1)\varphi(x_2)$$

$$\psi^{1}(\boldsymbol{x}_{1},\boldsymbol{x}_{2})=\varphi(\boldsymbol{x}_{1})\theta(\boldsymbol{x}_{2})$$

$$\psi^1(x_1,x_2)=\theta(x_1)\theta(x_2)$$

Bases d'ondelettes en dimension 2

Une base d'ondelettes sur \mathbb{R}^2 est de la forme

 $2^{j}\psi^{i}(2^{j}x-k), \qquad i=1,2,3, \ j\in\mathbb{Z}, \ k\in\mathbb{Z}^{d}$

où les ψ^i sont trois fonctions régulières et bien localisées

$$\psi^{1}(x_{1}, x_{2}) = \theta(x_{1})\varphi(x_{2})$$
$$\psi^{1}(x_{1}, x_{2}) = \varphi(x_{1})\theta(x_{2})$$
$$\psi^{1}(x_{1}, x_{2}) = \theta(x_{1})\theta(x_{2})$$

Moments nuls

$$\int \psi(x_1, x_2) x_1^{\alpha_1} x_2^{\alpha_2} dx_1 dx_2 = 0$$

si $\alpha_1 + \alpha_2 \leq N$

Cubes dyadiques :

Si
$$k = (k_1, ..., k_d), \quad \lambda = \left[\frac{k_1}{2^j}, \frac{k_1 + 1}{2^j}\right] \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d + 1}{2^j}\right]$$

Cubes dyadiques :

Si
$$k = (k_1, ..., k_d), \quad \lambda = \left[\frac{k_1}{2^j}, \frac{k_1 + 1}{2^j}\right] \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d + 1}{2^j}\right]$$

Ondelettes :

$$\psi_{\lambda}(\mathbf{x}) = \psi^{i}(\mathbf{2}^{j}\mathbf{x} - \mathbf{k})$$

Cubes dyadiques :

Si
$$k = (k_1, ..., k_d), \quad \lambda = \left[\frac{k_1}{2^j}, \frac{k_1 + 1}{2^j}\right] \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d + 1}{2^j}\right]$$

Ondelettes :

$$\psi_{\lambda}(\mathbf{x}) = \psi^{i}(2^{j}\mathbf{x} - \mathbf{k})$$

Coefficients d'ondelette :

$$c_{\lambda}=2^{dj}\int f(x)\psi^{i}(2^{j}x-k)dx$$

Cubes dyadiques :

Si
$$k = (k_1, ..., k_d), \quad \lambda = \left[\frac{k_1}{2^j}, \frac{k_1 + 1}{2^j}\right] \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d + 1}{2^j}\right]$$

Ondelettes :

$$\psi_{\lambda}(\mathbf{x}) = \psi^{i}(\mathbf{2}^{j}\mathbf{x} - \mathbf{k})$$

Coefficients d'ondelette :

$$c_{\lambda}=2^{dj}\int f(x)\psi^{i}(2^{j}x-k)dx$$

Cubes dyadiques à l'échelle j :

$$\Lambda_j = \{\lambda : |\lambda| = 2^{-j}\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Cubes dyadiques :

Si
$$k = (k_1, ..., k_d), \quad \lambda = \left[\frac{k_1}{2^j}, \frac{k_1 + 1}{2^j}\right] \times \cdots \times \left[\frac{k_d}{2^j}, \frac{k_d + 1}{2^j}\right]$$

Ondelettes :

$$\psi_{\lambda}(\mathbf{x}) = \psi^{i}(\mathbf{2}^{j}\mathbf{x} - \mathbf{k})$$

Coefficients d'ondelette :

$$c_{\lambda} = 2^{dj} \int f(x) \psi^i (2^j x - k) dx$$

Cubes dyadiques à l'échelle j :

$$\Lambda_j = \{\lambda : |\lambda| = \mathbf{2}^{-j}\}$$

Décomposition en ondelettes de f :

$$f(x) = \sum_{j} \sum_{\lambda \in \Lambda_{j}} c_{\lambda} \psi_{\lambda}(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

・ロト・四ト・モート ヨー うへの

Autosimilarité : Cas déterministe

Fonction de Weierstrass-Mandelbrot

$$W_{lpha}(x) = \sum_{-\infty}^{+\infty} 2^{-lpha j} \sin(2^j x) \qquad 0 < lpha < 1$$

Autosimilarité : Cas déterministe

Fonction de Weierstrass-Mandelbrot

$$W_{\alpha}(x) = \sum_{-\infty}^{+\infty} 2^{-\alpha j} \sin(2^{j}x) \qquad 0 < \alpha < 1$$

Autosimilarité exacte :

$$W_{\alpha}(2x) = \sum_{-\infty}^{+\infty} 2^{-\alpha j} \sin(2^{j+1}x) = \sum_{-\infty}^{+\infty} 2^{-\alpha(l-1)} \sin(2^{l}x) = 2^{\alpha} W_{\alpha}(x)$$
$$C_{j,k} = \int W_{\alpha}(x) \ 2^{j} \psi(2^{j}x - k) dx = 2^{-\alpha} \ C_{j-1,k}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Autosimilarité statistique

Mouvement Brownien Fractionnaire

FBM d'exposant H = 1/3

・ロット (雪) (日) (日)

Autosimilarité statistique

Mouvement Brownien Fractionnaire

FBM d'exposant H = 1/3

 $B_H(ax) \stackrel{\mathcal{L}}{=} a^H B_H(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Autosimilarité statistique

Mouvement Brownien Fractionnaire

Espaces fonctionnels et ondelettes

So t $p \ge 1$ et $s \ge 0$; $f \in Lip(s, L^p)$ si $f \in L^p$ et si $\exists C > 0$ tel que

$$\forall \delta > 0, \qquad \int |f(x+\delta) - f(x)|^p dx \leq C |\delta|^{sp}$$

Espaces fonctionnels et ondelettes

So t $p \ge 1$ et $s \ge 0$; $f \in Lip(s, L^p)$ si $f \in L^p$ et si $\exists C > 0$ tel que

$$\forall \delta > 0, \qquad \int |f(x+\delta) - f(x)|^p dx \leq C |\delta|^{sp}$$

Espaces de Besov

$$\forall p > 0 \text{ et } s \in \mathbb{R}, f \in B_p^s \iff \forall j, 2^{-dj} \sum_k |c_{j,k}|^p \le C 2^{-spj}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
Espaces fonctionnels et ondelettes

So t $p \ge 1$ et $s \ge 0$; $f \in Lip(s, L^p)$ si $f \in L^p$ et si $\exists C > 0$ tel que

$$\forall \delta > 0, \qquad \int |f(x+\delta) - f(x)|^p dx \leq C |\delta|^{sp}$$

Espaces de Besov

$$\forall p > 0 \text{ et } s \in \mathbb{R}, f \in B_p^s \iff \forall j, 2^{-dj} \sum_k |c_{j,k}|^p \le C 2^{-spj}$$

$$B^{s+\varepsilon}_{p} \hookrightarrow Lip(s, L^{p}) \hookrightarrow B^{s-\varepsilon}_{p}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Espaces fonctionnels et ondelettes

So t $p \ge 1$ et $s \ge 0$; $f \in Lip(s, L^p)$ si $f \in L^p$ et si $\exists C > 0$ tel que

$$\forall \delta > 0, \qquad \int |f(x+\delta) - f(x)|^p dx \leq C |\delta|^{sp}$$

Espaces de Besov

$$\forall p > 0 \text{ et } s \in \mathbb{R}, f \in B_p^s \iff \forall j, 2^{-dj} \sum_k |c_{j,k}|^p \le C 2^{-spj}$$

$$B^{s+\varepsilon}_p \hookrightarrow Lip(s, L^p) \hookrightarrow B^{s-\varepsilon}_p$$

$$\zeta_f(p) = \sup \{ s : f \in Lip(s/p, L^p) \}$$
$$= \sup \{ s : f \in B_p^{s/p} \}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

La fonction d'échelle ondelettes

Si

$$S_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} |c_\lambda|^p,$$

La fonction d'échelle ondelettes est

$$\forall p > 0 \qquad \qquad \zeta_f(p) = \liminf_{j \to +\infty} \frac{\log(S_{p,j})}{\log(2^{-j})}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

La fonction d'échelle ondelettes

Si

$$S_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} |c_\lambda|^p,$$

La fonction d'échelle ondelettes est

$$\forall \boldsymbol{p} > \boldsymbol{0} \qquad \qquad \zeta_f(\boldsymbol{p}) = \liminf_{j \to +\infty} \ \frac{\log(S_{\boldsymbol{p},j})}{\log(2^{-j})}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Elle coincide avec la fonction d'échelle de Kolmogorov si $p \ge 1$

La fonction d'échelle ondelettes

Si

$$S_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} |c_\lambda|^p,$$

La fonction d'échelle ondelettes est

$$\forall \boldsymbol{\rho} > \boldsymbol{0} \qquad \qquad \zeta_f(\boldsymbol{\rho}) = \liminf_{j \to +\infty} \ \frac{\log(S_{\boldsymbol{\rho},j})}{\log(2^{-j})}.$$

Elle coincide avec la fonction d'échelle de Kolmogorov si $p \ge 1$

Elle est définie par une régression log-log à travers les échelles

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Espaces C^{α} : Soit $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ si

 $\exists C, \forall x, y: |f(x) - f(y)| \le |x - y|^{\alpha}$

Espaces C^{α} : Soit $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ si

 $\exists C, \forall x, y: |f(x) - f(y)| \le |x - y|^{\alpha}$

 $\forall \alpha \in \mathbb{R}, \qquad \mathbf{C}^{\alpha} = \mathbf{B}_{\infty}^{\alpha}$

Espaces C^{α} : Soit $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ si

 $\exists C, \ \forall x, y: \qquad |f(x) - f(y)| \leq |x - y|^{lpha}$

 $\forall \alpha \in \mathbb{R}, \qquad \mathbf{C}^{\alpha} = \mathbf{B}^{\alpha}_{\infty}$

L'exposant de Hölder uniforme de f est

$$H_{f}^{min} = \sup\left\{ lpha : f \in \mathcal{C}^{lpha}(\mathbb{R}^{d})
ight\}$$

Espaces C^{α} : Soit $\alpha \in (0, 1)$; $f \in C^{\alpha}(\mathbb{R}^d)$ si

 $\exists C, \ \forall x, y: \qquad |f(x) - f(y)| \leq |x - y|^{lpha}$

 $\forall \alpha \in \mathbb{R}, \qquad \mathbf{C}^{\alpha} = \mathbf{B}^{\alpha}_{\infty}$

L'exposant de Hölder uniforme de f est

$$H_{f}^{min} = \sup\left\{\alpha: f \in C^{\alpha}(\mathbb{R}^{d})\right\}$$

Calcul numérique :

Soit
$$\omega_j = \sup_{\lambda \in \Lambda_j} |c_{\lambda}|$$
 alors $H_f^{min} = \liminf_{j \to +\infty} \frac{\log(\omega_j)}{\log(2^{-j})}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

p-variation (d = 1)

On note $f_a(x) = f(x - a)$. La fonction *f* a une *p*-variation finie si

$$\exists C, \forall a, h \in]0, 1], \qquad \sum_{n} |f_a((n+1)h) - f_a(nh)|^p \leq C$$

p-variation (d = 1)

On note $f_a(x) = f(x - a)$. La fonction *f* a une *p*-variation finie si

$$\exists C, \forall a, h \in]0, 1], \qquad \sum_{n} |f_a((n+1)h) - f_a(nh)|^p \leq C$$

Définition : Soient $p \ge 1$ et $s \ge 0$; f appartient à \mathcal{V}_p^s si

$$\exists C \ \forall a, h \in]0, 1], \qquad h \sum_n |f_a((n+1)h) - f_a(nh)|^p \leq C|h|^{sp}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

p-variation (d = 1)

On note $f_a(x) = f(x - a)$. La fonction *f* a une *p*-variation finie si

$$\exists C, \forall a, h \in]0, 1], \qquad \sum_n |f_a((n+1)h) - f_a(nh)|^p \leq C$$

Définition : Soient $p \ge 1$ et $s \ge 0$; f appartient à \mathcal{V}_p^s si

$$\exists C \ \forall a, h \in]0, 1], \qquad h \sum_n |f_a((n+1)h) - f_a(nh)|^p \leq C |h|^{sp}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition : Si *f* appartient à \mathcal{V}_{p}^{s} , alors :

f est localement bornée

•
$$f \in Lip(s, L^p)$$

Utilisation de $\zeta_f(p)$ et H_f^{min}

Validation d'hypothèses fonctionnelles

$$\zeta_f(\boldsymbol{
ho}) = \sup \left\{ \boldsymbol{s} : \boldsymbol{
ho} \in B^{\boldsymbol{s}/\boldsymbol{
ho},\infty}_{\boldsymbol{
ho}}
ight\} \quad (\boldsymbol{
ho} > 0)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Utilisation de $\zeta_f(p)$ et H_f^{min}

Validation d'hypothèses fonctionnelles

$$\zeta_f(p) = \sup \left\{ s : p \in B_p^{s/p,\infty} \right\} \quad (p > 0)$$

- Si $\zeta_f(1) > 1, f \in BV$
- Si ζ_f(2) > 0, f ∈ L²
- Si $H_f^{min} > 0$, f est continue
- Si H^{min}_f < 0, f n'est pas localement bornée
- Si $H_f^{min} < 0$ ou si $\zeta_f(p) < 1$, alors la *p*-variation de *f* n'est pasfinie

(日) (日) (日) (日) (日) (日) (日)

Si $\zeta_f(p) > 1$, alors la *p*-variation de *f* est finie

Utilisation de $\zeta_f(p)$ et H_f^{min}

Validation d'hypothèses fonctionnelles

$$\zeta_f(p) = \sup \left\{ s : p \in B_p^{s/p,\infty} \right\} \quad (p > 0)$$

- Si $\zeta_f(1) > 1, f \in BV$
- Si ζ_f(2) > 0, f ∈ L²
- Si $H_f^{min} > 0$, f est continue
- Si H^{min}_f < 0, f n'est pas localement bornée
- Si $H_f^{min} < 0$ ou si $\zeta_f(p) < 1$, alors la *p*-variation de *f* n'est pasfinie
- Si $\zeta_f(p) > 1$, alors la *p*-variation de *f* est finie

Motivations :

- Y. Gousseau, J.-M. Morel : Are natural images of bounded variation ? (2001)
- Modèles à sauts et à variation quadratique finie en finance

Données fournies par Vivienne Investissement

æ

Classification basée sur l'exposant de Hölder uniforme

Rythme cardiaque : Patient en bonne santé

э

$$H_f^{min} = -0.06$$

Classification basée sur l'exposant de Hölder uniforme

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

・ロト ・聞ト ・ヨト ・ヨト

э

Coefficients dominants

Si λ est un cube dyadique, 3λ est le cube de même centre et trois fois plus large.

Soit *f* une fonction bornée ; les coefficient dominant de *f* sont les quantités

$$d_\lambda = \sup_{\lambda' \subset \mathfrak{Z}\lambda} |c_{\lambda'}|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Calcul de coefficients dominants 2D

Les coefficients dominants permettent d'estimer l'exposant de Hölder ponctuel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Spectre de Legendre

 Λ_i désigne l'ensemble des cubes dyadiques d'échelle 2^{-j}.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\mathcal{T}_{m{
ho},j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} |m{d}_\lambda|^{m{
ho}} \sim 2^{-\eta_f(m{
ho})j}$$

Spectre de Legendre

 Λ_j désigne l'ensemble des cubes dyadiques d'échelle 2^{-j}.

$$\mathcal{T}_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} |oldsymbol{d}_\lambda|^p \sim 2^{-\eta_f(p)j}$$

Fonction d'échelle dominante : $\forall p \in \mathbb{R}, \ \eta_f(p) = \liminf_{j \to +\infty} \ \frac{\log(T_{p,j})}{\log(2^{-j})}$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Spectre de Legendre

 Λ_j désigne l'ensemble des cubes dyadiques d'échelle 2^{-j}.

$$\mathcal{T}_{p,j} = 2^{-dj} \sum_{\lambda \in \Lambda_j} |oldsymbol{d}_\lambda|^p \sim 2^{-\eta_f(p)j}$$

Fonction d'échelle dominante : $\forall p \in \mathbb{R}, \ \eta_f(p) = \liminf_{j \to +\infty} \ \frac{\log(T_{p,j})}{\log(2^{-j})}$

Spectre de Legendre

$$L_f(H) = \inf_{\rho \in \mathbb{R}} \left(d + H\rho - \eta_f(\rho) \right)$$

Théorème : Soit $D_f(H)$ la dimension de Hausdorff de l'ensemble des points où l'exposant de Hölder de *f* vaut *H*. Si $f \in C^{\varepsilon}(\mathbb{R}^d)$, alors

 $D_f(H) \leq L_f(H)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Régressions log-log

Comportements en loi de puissance :

Condition préliminaire pour le calcul de fonctions d'échelle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Régressions log-log

Comportements en loi de puissance :

Condition préliminaire pour le calcul de fonctions d'échelle

données fournies par Vivienne Investissement

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Monohölderianité vs. Multifractalité

Monohölderianité vs. Multifractalité

données de http://mawi.wide.ad.jp/mawi/

э

Cascade multiplicative

590

æ

Processus construits à partir de cascades

Une cascade est une mesure : Elle n'est pas appropriée pour modéliser des signaux oscillants

Si F(t) est la fonction de répartition de la mesure, on peut considérer le FBM en temps multifractal

 $X(t) = B_H(F(t))$

proposé par Calvet, Fisher et Mandelbrot en modélisation financière

(ロ) (同) (三) (三) (三) (○) (○)

Réfutation de modèles

(travail en collaboration avec Bruno Lashermes)

modèle de cascade log-normal vs. log-Poisson

Soit *f* une fonction localement bornée. Si *A* est un intervalle, l'oscillation du premier ordre de *f* sur *A* est

$$Os_f(A) = \sup_A f - \inf_A f$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Soit *f* une fonction localement bornée. Si *A* est un intervalle, l'oscillation du premier ordre de *f* sur *A* est

$$Os_f(A) = \sup_A f - \inf_A f$$

Définition : Soit $p \ge 1$; f appartient à V_p^s si

$$\exists \mathcal{C} \hspace{0.1 in} orall j \hspace{0.1 in} 2^{-dj} \sum_{\lambda \in \Lambda_j} (Os_f(3\lambda))^p \leq \mathcal{C}2^{-spj}$$

Définition : f a une p-oscillation finie si

$$\exists \mathcal{C} \hspace{0.1 in} orall j \geq 0 \hspace{1cm} \sum_{\lambda \in \Lambda_{j}} (\mathcal{O}\!s_{\mathit{f}}(3\lambda))^{p} \leq \mathcal{C}$$

(日) (日) (日) (日) (日) (日) (日)

Donc, si $f \in V_p^{d/p}$, alors f a une p-oscillation finie

Espaces \mathcal{O}_p^s : Soit f localement bornée, $f \in \mathcal{O}_p^s(\mathbb{R}^d)$ si $2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^p \le C 2^{-spj}$

Theorem : Soit $p \ge 1$; alors

$$\forall \varepsilon > 0 \qquad \qquad \mathcal{C}^{\varepsilon} \cap V^{s}_{\rho} \hookrightarrow \mathcal{O}^{s}_{\rho} \hookrightarrow V^{s+\varepsilon}_{\rho}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Espaces \mathcal{O}_p^s : Soit f localement bornée, $f \in \mathcal{O}_p^s(\mathbb{R}^d)$ si $2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^p \le C 2^{-spj}$

Theorem : Soit $p \ge 1$; alors

$$orall arepsilon > 0 \qquad \quad \mathcal{C}^arepsilon \cap \mathit{V}^s_{\mathit{p}} \hookrightarrow \mathcal{O}^s_{\mathit{p}} \hookrightarrow \mathit{V}^{s+arepsilon}_{\mathit{p}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Corollaire : Soit $f \in C^{\varepsilon}$ pour un $\varepsilon > 0$. Alors

- Si $\eta_f(p) > 1$, *f* a une *p*-oscillation finie
- Si $\eta_f(p) < 1$, la *p*-oscillation de *f* n'est pas bornée

Taux de change USD-Euro : Juin 2003-juin 2004

Regression log-log pour la détermination de H_f^{min}

Taux de change USD-Euro : juin 2006-juin 2007

Regression log-log pour la détermination de H_f^{min}

Taux de change USD-Euro

Estimations sur une année avec décallages de 3 mois

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Analyse Multifractale de peintures : Défi Van Gogh

(en collaboration avec D. Rockmore)

Van Gogh (f415) Arles -Saint Rémy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

・ロト・日本・日本・日本・日本・日本

ヘロト 人間 とくほとくほとう

э

Inconnu

Inconnu

Défi : date

Défi : date

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Peinture originale et copie : Charlotte Caspers

Peinture originale et copie : Charlotte Caspers

◆ロ▶★@▶★注▶★注▶ 注 のへぐ

Peinture originale et copie : Charlotte Caspers

↓▶ ≮ 健 ▶ ★ 臣 ▶ ★ 臣 ▶ → 臣 → 釣�()や

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで