Quantification fonctionnelle de processus stochastiques et applications

Gilles Pagès
gilles.pages@upmc.fr
Université PARIS 6
Laboratoire de Probabilités et Modèles aléatoires
UMR-CNRS 7599

Séminaire de mathématiques appliqées
Collège de France
13 Novembre 2009

Functional Quantization of stochastic processes and applications

Gilles Pagès
gilles.pages@upmc.fr
UPMC
Laboratoire de Probabilités et Modèles aléatoires
UMR-CNRS 7599

Séminaire de mathématiques appliquées
Collège de France

What is (quadratic) Functional Quantization?

$\triangleright X:(\Omega, \mathcal{A}, \mathbb{P}) \longrightarrow H,(H,(. \mid)$.$) separable Hilbert space$

$$
\mathbb{E}|X|^{2}<+\infty .
$$

\triangleright When $H=\mathbb{R}, \mathbb{R}^{d} \equiv$ Vector Quantization of a random vector X.
[Old story stting in the the 1950's with many contributors, see IEEE on Inf. Theory, 1982, Gersho-Gray eds]
\triangleright When $H=L_{T}^{2}:=L^{2}([0, T], d t) \equiv$ Functional Quantization of a process $X=\left(X_{t}\right)_{t \in[0, T]}$. [Not so old story]

Discretization of the state/path space $H=\mathbb{R}^{d}$ or $L^{2}([0, T], d t)$
using
$\triangleright N$-quantizer (or N-codebook) :

$$
\alpha:=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \subset H
$$

- When $H=\mathbb{R}^{d}$, each α_{i} is a vector of \mathbb{R}^{d}.
- When $H=L_{T}^{2}$, each $\alpha_{i}=\left(t \in[0, T] \mapsto \alpha_{i}(t)\right)$ is a (class) of functions.
\triangleright Discretization by α-quantization

$$
\begin{gathered}
X \rightsquigarrow \widehat{X}^{\alpha}: \Omega \rightarrow \alpha:=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \\
\widehat{X}^{\alpha}:=\operatorname{Proj}_{\alpha}(X)
\end{gathered}
$$

where
$\operatorname{Proj}_{\alpha}$ denotes the projection on α following the nearest neighbour rule.

Fig. 1: A 2-dimensional 10-quantizer $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{10}\right\}$ and its Voronoi diagram. .

What do we know about $X-\widehat{X}^{\alpha}$ and \widehat{X}^{α} ?

\triangleright Pointwise induced error : for every $\omega \in \Omega$,

$$
\left|X(\omega)-\widehat{X}^{\alpha}(\omega)\right|_{H}=\operatorname{dist}_{H}(X(\omega), \alpha)=\min _{1 \leq i \leq N}\left|X(\omega)-\alpha_{i}\right|_{H} .
$$

\triangleright Mean quadratic induced error (or quadratic quantization error) :

$$
e_{N}(X, H, \alpha)=\left\|X-\widehat{X}^{\alpha}\right\|_{2}=\sqrt{\mathbb{E}\left(\min _{1 \leq i \leq N}\left|X-\alpha_{i}\right|_{H}^{2}\right)} .
$$

\triangleright Distribution of \widehat{X}^{α} : weights associated to each α_{i} :

$$
\mathbb{P}\left(\widehat{X}^{\alpha}=\alpha_{i}\right)=\mathbb{P}\left(X \in C_{i}(\alpha)\right), \quad i=1, \ldots, N
$$

where $C_{i}(\alpha)$ denotes the Voronoi cell of α_{i} (w.r.t. α) defined by

$$
C_{i}(\alpha):=\left\{\xi \in H:\left|\xi-\alpha_{i}\right|_{H}=\min _{1 \leq j \leq N}\left|\xi-\alpha_{j}\right|_{H}\right\} .
$$

Fig. 2: Two N-quantizers related to $\mathcal{N}\left(0 ; I_{2}\right)$ of size $N=500 \ldots$
(with J. Printems)
Which one is the best?

Fig. 3: A $N=20$-quantizers of Brownian motion vs some Brownian paths......
(with S. Corlay)
W is Gaussian process with independent increments

Fig. 4: A $N=20$-quantizers of a stationary Ornstein-Uhlenbeck process $v s$ some paths......
(with S. Corlay)

$$
X_{t}=\int_{-\infty}^{t} e^{-(t-s)} d W_{s} \quad \| \quad d X_{t}=-X_{t} d t+d W_{t}, X_{0} \sim \mathcal{N}\left(0 ; \frac{1}{2}\right)
$$

Fig. 5: A $N=20$-quantizers of Brownian bridge vs some paths......
(with S. Corlay)

$$
X_{t}=W_{t}-t W_{1}, t \in[0,1]
$$

non Gaussian diffusion processes? etc.

Some questions

\triangleright What is the connection between blue chaotic lines and pink smooth lines?
\triangleright How to get the pink smooth lines from the blue chaotic lines?
\triangleright Can we replace the blue chaotic lines by the pink smooth lines (for numerics, in a $S D E$ or in a $S P D E$)?
\triangleright Can we take advantage of the pink smooth lines to simulate the blue chaotic lines?

Optimal (Quadratic) Quantization

The quadratic distorsion (squared quadratic quantization error)

$$
\begin{gathered}
D_{N}^{X}: H^{N} \longrightarrow \mathbb{R}_{+} \\
\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \longmapsto\left\|X-\widehat{X}^{\alpha}\right\|_{2}^{2}=\mathbb{E}\left(\min _{1 \leq i \leq N}\left|X-\alpha_{i}\right|_{H}^{2}\right)
\end{gathered}
$$

is lower semi-continuous for the (product) weak topology on H^{N}.
One derives (Cuesta-Albertos \& Matran (88), Pärna (90), P. (93)) by induction on N that

$$
D_{N}^{X} \text { reaches a minimum at an (optimal) quantizer } \alpha^{(N, *)}
$$

of full size $N($ if $\operatorname{card}(\operatorname{supp}(\mathbb{P})) \geq N)$. One derives

$$
e_{N}(X, H):=\inf \left\{\left\|X-\widehat{X}^{\alpha}\right\|_{2}, \operatorname{card}(\alpha) \leq N, \alpha \subset H\right\}=\left\|X-\widehat{X}^{\alpha^{(N, *)}}\right\|_{2}
$$

$$
\left\|X-\widehat{X}^{\alpha^{(N, *)}}\right\|_{2}=\min \left\{\|X-Y\|_{2}, Y: \Omega \rightarrow H, \operatorname{card}(Y(\Omega)) \leq N\right\}
$$

Example ($N=1$) :
Optimal 1-quantizer $\alpha=\{\mathbb{E} X\}$ and $e_{1}(X, H)=\sqrt{\mathbb{E}|X|^{2}-|\mathbb{E} X|^{2}}$.

Extensions to the $L^{r}(\mathbb{P})$-quantization of Radon random variables
$\triangleright X:(\Omega, \mathcal{A}, \mathbb{P}) \longrightarrow\left(E,\| \|_{E}\right)$ separable Banach space

$$
\mathbb{E}\|X\|_{E}^{r}<+\infty \quad(0<r<+\infty)
$$

\triangleright The N-level $\left(L^{r}(\mathbb{P}),\|\cdot\|_{E}\right)$-quantization problem for $X \in L_{E}^{r}(\mathbb{P})$

$$
e_{r, N}(X, E):=\quad \inf \left\{\left\|X-\widehat{X}^{\alpha}\right\|_{r}, \alpha \subset E, \operatorname{card}(\alpha) \leq N\right\}
$$

\triangleright Examples : Non-Euclidean norms on $E=\mathbb{R}^{d}, E=L_{T}^{p}:=L^{p}([0, T], d t)$, $1 \leq p<\infty, E=\mathcal{C}([0, T]),\|\cdot\|_{\text {sup }}$, etc.
\triangleright Existence of an optimal quantizer holds true for reflexive Banach spaces (see Pärna (90)) and $E=L_{T}^{1}$, but may fail even when $N=1 \ldots$
\triangleright Recent existence results, see Graf-Luschgy-P. (2006, J. of Approx.).

Stationary Quantizers

\triangleright Distorsion D_{N}^{X} is $|\cdot|_{H}$-differentiable at N-quantizers $\alpha \in H^{N}$ of full size :
$\nabla D_{N}^{X}(\alpha)=2\left(\int_{C_{i}(\alpha)}\left(\alpha_{i}-\xi\right) \mathbb{P}_{X}(d \xi)\right)_{1 \leq i \leq N}=2\left(\mathbb{E}\left(\alpha_{i}-X\right) 1_{\left\{\widehat{X}^{\alpha}=\alpha_{i}\right\}}\right)_{1 \leq i \leq N}$
\triangleright Definition : If $\alpha \subset H^{N}$ is a zero of $\nabla D_{N}^{X}(\alpha)$, then α is called a stationary quantizer (or self-consistent quantizer).

$$
\nabla D_{N}^{X}(\alpha)=0 \quad \Longleftrightarrow \quad \widehat{X}^{\alpha}=\mathbb{E}\left(X \mid \widehat{X}^{\alpha}\right)
$$

since

$$
\sigma\left(\widehat{X}^{\alpha}\right)=\sigma\left(\left\{X \in C_{i}(\alpha)\right\}, i=1, \ldots, N\right)
$$

\triangleright An optimal quantizer α is stationary
(First by-product : $\mathbb{E} X=\mathbb{E} \widehat{X}^{\alpha}$).

Numerical Integration/Conditional expectation (I) : cubature formulae

Let $F: H \longrightarrow \mathbb{R}$ be a functional and let $\alpha \subset H$ be an N-quantizer.

$$
\mathbb{E}\left(F\left(\widehat{X}^{\alpha}\right)\right)=\sum_{i=1}^{N} F\left(\alpha_{i}\right) \mathbb{P}\left(\widehat{X}=\alpha_{i}\right)
$$

\triangleright If F is Lipshitz continuous, then

$$
\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\alpha}\right)\right| \leq[F]_{\text {Lip }}\left\|X-\widehat{X}^{\alpha}\right\|_{1} \leq[F]_{\text {Lip }}\left\|X-\widehat{X}^{\alpha}\right\|_{2}
$$

in fact

$$
\left\|X-\widehat{X}^{\alpha}\right\|_{1}=\sup _{[F]_{\mathrm{Lip}} \leq 1}\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\alpha}\right)\right|
$$

Likewise

$$
\left\|\mathbb{E}\left(F(X) \mid \widehat{X}^{\alpha}\right)-F\left(\widehat{X}^{\alpha}\right)\right\|_{r} \leq[F]_{\text {Lip }}\left\|X-\widehat{X}^{\alpha}\right\|_{r}
$$

\triangleright Assume F is \mathcal{C}^{1} on $H, D F$ is Lipschitz continuous and the quantizer α is a stationary.

Taylor expansion yields

$$
\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\alpha}\right)-\mathbb{E}\left(D F\left(\widehat{X}^{\alpha}\right) \cdot\left(X-\widehat{X}^{\alpha}\right)\right)\right| \leq[D F]_{\text {Lip }} \mathbb{E}\left|X-\widehat{X}^{\alpha}\right|^{2}
$$

\triangleright Assume F is \mathcal{C}^{1} on $H, D F$ is Lipschitz continuous and the quantizer α is a stationary. Taylor expansion \Longrightarrow

$$
|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\alpha}\right)-\underbrace{\mathbb{E}\left(D F\left(\widehat{X}^{\alpha}\right) \cdot\left(X-\widehat{X}^{\alpha}\right)\right)}_{=0}| \leq[D F]_{\mathrm{Lip}} \mathbb{E}\left|X-\widehat{X}^{\alpha}\right|^{2}
$$

since

$$
\mathbb{E}\left(D F\left(\widehat{X}^{\alpha}\right) \cdot\left(X-\widehat{X}^{\alpha}\right)\right)=\mathbb{E}\left(D F\left(\widehat{X}^{\alpha}\right) \cdot \mathbb{E}\left(X-\widehat{X}^{\alpha} \mid \widehat{X}^{\alpha}\right)\right)=0 .
$$

so that

$$
\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\alpha}\right)\right| \leq[D F]_{\text {Lip }}\left\|X-\widehat{X}^{\alpha}\right\|_{2}^{2}
$$

Likewise

$$
\left|\mathbb{E}\left(F(X) \mid \widehat{X}^{\alpha}\right)-F\left(\widehat{X}^{\alpha}\right)\right| \leq[D F]_{\text {Lip }} \mathbb{E}\left(\left\|X-\widehat{X}^{\alpha}\right\|_{2}^{2} \mid \widehat{X}^{\alpha}\right)
$$

\triangleright The key for numerical applications : F Lipschitz continuous

$$
\mathbb{E}(F(X) \mid Y)=\varphi_{F}(Y) \quad \varphi \text { Lipschitz continuous. }
$$

Then, if \widehat{X} and \widehat{Y} are quantizations of X and Y

$$
\|\mathbb{E}(F(X) \mid Y)-\mathbb{E}(F(\widehat{X}) \mid \widehat{Y})\|_{2} \leq[F]_{\text {Lip }}\|X-\widehat{X}\|_{2}+\left[\varphi_{F}\right]_{\text {Lip }}\|Y-\widehat{Y}\|_{2}
$$

Vector Quantization rate $\left(H=\mathbb{R}^{d}\right)$

\triangleright Theorem (Zador et al., from 1963 to 2000) Let $X \in L^{2+}(\mathbb{P})$ and
$\mathbb{P}_{X}(d \xi)=\varphi(\xi) d \xi \stackrel{\perp}{+} \nu(d \xi)$. Then

$$
e_{N}\left(X, \mathbb{R}^{d}\right) \sim \widetilde{J}_{2, d} \times\left(\int_{\mathbb{R}^{d}} \varphi^{\frac{d}{d+2}}(u) d u\right)^{\frac{1}{d}+\frac{1}{2}} \times N^{-\frac{1}{d}} \quad \text { as } \quad N \rightarrow+\infty .
$$

\triangleright The true value of $\widetilde{J}_{2, d}$ is unknown for $d \geq 3$ but (Euclidean norm)

$$
\widetilde{J}_{2, d} \sim \sqrt{\frac{d}{2 \pi e}} \approx \sqrt{\frac{d}{17,08}} \quad \text { as } \quad d \rightarrow+\infty .
$$

Conclusions : - The curse of dimensionality of course...

- The same result holds with any $L^{r}(\mathbb{P})$-quantization with $r \in(0, \infty)$ replacing 2 (including $\widetilde{J}_{r, d} \sim \widetilde{J}_{2, d}$ as $d \rightarrow \infty$).

Fig. 6: An N-quantization of $X \sim \mathcal{N}\left(0 ; I_{2}\right)$ with coloured weights :

$$
\mathbb{P}\left(X \in C_{a}(\alpha)\right), a \in \alpha
$$

(with J.Printems)
\triangleright Local inertia : $a \longmapsto \mathbb{E}|X-a|^{2} \mathbf{1}_{X \in C_{a}(\alpha)} \approx$ Constant

The 1-dimension. . .

\triangleright Theorem (Kiefer (82)) $H=\mathbb{R}$. If $\mathbb{P}_{x}(d \xi)=\varphi(\xi) d \xi$ with $\log \varphi$ concave, then there is exactly one stationary quantizer. Hence

$$
\forall N \geq 1, \quad \operatorname{argmin} D_{N}^{X}=\left\{\alpha^{(N)}\right\}
$$

Examples : The normal distribution, the gamma distributions, etc.
\triangleright Voronoi cells : $C_{i}(\alpha)=\left[\alpha_{i-\frac{1}{2}}, \alpha_{i+\frac{1}{2}}\left[, \alpha_{i+\frac{1}{2}}=\frac{\alpha_{i+1}+\alpha_{i}}{2}\right.\right.$.
\triangleright Gradient $: \nabla D_{N}^{X}(\alpha)=2\left(\int_{\alpha_{i-\frac{1}{2}}}^{\alpha_{i+\frac{1}{2}}}\left(\alpha_{i}-\xi\right) \varphi(\xi) d \xi\right)_{1 \leq i \leq N}$
Hessian : $D^{2}\left(D_{N}^{X}\right)(\alpha)=\ldots \ldots$ only involves $\int_{0}^{x} \varphi(\xi) d \xi$ and $\int_{0}^{x} \xi \varphi(\xi) d \xi$
\triangleright Thus if $X \sim \mathcal{N}(0 ; 1)$: only $\operatorname{erf}(x)$ and $e^{-\frac{x^{2}}{2}}$ are needed.
\triangleright Instant search for the unique optimal quantizer using a Newton-Raphson descent on $\mathbb{R}^{N} \ldots$ with an arbitrary accuracy.
\triangleright For $\mathcal{N}(0 ; 1)$ and $N=1, \ldots, 500$, tabulation within 10^{-14} accuracy of optimal N-quantizers and companion parameters :

$$
\alpha^{(N)}=\left(\alpha_{1}^{(N)}, \ldots, \alpha_{N}^{(N)}\right)
$$

and

$$
\mathbb{P}\left(X \in C_{i}\left(\alpha^{(N)}\right)\right), i=1, \ldots N, \quad \text { and } \quad\left\|X-\widehat{X}^{\alpha^{(N)}}\right\|_{2}
$$

Download at our WEBSITE : www.quantize.maths-fi.com
\triangleright For $d=1$ up to $10 ?$ Also available for Gaussian $\mathcal{N}\left(0, I_{d}\right)(1 \leq N \leq 4000)$.
How? Stochastic optimization methods, see further on. . .

Optimal Functional Quantization (of the Brownian motion)

$\triangleright H=L_{T}^{2}:=L^{2}([0, T], d t),(f \mid g)=\int_{0}^{T} f(t) g(t) d t,|f|_{L_{T}^{2}}=\sqrt{(f \mid f)}$.
\triangleright The Brownian motion W : centered Gaussian process with covariance operator $C_{W}(f): f \longmapsto\left(t \mapsto \int_{[0, T]^{2}}(s \wedge t) f(s) d s\right)$.
\triangleright Diagonalization of C_{W} yields the Karhunen-Loève system (\equiv CPA of W)

$$
e_{n}^{W}(t)=\sqrt{2 T} \sin \left(\left(n-\frac{1}{2}\right) \pi \frac{t}{T}\right), \quad \lambda_{n}=\left(\frac{T}{\pi\left(n-\frac{1}{2}\right)}\right)^{2}, n \geq 1
$$

$$
\begin{aligned}
W_{t} & \stackrel{L_{T}^{2}}{=} \sum_{n \geq 1}\left(W \mid e_{n}^{W}\right)_{2} e_{n}^{W}(t)=\sum_{n \geq 1} \sqrt{\lambda_{n}} \xi_{n} e_{n}^{W}(t) \\
\xi_{n} & \sim \mathcal{N}(0 ; 1), \quad n \geq 1, \quad \text { i.i.d. }
\end{aligned}
$$

\triangleright Theorem (Luschgy-P., JFA (2002) and $A P(2003))$ Let $\alpha^{N}, N \geq 1$, be a sequence of optimal N-quantizers.
$\triangleright \alpha^{N}=\left(\alpha_{1}^{N}, \cdots, \alpha_{N}^{N}\right) \subset \operatorname{span}\left\{e_{1}^{W}, \ldots, e_{d(N)}^{W}\right\}$ with

$$
d(N) \gtrsim \log N / 2 \quad[\text { Conjecture : } d(N) \sim \log N] .
$$

$\triangleright e_{N}\left(W, L_{T}^{2}\right)=\left\|W-\widehat{W}^{\alpha^{N}}\right\|_{2} \sim \frac{\sqrt{2}}{\pi} \frac{1}{\sqrt{\log N}} . \quad\left(\frac{\sqrt{2}}{\pi}=\sqrt{0.2026 \ldots}\right)$
\triangleright Reduction to finite dimension (Pythagore)
$\left(\mathcal{O}_{N}\right)\left\{\begin{array}{r}\left\|W-\widehat{W}^{\alpha^{N}}\right\|_{2}^{2}=\left\|Z-\widehat{Z}^{\beta(N)}\right\|_{2}^{2}+\sum_{k \geq d(N)+1} \lambda_{k} \\ Z \sim \bigotimes_{k=1}^{d(N)} \mathcal{N}\left(0, \lambda_{k}\right) \quad \& \quad\left\|Z-\widehat{Z}^{\beta(N)}\right\|_{2}=e_{N}\left(Z, \mathbb{R}^{d(N)}\right)\end{array}\right.$

Then

$$
\widehat{W}^{\alpha^{N}}=\sum_{k=1}^{d(N)}\left(\widehat{Z}^{\beta(N)}\right)_{k} e_{k}^{W} .
$$

Optimal Quadratic Functional Quantization of Gaussian processes

Theorem (Luschgy-P., JFA (2002) and $A P(2003))$ Let $X=\left(X_{t}\right)_{t \in[0,1]}$ be a Gaussian process with $K-L$ eigensystem $\left(\lambda_{n}^{X}, e_{n}^{X}\right)_{n \geq 1}$. Let $\alpha^{N}, N \geq 1$, be a sequence of quadratic optimal N-quantizers for X. If

$$
\lambda_{n}^{X} \sim \frac{\kappa}{n^{b}} \quad \text { as } n \rightarrow \infty \quad(b>1) .
$$

$\triangleright \alpha^{N}=\left(\alpha_{1}^{N}, \cdots, \alpha_{N}^{N}\right) \subset \operatorname{span}\left\{e_{1}^{X}, \ldots, e_{d^{X}(N)}^{X}\right\}$ with

$$
d^{X}(N) \gtrsim \frac{1}{b^{1 /(b-1)}} \frac{2}{b} \log N \quad\left[\text { Conjecture : } d^{X}(N) \sim \frac{2}{b} \log N\right] .
$$

$\triangleright e_{N}\left(X, L_{[0,1]}^{2}\right)=\left\|X-\widehat{X}^{\alpha^{N}}\right\|_{2} \sim \sqrt{\kappa}\left(\frac{b^{b}}{(b-1)^{b-1}}\right)^{\frac{1}{2}} \frac{1}{(2 \log N)^{\frac{b-1}{2}}}$.
\triangleright Extensions to $\lambda_{n}^{X}\binom{\leq}{\geq} \varphi(n), \quad \varphi$ regularly varying, index $-b \leq-1$.

Applications to classical (centered) Gaussian processes Sharp rates for $e_{N}\left(X, L_{T}^{2}\right)$ available for

- Brownian bridge, Ornstein-Uhlenbeck process, Gaussian diffusions (same rate).
- Fractional Brownian motion with Hurst constant $H \in(0,1)$

$$
e_{N}\left(W^{H}, L_{T}^{2}\right) \sim \frac{c_{2}}{(\log N)^{H}} .
$$

- Brownian sheet, m-fold integrated Brownian motion, etc.

Extensions to $p \neq 2$ (methods are different)

- Brownian motion and fractional Brownian motion : Dereich-Scheutzow (2005) based on self-similarity properties, random quantization, small balls

$$
e_{N, r}\left(W^{H}, L_{T}^{p}\right) \sim \frac{c_{p}}{(\log N)^{H}}
$$

Optimal quadratic Functional Quantization (of

$W)$: numerical aspects $(T=1)$
\triangleright Good news : $\left(\mathcal{O}_{N}\right)$ is a finite dimensional optimization problem.
\triangleright Bad news : $\lambda_{1}=0.40528 \ldots$ and $\lambda_{2}=0.04503 \ldots \approx \lambda_{1} / 10!!!$
\triangleright A way out:

$$
\left(\mathcal{O}_{N}\right) \equiv\left\{\begin{array}{l}
N \text {-optimal quantization of } \bigotimes_{k=1}^{d(N)} \mathcal{N}(0,1) \\
\text { for the covariance norm }\left|\left(z_{1}, \ldots, z_{d(N)}\right)\right|^{2}=\sum_{k=1}^{d(N)} \lambda_{k} z_{k}^{2} .
\end{array}\right.
$$

\triangleright A toolbox (see e.g. P.-Printems, MCMA, 2003, book by Gersho \& Gray (97), Mrad \& Ben Hamida (04), etc) :

- Competitive Learning Vector Quantization: Recursive stochastic approximation gradient descent
based on the representation of the gradient of the distorsion i.e.

$$
\nabla D_{N}^{Z}(\alpha)=\mathbb{E}\left(\nabla D_{N}^{Z}(\alpha, \zeta)\right), \zeta \sim \mathcal{N}\left(0, I_{d}\right), \quad \zeta_{t} \sim \zeta, \quad \text { i.i.d. }
$$

so that

$$
\begin{aligned}
\left(\alpha^{N}\right)(t+1) & =\left(\alpha^{N}\right)(t)-\frac{c}{t+1} \nabla D_{N}^{Z}\left(\left(\alpha^{N}\right)(k), \zeta_{t+1}\right), \quad\left(\alpha^{N}\right)(0) \subset \mathbb{R}^{d} \\
& =\text { nearest neighbor search }+ \text { Dilatation }_{\zeta_{t+1}, 1-\frac{c}{t+1}}(\text { winner })
\end{aligned}
$$

-"Lloyd I procedure" : randomized fixed point procedure based on the stationarity equality :

$$
\widehat{Z}^{\left(\alpha^{N}\right)(t+1)}=\mathbb{E}\left(Z \mid \widehat{Z}^{\left(\alpha^{N}\right)(t)}\right), \quad\left(\alpha^{N}\right)(0) \subset \mathbb{R}^{d}
$$

$\triangleright \alpha(t)=\left\{x_{1}^{(t)}, \ldots, x_{N}^{(t)}\right\}$ being computed,

$$
\begin{aligned}
x_{i}^{(t+1)} & :=\mathbb{E}\left(X \mid X^{\alpha(t)} \in C_{i}(\Gamma(\ell))\right), \quad i=1, \ldots, N \\
& =\lim _{M \rightarrow \infty} \frac{\sum_{m=1}^{M} X_{m} \mathbf{1}_{\left\{X_{m} \in C_{i}(\alpha(t))\right\}}}{\left|\left\{1 \leq m \leq M, X_{m} \in C_{i}(\alpha(t))\right\}\right|}
\end{aligned}
$$

based on repeated nearest neighbour searches.
Then $\left.\alpha(t+1)=\left\{x_{i}(t+1)\right\}, i=1, \ldots, N\right\}$, etc.

Fast nearest neighbour procedure in \mathbb{R}^{d}

\triangleright The Partial Distance Search paradigm (Chen, 1970) : Target $=0!$!
Running record dist to $0:=$ Rec.
Let $x=\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$

$$
\begin{aligned}
\left(x^{1}\right)^{2} \geq \operatorname{Rec}^{2} & \Longrightarrow|x| \geq \operatorname{Rec} \\
& \vdots \\
\left(x^{1}\right)^{2}+\cdots+\left(x^{\ell}\right)^{2} \geq \operatorname{Rec}^{2} & \Longrightarrow|x| \geq \operatorname{Rec}
\end{aligned}
$$

\triangleright The $K-d$ tree (Friedmann, Bentley, Finkel , 1977) : store the N points of \mathbb{R}^{d} in a tree of depth $O(\log N) \ldots$
\triangleright Further recent improvements: K - d-tree $+C P A$ (Mc Names).
Rough quantization based tree search method (S. Corlay, in progress).
\triangleright As a result : Computation of

- Optimal (optimized...) stationary codebooks $\beta(N)$ for W

$$
N=1 \text { up to } 10000 \text { with } d(N)=1 \text { up to } 9
$$

- the companion parameters : for every $N \geq 1$
- The weights $=$ distribution of $\widehat{W^{\alpha^{N}}}$

$$
\mathbb{P}\left(\widehat{W}^{\alpha^{N}}=\alpha^{N}{ }_{i}\right)=\mathbb{P}\left(\widehat{Z}^{\beta^{(N)}}=\beta_{i}^{(N)}\right) \quad\left(\leftarrow \text { in } \mathbb{R}^{d(N)}\right)
$$

- The quadratic quantization error $\left\|W-\widehat{W}^{\alpha^{N}}\right\|_{2}$.

> Download at our WEBSITE :
www.quantize.maths-fi.com

Fig. 7: Optimized FQ of the Brownian motion W for $N=10: \beta(10)$ depicted in \mathbb{R}^{2} vs the paths of the 10 -quantizer $\alpha^{(10)}$ in the K - L basis

$$
d(N)=2
$$

Fig. 8: Optimized FQ of the Brownian motion W for $N=15: \beta(15)$ depicted in \mathbb{R}^{2} vs the paths of the 15 -quantizer $\alpha^{(15)}$ paths

$$
d(N)=2
$$

Fig. 9: Optimized Functional N-quantizers $\alpha^{(N)}$ of the Brownian motion W with $N=48$ and $N=96$

$$
d(48)=3 \quad \text { and } \quad d(96)=4
$$

Product Functional Quantization (of the Brownian motion, etc)

(Numerical aspects : P.-Printems, MCMA, 2006)
\triangleright Let $\left(e_{n}^{W}\right)_{n \geq 1}$ be the $K-L$ o.n. basis

$$
\begin{aligned}
\forall t \in[0, T], W_{t} & \stackrel{L_{T}^{2}}{=} \sum_{n \geq 1}\left(W \mid e_{n}^{W}\right)_{2} e_{n}(t)=\sum_{n \geq 1} \sqrt{\lambda_{n}} \xi_{n} e_{n}^{W}(t) \\
\xi_{n} & \sim \mathcal{N}(0 ; 1), \quad n \geq 1, \text { i.i.d. }
\end{aligned}
$$

\triangleright Quantization by (infinite) product-quantizers

$$
\widehat{W}_{t}^{(N)} \stackrel{\text { def }}{=} \sum_{n \geq 1} \sqrt{\lambda_{n}} \widehat{\xi}_{n}^{\left(N_{n}\right)} e_{n}^{W}(t)=\sum_{n=1}^{m} \sqrt{\lambda_{n}} \widehat{\xi}_{n}^{\left(N_{n}\right)} e_{n}^{W}(t)
$$

where $\prod_{n=1}^{m} N_{n} \leq N \quad$ and $\quad \widehat{\xi}_{n}^{\left(N_{n}\right)}=\operatorname{Proj}_{\beta^{\left(N_{n}\right)}}\left(\xi_{n}\right)$ optimal N_{n}-quantization of ξ_{n}
\triangleright Alternative expression : multi-index

$$
\begin{gathered}
\underline{i}:=\left(i_{1}, \ldots, i_{m}, 1,1, \ldots, 1, \ldots\right) \\
\widehat{W}_{t}^{(N)}=\sum_{1 \leq i_{1} \leq N_{1}, \ldots, 1 \leq i_{m} \leq N_{m}} \underbrace{\mathbf{1}_{\left\{\xi_{n}^{(N n)}=\beta_{i_{n}}^{\left(N_{n}\right)}, n=1, \ldots, m\right\}}}_{=\left\{W \in C_{\underline{i}}\left(\alpha^{(N)}\right)\right\}} \underbrace{\sum_{n=1}^{m} \sqrt{\lambda_{n}} \beta_{i_{n}}^{\left(N_{n}\right)} e_{n}^{W}(t)}_{\text {elementary quantizer } \alpha_{\underline{i}}^{(N)}}
\end{gathered}
$$

\triangleright Elementary Quantizer $\alpha_{\underline{i}}^{(N)}$:

$$
\alpha_{\underline{i}}^{(N)}(t):=\sum_{n=1}^{m} \sqrt{\lambda_{n}} \beta_{i_{n}}^{\left(N_{n}\right)} e_{n}(t)
$$

\triangleright Voronoï cell of $\alpha_{\underline{i}}^{(N)}$:

$$
C_{\underline{i}}\left(\alpha^{(N)}\right)=\prod_{n=1}^{m}\left[\beta_{i_{n}-\frac{1}{2}}^{\left(N_{n}\right)}, \beta_{i_{n}+\frac{1}{2}}^{\left(N_{n}\right)}\right.
$$

Quantization rate by product quantizers

\triangleright Theorem (Luschgy-P., JFA (2002) and AP (2004))

$$
\min \left\{\left\||W-\widehat{W}|_{L_{T}^{2}}\right\|_{2}, 1 \leq N_{1} \cdots N_{m} \leq N, m \geq 1\right\} \leq \frac{c_{W}}{(\log N)^{\frac{1}{2}}}
$$

\triangleright Proof : $\quad\left\||W-\widehat{W}|_{L_{T}^{2}}\right\|_{2}^{2}=\sum_{n \geq 1} \lambda_{n}\left\|\widehat{\xi}_{n}^{\left(N_{n}\right)}-\xi_{n}\right\|_{2}^{2}$

$$
\leq C\left(\sum_{n=1}^{m} \frac{1}{n^{2} N_{n}^{2}}+\sum_{n \geq m+1} \lambda_{n}\right)
$$

with $\prod_{n} N_{n} \leq N$. Set
$m=[\log N], \quad N_{k}=\left[\frac{(m!N)^{\frac{1}{m}}}{k}\right], k=1, \ldots, m$.
Optimal scalar product quantizers are then rate optimal

Using Product quantizers for applications?

- The N-quantizers $\alpha_{i_{1}, \ldots, i_{m(N)}}^{(N)}$ are explicit .
- The weights of Voronoi cells $\mathbb{P}\left(\widehat{\xi}_{n}^{\left(N_{n}\right)}=\beta_{i_{n}}^{\left(N_{n}\right)}, n=1, \ldots, m(N)\right)$ are explicit too ...
since the normalized coordinates ξ_{n} are independent so that

$$
\mathbb{P}\left(\widehat{\xi}_{n}^{\left(N_{n}\right)}=\beta_{i_{n}}^{\left(N_{n}\right)}, n=1, \ldots, m(N)\right)=\prod_{n=1}^{m(N)} \underbrace{\mathbb{P}\left(\widehat{\left.\xi_{n}^{\left(N_{n}\right)}=\beta_{i_{n}}^{\left(N_{n}\right)}\right)}\right.}_{1 D \Longrightarrow \text { tabulated }!}
$$

The distribution of a $K-L$ product quantization \widehat{W} is known.

- Numerical aspects : optimal "integer bit allocation" i.e. solving

$$
\min \left\{\sum_{n=1}^{m} \lambda_{n}\left\|\widehat{\xi}_{n}^{\left(N_{n}\right)}-\xi_{n}\right\|_{2}^{2}+\sum_{n \geq m} \lambda_{n}, 1 \leq N_{1} \cdots N_{m} \leq N, m \geq 1\right\}
$$

It has already been computed (up to $N=12000$) : a file including the optimal allocations is available on the website

www.quantize.maths-fi.com

N	$N_{\text {rec }}$	Quant. Error	Opti. Alloc.
1	1	0.7071	1
10	10	0.3138	$5-2$
100	96	0.2264	$12-4-2$
1000	966	0.1881	$23-7-3-2$
10000	9984	0.1626	$26-8-4-3-2-2$
100000	97920	0.1461	$34-10-6-4-3-2-2$

Brownian product quantizations

Fig. 11: The $N_{\text {rec }}$-quantizer $\alpha^{(N)}$ for $N=10\left(N_{\text {rec }}=10\right)$.

Fig. 12: The $N_{\text {rec }}$-quantizer $\alpha^{(N)}$ for $N=50\left(N_{\text {rec }}=12 \times 4=48\right)$.

Fig. 13: The $N_{\text {rec }}$-quantizer $\alpha^{(N)}$ for $N=100\left(N_{\text {rec }}=12 \times 4 \times 2=96\right)$.

A cherry on the cake : stationarity again

The quantization-product in the $K-L$ basis provides a stationary quantizer (although sub-optimal).

$$
\begin{aligned}
\widehat{W} & =\sum_{n \geq 1} \sqrt{\lambda_{n}} \xi_{n}^{\left(N_{n}\right)} e_{n}(t) \\
\sigma(\widehat{W}) & =\sigma\left(\widehat{\xi}_{k}^{\left(N_{k}\right)}, k \geq 1\right) \\
\mathbb{E}(W \mid \widehat{W}) & =\mathbb{E}\left(W \mid \sigma\left(\widehat{\xi}_{k}^{\left(N_{k}\right)}, k \geq 1\right)\right) \\
\mathbb{E}(W \mid \widehat{W}) & =\sum_{n \geq 1} \sqrt{\lambda_{n}} \mathbb{E}\left(\xi_{n} \mid \sigma\left(\widehat{\xi}_{k}^{\left(N_{k}\right)}, k \geq 1\right)\right) e_{n} \\
& \stackrel{i . i . d .}{=} \sum_{n \geq 1} \sqrt{\lambda_{n}} \mathbb{E}\left(\xi_{n} \mid \widehat{\xi}_{n}^{\left(N_{n}\right)}\right) e_{n} \\
& =\sum_{n \geq 1} \sqrt{\lambda_{n}} \widehat{\xi}_{n}^{\left(N_{n}\right)} e_{n}=\widehat{W}
\end{aligned}
$$

so that
and

Comparison with optimal quadratic functional quantization

- (Numerical) Optimal Quantization (in average over $1 \leq N \leq 10.000$)

$$
e_{N}\left(W, L_{T}^{2}\right)^{2} \approx \frac{0.2195}{\log N}
$$

- Optimal Product quantization :

$$
\min \left\{\left\||W-\widehat{W}|_{L_{T}^{2}}\right\|_{2}^{2}, 1 \leq N_{1} \cdots N_{m} \leq N, m \geq 1\right\} \approx \frac{0.25}{\log N}
$$

- Optimal quantization significantly more accurate on numerical experiments but more demanding (keeping large files off-line).
- Both methods are included in the option pricer Premia soft released by INRIA.

Rate optimal FQ of "Doss-Sussman" diffusions

($\supset d=1$)
\triangleright Diffusion process : $d X_{t}=b\left(t, X_{t}\right) d t+\vartheta\left(t, X_{t}\right) d W_{t}$
b, ϑ Lipschitz continuous, $\vartheta(t,)=.\left(\nabla S_{t}(.)\right)^{-1}$ bounded,etc.
$\triangleright \alpha^{N}, N \geq 1$, sequence of stationary rate optimal N-quantizers of W.
$\triangleright d x_{i}^{(N)}(t)=\left(b\left(t, x_{i}^{(N)}(t)\right)-\frac{1}{2} \vartheta \vartheta^{\prime}\left(t, x_{i}^{(N)}(t)\right)\right) d t+\vartheta\left(t, x_{i}^{(N)}(t)\right) d \alpha_{i}^{N}(t)$.
\triangleright Theorem (Luschgy-P., SPA (2006)) $\left(x^{(N)}\right)_{N \geq 1}$ is rate optimal i.e.

$$
\left\|\left|X-\widetilde{X}^{x^{(N)}}\right|_{L_{T}^{2}}\right\|_{2}=O\left(\frac{1}{(\log N)^{\frac{1}{2}}}\right) \quad\left(\asymp \text { if } \vartheta \geq \varepsilon_{0}>0\right)
$$

where

$$
\widetilde{X}_{t}^{x^{(N)}}=\sum_{k=1}^{N} x_{i}^{(N)}(t) \mathbf{1}_{\left\{\widehat{W}^{\alpha^{N}}=\alpha_{i}^{N}\right\}}
$$

is a (computable) non-Voronoi quantizer.
\triangleright Sharp rate $c(\log N)^{-\frac{1}{2}}$ (Dereich, SPA, 2008), non constructive.

General Multi-dimensional diffusions

(Joint work with A. Sellami)
Diffusion in the Stratanovich sense :

$$
d X_{t}=b\left(t, X_{t}\right) d t+\vartheta\left(t, X_{t}\right) \circ d W_{t} \quad X_{0}=x \in \mathbb{R}^{d}
$$

$\triangleright W=\left(W^{1}, \ldots, W^{d}\right)$ is a d-dimensional B.M.

$$
\min _{|\alpha| \leq N}\left\|W-\widehat{W}^{\alpha}\right\|_{2} \sim C_{d} \frac{1}{\sqrt{\log N}} \quad \text { as } \quad N \rightarrow \infty
$$

$\triangleright \frac{1}{p}$-Hölder norm : $\mathbf{x}_{s, t}=\left(x_{s}^{1}, x_{s, t}^{2}\right), s \leq t$.

$$
\|\mathbf{x}\|_{q, H o l}=\sup _{s, t \in[0, T]} \frac{\left|x^{1}(t)-x^{1}(s)\right|}{|t-s|^{\frac{1}{q}}}+\sup _{s, t \in[0, T]} \frac{\left|x^{2}(s, t)\right|}{|t-s|^{\frac{2}{q}}}
$$

Thus $\mathbf{W}=\left(W_{t}, \int_{s}^{t}\left(W_{u}-W_{s}\right) d W_{u}\right)$
\triangleright Theorem (P.-Sellami, (2006), (2009) (a) Let $\alpha^{N}=\left(\alpha_{1}^{N}, \cdots, \alpha_{N}^{N}\right)$ be a sequence of optimal (stationary) N-product quantizers of W. Then

$$
\forall p>2, \forall q>\frac{p}{p-2}, \quad\| \| \mathbf{W}-\widehat{\mathbf{W}}\left\|_{q, H o l}\right\|_{L^{p}(\mathbb{P})}=O\left(\frac{1}{\sqrt{\log N}}\right)
$$

(b) Assume b and ϑ are $\mathcal{C}^{2+\alpha}\left([0, T] \times \mathbb{R}^{d}\right), \alpha>0$.
$O D E \quad \equiv d x_{i}^{(N)}(t)=b\left(t, x_{i}^{(N)}(t)\right) d t+\vartheta\left(t, x_{i}^{(N)}(t)\right) d \alpha_{i}^{N}(t), i=1, \ldots, N$.

Set

$$
\begin{gathered}
\widetilde{X}_{t}:=\sum_{i=1}^{N} x_{i}^{(N)}(t) \mathbf{1}_{\left\{W \in C_{i}\left(\alpha^{N}\right)\right\}} \\
\forall p>2, \forall q>\frac{p}{p-2}, \quad\| \| \widetilde{X}_{t}-X\left\|_{H o l, q}\right\|_{L^{p}(\mathbb{P})}=O\left(\frac{1}{\sqrt{\log N}}\right)
\end{gathered}
$$

(topology of $\frac{1}{q}$-Holder-convergence).
\triangleright The keys : connection with rough paths theory, Kolmogorov criterion, (pseudo-)stationarity.

Typical functionals

- Fonctionals $|\cdot|_{L_{T}^{2}}$-continuous at every $\omega \in \mathcal{C}([0, T])$?

$$
F(\omega):=\int_{0}^{T} f(t, \omega(t)) d t
$$

wheref is locally Lipschitz continuous, namely

$$
|f(t, u)-f(t, v)| \leq C_{f}|u-v|(1+g(t, u)+g(t, v)) .
$$

Example : The Asian payoff in B-S model

$$
F(\omega)=\exp (-r T)\left(\frac{1}{T} \int_{0}^{T} \exp \left(\sigma \omega(t)+\left(r-\sigma^{2} / 2\right) t\right) d t-K\right)_{+} .
$$

Numerical Integration (II) : log-Romberg extrapolation

$\triangleright F: L_{T}^{2} \longrightarrow \mathbb{R}, 3$ times $|\cdot|_{L_{T}^{2}}$-differentiable with bounded differentials.
$\triangleright \widehat{W}^{(N)}, N \geq 1$, stationary rate-optimal quantizations
\triangleright Higher order Taylor expansion yields

$$
\begin{aligned}
F(W)= & F\left(\widehat{W}^{(N)}\right)+D F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right) \\
& +\frac{1}{2} D^{2} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 2}+\frac{1}{6} D^{3} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 3} .
\end{aligned}
$$

$$
\mathbb{E} F(W)=\mathbb{E} F\left(\widehat{W}^{(N)}\right)+\frac{1}{2} \mathbb{E}\left(D^{2} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 2}\right)+o\left((\log N)^{-\frac{3}{2}+\varepsilon}\right) .
$$

$$
\text { CONJECTURE : } \quad \mathbb{E}\left(D^{2} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 2}\right) \sim \frac{c}{\log N}, \quad N \rightarrow \infty
$$

Set

$$
M \ll N \quad(e . g . M \approx N / 4)
$$

and $\forall \varepsilon>0$

$$
\mathbb{E}(F(W))=\frac{\log N \times \mathbb{E}\left(F\left(\widehat{W}^{(N)}\right)\right)-\log M \times \mathbb{E}\left(F\left(\widehat{W}^{(M)}\right)\right)}{\log N-\log M}+o\left((\log N)^{-\frac{3}{2}+\varepsilon}\right)
$$

Variant (mainly for product quantizations, B.Wilbertz (Trier, 2005)) :
Replace $\quad \log N$ by $\quad 1 /\left\|W-\widehat{W}^{(N)}\right\|_{2}^{2}$.

Application : Asian option in a Heston stochastic volatility model

\triangleright The DYnamics : Let ϑ, k, a s.t. $\vartheta^{2} /(4 a k)<1$.
$d S_{t}=S_{t}\left(r d t+\sqrt{v_{t}}\right) d W_{t}^{1}, \quad S_{0}=s_{0}>0, \quad$ (risky asset)
$d v_{t}=k\left(a-v_{t}\right) d t+\vartheta \sqrt{v_{t}} d W_{t}^{2}, v_{0}>0 \quad$ with $<W^{1}, W^{2}>_{t}=\rho t, \rho \in[-1,1]$.

- The payoff and the premium :

$$
\mathrm{AsCall}^{H e s t}=e^{-r T} \mathbb{E}\left(\left(\frac{1}{T} \int_{0}^{T} S_{s} d s-K\right)_{+}\right)
$$

\triangleright The procedure : • Projection of W^{1} on W^{2}

$$
S_{t}=s_{0} \exp \left(\left(r-\frac{1}{2} \bar{v}_{t}\right) t+\rho \int_{0}^{t} \sqrt{v_{s}} d W_{s}^{2}\right) \exp \left(\sqrt{1-\rho^{2}} \int_{0}^{t} \sqrt{v_{s}} d \widetilde{W}_{s}^{1}\right)
$$

- Chaining rule for conditional expectations

$$
\operatorname{AsCall}^{\text {Hest }}\left(s_{0}, K\right)=e^{-r T} \mathbb{E}\left(\mathbb{E}\left(\left.\left(\frac{1}{T} \int_{0}^{T} S_{s} d s-K\right)_{+} \right\rvert\, \sigma\left(W_{t}^{2}, 0 \leq t \leq T\right)\right)\right)
$$

- State process $=\left(\widetilde{W}_{t}^{1}, v_{t}\right)$.
- Solving the quantization $O D E$'s for $\left(v_{t}\right)$ (by a Runge-Kuta scheme)

$$
d y_{i}(t)=\left(k\left(a-y_{i}(t)-\frac{\vartheta^{2}}{4 k}\right)\right) d t+\vartheta \sqrt{y_{i}(t)} d \alpha_{i}^{N}(t), i=1, \ldots, N .
$$

Set the (non-Voronoi rate optimal) N-quantization of $\left(v_{t}, S_{t}\right)$ by

$$
\widetilde{v}_{t}^{n, N}=\sum_{i} y_{i}^{n, N}(t) \mathbf{1}_{C_{i}\left(\alpha^{N}\right)}\left(W^{2}\right) .
$$

and

$$
\widetilde{S}_{t}^{n, N}=\sum_{1 \leq i, j \leq N} s_{i, j}^{n, N}(t) \mathbf{1}_{\alpha_{i}^{N}}\left(\widetilde{W}^{1}\right) \mathbf{1}_{\alpha_{j}^{N}}\left(W^{2}\right)
$$

with

$$
\begin{aligned}
s_{i, j}^{n, N}(t)= & s_{0} \exp \left(t\left(\left(r-\frac{\rho a k}{\vartheta}\right)+\bar{y}_{j}^{n, N}(t)\left(\frac{\rho k}{\vartheta}-\frac{1}{2}\right)\right)+\frac{\rho}{\vartheta}\left(y_{j}^{n, N}(t)-v_{0}\right)\right) \\
& \times \exp \left(\sqrt{1-\rho^{2}} \int_{0}^{t} \sqrt{y_{j}^{n, N}} d \alpha_{i}^{N}\right)
\end{aligned}
$$

- Computation of crude quantized premium for N and M.
- Space Romberg log-extrapolation RCrAsCall ${ }^{\text {Hest }}\left(s_{0}, K\right)$.
- K-linear interpolation IRAsCall ${ }_{\text {Hest }}^{\left(s_{0}, K\right)}$ based on the (Asian) forward moneyness $K e^{-r T}$ and the Asian Call-Put parity formula

$$
\text { AsianCall }{ }^{\text {Hest }}\left(s_{0}, K\right)-\operatorname{AsianPut}\left(s_{0}, K\right)=s_{0} \frac{1-e^{-r T}}{r T}-K e^{-r T}
$$

Fig. 14: Optimized Quantizer of the Heston volatility process $N=400$
\triangleright Parameters of the Heston model :

$$
s_{0}=100, k=2, a=0.01, \rho=0.5, v_{0}=10 \%, \vartheta=20 \%
$$

\triangleright Parameters of the option portfolio :

$$
T=1, K=99, \cdots, 111 \quad(13 \text { strikes })
$$

\triangleright Reference price : computed by a 10^{8} trial Monte Carlo simulation
(including a time Romberg extrapolation with $2 n=256$).
\triangleright Parameters of the quantization cubature formulae :

$$
\Delta t=1 / 32, \quad(N, M)=(400,100),(1000,100) \text { or }(3200,400)
$$

Fig. 15: K-Interpolated-log-Romberg extrapolated- FQ price :
The error with $(N, M)=(400,100),(N, M)=(1000,100)$,

$$
(N, M)=(3200,400)
$$

Fig. 16: K-Interpolated-log-Romberg extrapolated- FQ price : Convergence

$$
\text { as } \Delta t \rightarrow 0 \text { with }(N, M)=(3200,400)
$$

\triangleright Functional Quantization can compute a whole vector (more than 10) option premia for the Asian option in the Heston model.

Within 1 cent accuracy in less than 1 second (implementation in C on 2.5 GHz processor).

Functional Quantization of non Gaussian

processes

\triangleright Theorem (Luschgy-P. 2006, AAP) Let $X=\left(X_{t}\right)_{t \in[0, T]}$. If

$$
X_{0} \in L^{r}(\mathbb{P}), \quad\left\|X_{t}-X_{s}\right\|_{L^{r}(\mathbb{P})} \leq C_{X}|t-s|^{a}, \quad 0<a \leq 1
$$

then

$$
\forall 0<p \leq r, \quad e_{N, r}\left(X, L_{T}^{p}\right)=O\left((\log N)^{-a}\right) .
$$

\triangleright Ingredients : Haar basis (instead of $K-L$ basis...), non asymptotic Zador Theorem (Pierce Lemma) and product functional quantization.
\triangleright Examples : • d-dim Itô processes (includes d-dim diffusions with sublinear coefficients) $a=1 / 2$;

- General Lévy process X with Lévy measure ν (with Brownian component) $a=1 / 2$;
- General Lévy process X with Lévy measure ν (without Brownian component) with square integrable big jumps. Then

$$
a=1 / \beta^{*}(X)
$$

where
$\beta^{*}(X):=\inf \left\{\theta: \int|x|^{\theta} \nu(d x)<\infty\right\} \in(0,2) \quad$ (Blumenthal-Getoor index of X).

- Exact rates for a wide class of subordinated Lévy processes (to the Brownian motion) includes α-stable symmetric Lévy processes for which

$$
\forall 0<p \leq r<\alpha, \quad e_{N, r}\left(X, L_{T}^{p}\right) \approx O\left((\log N)^{-\alpha}\right)
$$

A guided Monte Carlo method : hybrid "Q +MC"

\triangleright Quantization as a control variate, (P.-Printems, $M C M A, 2005)$. Let $X_{k}, k \geq 1$, i.i.d. $X_{1} \sim X$.
\widehat{X}_{k} (optimal) N-quantization of X_{k} and F a Lipschitz continuous functional.

$$
\begin{aligned}
\mathbb{E} F(X) \approx \mathbb{E} F\left(\widehat{X}^{\alpha}\right) & +\frac{1}{M} \sum_{k=1}^{M} F\left(X_{k}\right)-F\left(\widehat{X}_{k}^{\alpha}\right) \\
\operatorname{Var}\left(\frac{1}{M} \sum_{k=1}^{M} F\left(X_{k}\right)-F\left(\widehat{X}_{k}^{\alpha}\right)\right) & =\frac{\left\|F(X)-F\left(\widehat{X}^{\alpha}\right)\right\|_{2}^{2}-\left(\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\alpha}\right)\right)^{2}}{M} \\
& \leq \frac{\left\|F(X)-F\left(\widehat{X}^{\alpha}\right)\right\|_{2}^{2}}{M} \\
& \leq[F]_{\operatorname{Lip}} \frac{\left\|X-\widehat{X}^{\alpha}\right\|_{2}^{2}}{M}
\end{aligned}
$$

Drawback : nearest neighbour search $[$ complexity $=O(\log N)]$ at each step...
\triangleright Quantization based universal stratified sampling (with J.Printems (2008) and S. Corlay (2009))

- Let α be a product N-quantizer with structural dimension $d(N)=\log N$.
- The idea starts from the ability to simulate

$$
\mathcal{L}\left(W_{t_{1}}, \ldots, W_{t_{n}} \mid W \in C_{i}(\alpha)\right)=\mathcal{L}\left(W_{t_{1}}, \ldots, W_{t_{n}} \mid \widehat{W}=\alpha_{i}\right)
$$

from the Karhunen-Loève expansion of W :

$$
W_{t}=\sum_{n \geq 1} \frac{1}{\pi\left(n-\frac{1}{2}\right)} \xi_{n} e_{n} W(t)
$$

with complexity $O(n \times d(N))$.

- Weight and intra-class variances are tabulated (up to Pythagorus Theorem) :

$$
p_{i}=\mathbb{P}\left(\widehat{W}=\alpha_{i}\right) \quad \text { and } \quad \sigma_{i}^{2}=\operatorname{Var}\left(W \mid \widehat{W}=\alpha_{i}\right)
$$

so that

$$
\mathbb{E} f\left(W_{t_{1}}, \ldots, W_{t_{n}}\right)=\sum_{i=1}^{N} \frac{1}{M_{i}} \sum_{m=1}^{M_{i}} f\left(\tilde{W}_{t_{1}}^{m}, \ldots, \tilde{W}_{t_{n}}^{m}\right)
$$

where

$$
\left(W_{t_{1}}^{m}, \ldots, W_{t_{n}}^{m}\right) \sim \mathcal{L}\left(W_{t_{1}}, \ldots, W_{t_{n}} \mid \widehat{W}=\alpha_{i}\right), 1 \leq m \leq M_{i}, \text { i.i.d. }
$$

and

$$
M_{i}=M \times \frac{p_{i} \sigma_{i}}{\sum_{j} p_{j} \sigma_{j}}, i=1, \ldots, N
$$

is the best "min-max" Monte Carlo estimator in the family of Lipschitz functional among all possible stratifications.

- Variance reduction factor :

$$
\frac{\left\|X-\widehat{X}^{\alpha}\right\|_{2}^{2}}{\|X-\mathbb{E} X\|_{2}^{2}}
$$

like for control variate. . . but no nearest neighbour search.

