Semilinear elliptic problems with measure data.

Moshe Marcus

Department of Mathematics, Technion 32000 Haifa, ISRAEL *E-mail*: marcusm@math.technion.ac.il

Paris, November 09

We discuss boundary value problems of the form

$$-\Delta u + g(u) = 0,$$
 in D
 $u = \mu,$ on ∂D ,

(1)(2)

同 と く ヨ と く ヨ と …

æ

D a domain in \mathbb{R}^N , μ a Borel measure on ∂D ,

 $g\in C(\mathbb{R}), \hspace{1em} g\uparrow, \hspace{1em} g(0)=0, \hspace{1em} \lim_{t
ightarrow\infty}g(t)/t=\infty.$

We discuss boundary value problems of the form

$$-\Delta u + g(u) = 0,$$
 in D
 $u = \mu,$ on $\partial D,$

(1)(2)

D a domain in \mathbb{R}^N , μ a Borel measure on ∂D ,

$$g\in \mathcal{C}(\mathbb{R}), \hspace{1em} g\uparrow, \hspace{1em} g(0)=0, \hspace{1em} \lim_{t
ightarrow\infty}g(t)/t=\infty.$$

For μ bounded, a solution of (1)-(2) means:

$$u \in L^{1}(D), \quad g(u) \in L^{1}_{\rho}(D),$$

$$-\int_{D} u\Delta\phi \, dx + \int_{D} g(u)\phi \, dx = -\int_{\partial D} \partial_{\mathbf{n}}\phi \, d\mu,$$
 (3)

for every $\phi \in C^2(\overline{D})$ such that $\phi = 0$ on ∂D .

Along with (1) we consider the corresponding non-homogeneous equation,

$$-\Delta u + g(u) = \tau \quad \text{in } D. \tag{4}$$

▲圖▶ ▲屋▶ ▲屋▶

æ

Along with (1) we consider the corresponding non-homogeneous equation,

$$-\Delta u + g(u) = \tau \quad \text{in } D. \tag{4}$$

・ロン ・回 と ・ ヨ と ・ ヨ と … ヨ

HISTORY.

Beginnings

Emden (1897), Fowler (1931): Radial solutions in the case $g(t) = t^q$. Bieberbach (1916): Equation $-\Delta u + e^u = 0$. Keller (1957): Equations with general nonlinearity, motivated by a model in astrophysics introduced by Chandrasekhar.

The geometric connection.

The equation $-\Delta u + k(x)u^q = 0$, q = (N+2)/(N-2) and the Yamabe problem.

In this context the problem

$$-\Delta u + k(x)u^q = 0$$
 in D , $u \to \infty$ at ∂D ,

is of particular interest because of its relation to the problem of *complete Riemannian metrics.*

・日・ ・ ヨ・ ・ ヨ・

æ

The geometric connection.

The equation $-\Delta u + k(x)u^q = 0$, q = (N+2)/(N-2) and the Yamabe problem.

In this context the problem

$$-\Delta u + k(x)u^q = 0$$
 in D , $u \to \infty$ at ∂D ,

is of particular interest because of its relation to the problem of *complete Riemannian metrics.*

A solution of $-\Delta u + k(x)g(u) = 0$, k > 0 in *D*, blowing up on ∂D is called a large solution. The existence, asymptotic behavior and uniqueness of large solutions was first studied by *Loewner and Nirenberg (1972)*, for $-\Delta u + u^q = 0$, q = (N+2)/(N-2) in smooth domains. In the 90's the subject of large solutions received much attention. The questions of existence and uniqueness have been studied in various contexts: General non-linearities, non-smooth domains, the problem on manifolds etc.

- (日) (日) (日) (日) 日

The probabilistic connection.

Branching processes, superdiffusions are related to equations

 $u_t - \Delta u + u^{\alpha} = 0$, and $-\Delta u + u^{\alpha} = 0$,

 $1 < \alpha \leq 2.$

These have been central subjects of study in probability for almost five decades, *Watanabe (1965, 68, 69), Dawson (1975, 77, 89 ...), Perkins (1988-1991, 2001), Dynkin (1990 and on)), Le Gall (1990 and on)* and others. In particular a paper of Dynkin from 1991 focused attention on the PDE connection. This gave a strong impetus to the study of boundary value problems with measure data.

▲□ → ▲ □ → ▲ □ → □ □

A solution of

$$-\Delta u + u^{\alpha} = 0$$
 in D , $u \to \infty$ at ∂D ,

corresponds to a branching process in D which never crosses the boundary, i.e. becomes extinct in D.

< ≣⇒

æ

A solution of

$$-\Delta u + u^{\alpha} = 0$$
 in D , $u \to \infty$ at ∂D ,

corresponds to a branching process in D which never crosses the boundary, i.e. becomes extinct in D.

If F is a closed subset of ∂D , a solution of

 $-\Delta u + u^{\alpha} = 0$ in D, $u \xrightarrow{s} \infty$ at F, u = 0 on $\partial D \setminus F$,

corresponds to a branching process in D which is barred from crossing ∂D at F.

The notation $u \xrightarrow{s} \infty$ (i.e. u tends **strongly** to ∞) at a point $y \in \partial D$ means that, for every neighborhood A of y, $\int_{A \cap D} |u|^q \rho dx = \infty$. If $1 < \alpha < (N+1)/(N-1)$ the 'neighborhood' is in the Euclidean topology. If $\alpha \ge (N+1)/(N-1)$, the 'neighborhood' is in another (q dependent) topology.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

MAIN QUESTIONS.

For which sets F does such a solution exist? Is the solution unique? For which sets is a barrier at F removable? What is the rate of blow up at F?

The study of these questions depends on the study of boundary value problems with measure boundary data.

æ

TWO BASIC FEATURES OF THE PROBLEM. **A.** The absorption effect.

If $g(t) \to \infty$ sufficiently fast as $t \to \infty$ then the absorption effect balances the diffusion effect:

for every compact $K \subset D$, $\exists C_K$ such that $\sup_K u \leq C_K$ for every solution u of (1).

A sharp criterion was supplied by Keller and Osserman (separately, 1955). It is satisfied for example by

$$g(t) = |t|^{q-1}t, \quad q > 1, \quad g(t) = max(e^t - 1, 0).$$

B. The comparison principle.

Let u_1 , u_2 be solutions of (1)-(2) with $\mu = \mu_1$, $\mu = \mu_2$ respectively. Then

$$\mu_1 \leq \mu_2 \Longrightarrow u_1 \leq u_2.$$

I. CLASSICAL RESULTS FOR GENERAL NONLINEARITIES. (i) Uniqueness: If $\partial D \in C^2$

$$-\Delta u + g(u) = au$$
 in D , $u = \mu$ on ∂D ,

(5)

- 4 回 2 - 4 □ 2 - 4 □

æ

has at most one solution.

I. CLASSICAL RESULTS FOR GENERAL NONLINEARITIES. (i) Uniqueness: If $\partial D \in C^2$

$$-\Delta u + g(u) = \tau$$
 in D , $u = \mu$ on ∂D , (5)

has at most one solution.

(ii) Existence for L^1 data: If $D \in C^2$, $\tau = fdx$, $\mu = hdS$, $f \in L^1_\rho(D)$, $h \in L^1(\partial D)$ then (5) has a solution.

These results are due partly to Brezis and Strauss (1970) and partly to Brezis in the 70's (mostly unpublished).

(iii) If g satisfies OK criterion: Existence of maximal solution of $-\Delta u + g(u) = 0$ in D.

(Loewner–Nirenberg 1972)

・日・ ・ ヨ・ ・ ヨ・

3

(iii) If g satisfies OK criterion: Existence of maximal solution of $-\Delta u + g(u) = 0$ in D.

(Loewner-Nirenberg 1972)

(iv) If g satisfies OK criterion, D is Lipschitz, $F \subset \partial D$ closed:

Existence of maximal solution of

 $-\Delta u + g(u) = 0$, in D, $u \to \infty$ at F, u = 0 on $\partial D \setminus F$. (6)

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ● ●

II. Results for equation (*) $-\Delta u + u^q = \tau$, q > 1.

(i) If $\tau = \delta_P$, $P \in D$, equation (*) has a solution iff q < N/(N-2).

Corollary. If q < N/(N-2) then (*) has a solution for every finite measure τ .

(Benilan – Brezis 197–)

 $q_{int} = N/(N-2)$ is the critical exponent for (*).

II. Results for equation (*) $-\Delta u + u^q = \tau$, q > 1.

(i) If $\tau = \delta_P$, $P \in D$, equation (*) has a solution iff q < N/(N-2).

Corollary. If q < N/(N-2) then (*) has a solution for every finite measure τ . (Benilan – Brezis 197–)

 $q_{int} = N/(N-2)$ is the critical exponent for (*).

For the supercritical case, $q \ge q_{int}$:

(ii) Equation (*) has a solution if and only if:

$$C_{2,q'}(E)=0\Longrightarrow \tau(E)=0.$$

(Baras and Pierre, 1984)

Here $C_{2,q'}$ denotes **Bessel capacity.** For compact sets $K \subset \mathbb{R}^N$:

$$C_{2,q'}(\mathcal{K}) = \inf\{ \|\varphi\|_{_{W^{2},q'}} : \varphi \ge 0, \ \varphi \ge 1 \text{ on } \mathcal{K}. \}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

III. Bounded measure data on ∂D : subcritical case.

Assume $\partial D \in C^2$. (i) For $P \in \partial D$:

 $-\Delta u + |u|^{q-1}u = 0$ in D, $u = \delta_P$ on ∂D

(7)

|▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● □ ● ● ● ●

has a solution iff q < (N+1)/(N-1).

Corollary. If q < (N+1)/(N-1) then

 $-\Delta u + |u|^{q-1}u = 0 \text{ in } D, \quad u = \mu \text{ on } \partial D \tag{8}$

has a solution for every finite measure μ . (Gmira – Veron , 1991)

 $q_{bnd} = (N+1)/(N-1)$ is the critical exponent for (7).

(ii) Let μ be a finite measure on ∂D and let V_{μ} denote the harmonic function in D with boundary trace μ . Assume that g is odd. If

(Ad)
$$\int_D g(V_{|\mu|})\rho \, dx < \infty, \qquad \rho(x) = \operatorname{dist}(x, \partial D)$$

then

$$-\Delta u + g(u) = 0$$
 in D , $u = \mu$ on ∂D

(9)

has a solution. (M+Veron 1998)

The result follows from the fact that, if **(AD)** holds, $V_{|\mu|}$ is a supersolution and $-V_{|\mu|}$ is a subsolution of the boundary value problem (9).

If μ satisfies condition (Ad) we say that μ is admissible relative to g.

Let K be the Poisson kernel for $-\Delta$ in D. Then, for $y \in \partial D$, $V_{\delta_P}(x) = K(x, y)$. We note that, if q < (N+1)/(N-1) then

$$\int_D K(x,y)^q \rho \, dx < \infty.$$

Therefore (ii) implies (i).

æ

・日・ ・ヨ・ ・ヨ・

Let K be the Poisson kernel for $-\Delta$ in D. Then, for $y \in \partial D$, $V_{\delta_P}(x) = K(x, y)$. We note that, if q < (N+1)/(N-1) then

$$\int_D K(x,y)^q \rho \, dx < \infty.$$

Therefore (ii) implies (i).

A relation between the homogeneous and nonhomogeneous problems. Under fairly general conditions on g (e.g. convexity): If (9) has a solution then the boundary value problem

 $-\Delta u + g(u) = \tau \text{ in } D, \quad u = \mu \text{ on } \partial D \tag{10}$

個人 くほん くほん しほ

has a solution, provided that the equation has some solution in D.

IV. Bounded measure data on ∂D : supercritical case.

We assume that $\partial D \in C^2$ and consider

(**BVPq**) $-\Delta u + |u|^{q-1}u = 0$ in D, $u = \mu$ on ∂D

for $q \ge q_{bnd} = (N + 1)/(N - 1)$.

A closed set $F \subset \partial D$ is removable for **(BVPq)** if: the only non-negative solution of

$$-\Delta u + |u|^{q-1}u = 0$$
 in *D*, $u = 0$ on $\partial D \setminus F$

is $u \equiv 0$.

A set $E \subset \partial D$ is removable if every closed subset is removable.

IV. Bounded measure data on ∂D : supercritical case.

We assume that $\partial D \in C^2$ and consider

(BVPq) $-\Delta u + |u|^{q-1}u = 0$ in D, $u = \mu$ on ∂D

for $q \ge q_{bnd} = (N + 1)/(N - 1)$.

A closed set $F \subset \partial D$ is removable for **(BVPq)** if: the only non-negative solution of

$$-\Delta u + |u|^{q-1}u = 0$$
 in *D*, $u = 0$ on $\partial D \setminus F$

is $u \equiv 0$.

A set $E \subset \partial D$ is removable if every closed subset is removable. Here a 'solution' means: For every neighborhood A of F

$$u \in L^{1}(D \setminus A), \quad g(u) \in L^{1}_{\rho}(D \setminus A),$$

$$-\int_{D} u \Delta \phi \, dx + \int_{D} g(u) \phi \, dx = -\int_{\partial D} \partial_{\mathbf{n}} \phi \, d\mu, \qquad (11)$$

for every $\phi \in C^2(\bar{D})$ such that $\phi = 0$ on $\partial D \cup (D \cap A)$.

We say that a finite measure μ on ∂D is q-good if

(**BVPq**) $-\Delta u + |u|^{q-1}u = 0$ in D, $u = \mu$ on ∂D

possesses a solution.

- (回) (三) (三) (三) (三)

The following results were obtained, during the 90's: by probabilistic techniques – Le Gall (q = 2), Dynkin and Kuznetsov $(q_{bnd} \le q \le 2)$; by analytic methods – M+Veron (all $q \ge q_{bnd}$).

Theorem IV.1

A set $E \subset \partial D$ is removable \updownarrow $C_{2/q,q'}(E) = 0.$

Theorem IV.2

A finite measure μ is q-good μ vanishes on sets of $C_{2/q,q'}$ -capacity zero.

伺下 イヨト イヨト

Main ingredients in the proof of **IV.2**; μ denotes a finite measure on ∂D . (a) If μ is q-good then it vanishes on removable sets.

(b) Assume $\mu \ge 0$. Let V_{μ} denote the harmonic function with boundary trace μ .

 $V_{\mu} \in L^q_{
ho}(D) \iff \mu \in W^{-2/q,q}.$

(c) $\mu \in W^{-2/q,q} \Longrightarrow \mu$ is q-good.

(d) Remark: If $\mu \in W^{-2/q,q}$ then μ vanishes on sets of $C_{2/q,q'}$ -capacity zero.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � � �

Main ingredients in the proof of **IV.2**; μ denotes a finite measure on ∂D . (a) If μ is q-good then it vanishes on removable sets.

(b) Assume $\mu \ge 0$. Let V_{μ} denote the harmonic function with boundary trace μ .

 $V_{\mu}\in L^q_{
ho}(D)\iff \mu\in W^{-2/q,q}.$

(c) $\mu \in W^{-2/q,q} \Longrightarrow \mu$ is q-good.

(d) Remark: If $\mu \in W^{-2/q,q}$ then μ vanishes on sets of $C_{2/q,q'}$ -capacity zero.

(e) A theorem of Feyel - de la Pradelle: Assume $\mu \ge 0$. Then

 $\mu \text{ vanishes on sets of } C_{2/q,q'}\text{-capacity zero } \iff \mu \text{ is the limit of an increasing sequence of measures in } W^{-2/q,q}.$

(f) If μ vanishes on sets of $C_{2/q,q'}$ -capacity zero then μ is q-good.

V. Solutions blowing up on a subset of ∂D : subcritical case. We consider the problem

 $-\Delta u + u^{\alpha} = 0$ in D, $u \xrightarrow{s} \infty$ at F, u = 0 on $\partial D \setminus F$, (12)

where $F \subset \partial D$ assuming q < (N+1)/(N-1).

Theorem V.1 The problem possesses a solution if and only if F is closed. Furthermore the solution is unique. (M+Veron 1996)

Overview of proof:

(a) If $y \in \partial D$ there exists a unique solution of (12) such that $F = \{y\}$. Denote this solution by U_y .

Remark: There exist infinitely many solutions of the problem

 $-\Delta u + u^{\alpha} = 0$ in D, $u \to \infty$ at y, u = 0 on $\partial D \setminus \{y\}$.

(b) If u is a solution of (12) then

$$u \geq U_y \quad \forall y \in F.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

(c) Let $\{y_n\}$ be a dense sequence in F and let $A_n := \{y_1, \dots, y_n\}$. Then $\{V_{A_n}\}$ is an increasing sequence of solutions whose limit W_F is the *minimal solution* of (12).

(d) $W_F \xrightarrow{s} \infty$ at \overline{F} . Therefore 'F closed' is a necessary condition for existence.

(e) If F is closed there exists a maximal solution U_F of (12).

(f) There exists a constant c such that

 $W_F \leq U_F \leq cW_F$.

(g) The above implies that $U_F = W_F$.

VI. Solutions blowing up on a subset of ∂D : supercritical case.

When $q \ge (N + 1)/(N - 1)$ the problem (12) is not well posed; it may have infinitely many solutions. (This was shown by Le Gall in 1997.) Therefore one must interpret 'strong blow-up' in a more refined way. It turns out that the correct topology in this context is the $C_{2/q,q'}$ -fine topology and the appropriate definition of 'strong blow-up' is:

 $u \xrightarrow{\mathrm{sq}} \infty$ (i.e. u tends **q-strongly** to ∞) at a point $y \in \partial D$ means that, for every $C_{2/q,q'}$ -fine neighborhood A of y, $\int_{A \cap D} |u|^q \rho dx = \infty$.

Thus we consider the problem

 $-\Delta u + u^{\alpha} = 0$ in $D, \quad u \xrightarrow{\mathrm{sq}} \infty$ at $F, \quad u = 0$ on $\partial D \setminus F.$ (13)

For q < (N+1)/(N-1), the fine topology is the same as the Euclidean topology so 'q-strong blow up' reduces to 'strong blow up'.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

We need an additional definition:

A solution *u* of the equation is moderate if $\int_D |u|^q \rho dx < \infty$; it is σ -moderate if it is the limit of an increasing sequence of moderate solutions.

æ

We need an additional definition:

A solution u of the equation is moderate if $\int_D |u|^q \rho dx < \infty$; it is σ -moderate if it is the limit of an increasing sequence of moderate solutions.

Theorem VI.1 Problem (13) possesses a solution if and only if *F* is $C_{2/q,q'}$ -finely closed. Furthermore the solution is unique in the class of σ -moderate solutions. (M+Veron 2007)

For q = 2 Mselati (2001) proved that every positive solution is σ -moderate. This was extended by Dynkin (2004) to $1 < q \leq 2$. Therefore:

Theorem VI.2 If $1 < q \le 2$ and F is $C_{2/q,q'}$ -finely closed, problem (13) possesses a unique solution.

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ