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We discuss boundary value problems of the form

−∆u + g(u) = 0, in D (1)

u = µ, on ∂D, (2)

D a domain in RN , µ a Borel measure on ∂D,

g ∈ C (R), g ↑, g(0) = 0, lim
t→∞

g(t)/t =∞.

For µ bounded, a solution of (1)-(2) means:

u ∈ L1(D), g(u) ∈ L1
ρ(D),

−
∫

D
u∆φ dx +

∫
D

g(u)φ dx = −
∫
∂D
∂nφ dµ,

(3)

for every φ ∈ C 2(D̄) such that φ = 0 on ∂D.
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Along with (1) we consider the corresponding non-homogeneous equation,

−∆u + g(u) = τ in D. (4)

History.

Beginnings
Emden (1897), Fowler (1931): Radial solutions in the case g(t) = tq.
Bieberbach (1916): Equation −∆u + eu = 0.
Keller (1957): Equations with general nonlinearity, motivated by a model
in astrophysics introduced by Chandrasekhar.
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The geometric connection.
The equation −∆u + k(x)uq = 0, q = (N + 2)/(N − 2) and the Yamabe
problem.

In this context the problem

−∆u + k(x)uq = 0 in D, u →∞ at ∂D,

is of particular interest because of its relation to the problem of complete
Riemannian metrics.

A solution of −∆u + k(x)g(u) = 0, k > 0 in D, blowing up on ∂D is
called a large solution. The existence, asymptotic behavior and uniqueness
of large solutions was first studied by Loewner and Nirenberg (1972), for
−∆u + uq = 0, q = (N + 2)/(N − 2) in smooth domains. In the 90’s the
subject of large solutions received much attention. The questions of
existence and uniqueness have been studied in various contexts:

General non-linearities, non-smooth domains, the problem on manifolds
etc.
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The probabilistic connection.
Branching processes, superdiffusions are related to equations

ut −∆u + uα = 0, and −∆u + uα = 0,

1 < α ≤ 2.

These have been central subjects of study in probability for almost five
decades, Watanabe (1965, 68, 69), Dawson (1975, 77, 89 ...), Perkins
(1988-1991, 2001), Dynkin (1990 and on)), Le Gall (1990 and on) and
others. In particular a paper of Dynkin from 1991 focused attention on the
PDE connection. This gave a strong impetus to the study of boundary
value problems with measure data.
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A solution of

−∆u + uα = 0 in D, u →∞ at ∂D,

corresponds to a branching process in D which never crosses the boundary,
i.e. becomes extinct in D.

If F is a closed subset of ∂D, a solution of

−∆u + uα = 0 in D, u
s−→∞ at F , u = 0 on ∂D \ F ,

corresponds to a branching process in D which is barred from crossing ∂D
at F .

The notation u
s−→∞ (i.e. u tends strongly to ∞) at a point y ∈ ∂D

means that, for every neighborhood A of y ,
∫
A∩D |u|

qρdx =∞. If
1 < α < (N + 1)/(N − 1) the ’neighborhood’ is in the Euclidean topology.
If α ≥ (N + 1)/(N − 1), the ’neighborhood’ is in another (q dependent)
topology.
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Main questions.

For which sets F does such a solution exist? Is the solution unique?
For which sets is a barrier at F removable?
What is the rate of blow up at F ?

The study of these questions depends on the study of boundary value
problems with measure boundary data.
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Two basic features of the problem.
A. The absorption effect.

If g(t)→∞ sufficiently fast as t →∞ then the absorption effect balances
the diffusion effect:

for every compact K ⊂ D, ∃CK such that
supK u ≤ CK for every solution u of (1).

A sharp criterion was supplied by Keller and Osserman (separately, 1955).
It is satisfied for example by

g(t) = |t|q−1t, q > 1, g(t) = max(et − 1, 0).

B. The comparison principle.
Let u1, u2 be solutions of (1)-(2) with µ = µ1, µ = µ2 respectively. Then

µ1 ≤ µ2 =⇒ u1 ≤ u2.
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I. Classical results for general nonlinearities.
(i) Uniqueness: If ∂D ∈ C 2

−∆u + g(u) = τ in D, u = µ on ∂D, (5)

has at most one solution.

(ii) Existence for L1 data:
If D ∈ C 2, τ = fdx , µ = hdS , f ∈ L1

ρ(D), h ∈ L1(∂D) then (5) has a
solution.

These results are due partly to Brezis and Strauss (1970) and partly to
Brezis in the 70’s (mostly unpublished).
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(iii) If g satisfies OK criterion: Existence of maximal solution of

−∆u + g(u) = 0 in D.

(Loewner–Nirenberg 1972)

(iv) If g satisfies OK criterion, D is Lipschitz, F ⊂ ∂D closed:

Existence of maximal solution of

−∆u + g(u) = 0, in D, u →∞ at F , u = 0 on ∂D \ F . (6)
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II. Results for equation (∗) −∆u + uq = τ , q > 1.

(i) If τ = δP , P ∈ D, equation (∗) has a solution iff q < N/(N − 2).

Corollary. If q < N/(N − 2) then (∗) has a solution for every finite
measure τ .
(Benilan – Brezis 197–)

qint = N/(N − 2) is the critical exponent for (*).

For the supercritical case, q ≥ qint :

(ii) Equation (*) has a solution if and only if:

C2,q′(E ) = 0 =⇒ τ(E ) = 0.

(Baras and Pierre, 1984)

Here C2,q′ denotes Bessel capacity. For compact sets K ⊂ RN :

C2,q′(K ) = inf{‖ϕ‖
W 2,q′ : ϕ ≥ 0, ϕ ≥ 1 on K .}
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III. Bounded measure data on ∂D: subcritical case.

Assume ∂D ∈ C 2.
(i) For P ∈ ∂D :

−∆u + |u|q−1u = 0 in D, u = δP on ∂D (7)

has a solution iff q < (N + 1)/(N − 1).

Corollary. If q < (N + 1)/(N − 1) then

−∆u + |u|q−1u = 0 in D, u = µ on ∂D (8)

has a solution for every finite measure µ. (Gmira – Veron , 1991)

qbnd = (N + 1)/(N − 1) is the critical exponent for (7) .
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(ii) Let µ be a finite measure on ∂D and let Vµ denote the harmonic
function in D with boundary trace µ. Assume that g is odd. If

(Ad)

∫
D

g(V|µ|)ρ dx <∞, ρ(x) = dist (x , ∂D)

then
−∆u + g(u) = 0 in D, u = µ on ∂D (9)

has a solution. (M+Veron 1998)

The result follows from the fact that, if (AD) holds, V|µ| is a supersolution
and −V|µ| is a subsolution of the boundary value problem (9).

If µ satisfies condition (Ad) we say that µ is admissible relative to g .
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Let K be the Poisson kernel for −∆ in D. Then, for y ∈ ∂D,
VδP (x) = K (x , y). We note that, if q < (N + 1)/(N − 1) then∫

D
K (x , y)qρ dx <∞.

Therefore (ii) implies (i).

A relation between the homogeneous and nonhomogeneous problems.

Under fairly general conditions on g (e.g. convexity):

If (9) has a solution then the boundary value problem

−∆u + g(u) = τ in D, u = µ on ∂D (10)

has a solution, provided that the equation has some solution in D.
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IV. Bounded measure data on ∂D: supercritical case.

We assume that ∂D ∈ C 2 and consider

(BVPq) −∆u + |u|q−1u = 0 in D, u = µ on ∂D

for q ≥ qbnd = (N + 1)/(N − 1).

A closed set F ⊂ ∂D is removable for (BVPq) if:
the only non-negative solution of

−∆u + |u|q−1u = 0 in D, u = 0 on ∂D \ F

is u ≡ 0.
A set E ⊂ ∂D is removable if every closed subset is removable.

Here a ’solution’ means: For every neighborhood A of F

u ∈ L1(D \ A), g(u) ∈ L1
ρ(D \ A),

−
∫

D
u∆φ dx +

∫
D

g(u)φ dx = −
∫
∂D
∂nφ dµ,

(11)

for every φ ∈ C 2(D̄) such that φ = 0 on ∂D ∪ (D ∩ A).
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We say that a finite measure µ on ∂D is q-good if

(BVPq) −∆u + |u|q−1u = 0 in D, u = µ on ∂D

possesses a solution.
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The following results were obtained, during the 90’s:
by probabilistic techniques – Le Gall (q = 2), Dynkin and Kuznetsov
(qbnd ≤ q ≤ 2);
by analytic methods – M+Veron (all q ≥ qbnd).

Theorem IV.1

A set E ⊂ ∂D is removable
m

C2/q,q′(E ) = 0.

Theorem IV.2

A finite measure µ is q-good
m

µ vanishes on sets of C2/q,q′-capacity zero.
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Main ingredients in the proof of IV.2 ; µ denotes a finite measure on ∂D.

(a) If µ is q-good then it vanishes on removable sets.

(b) Assume µ ≥ 0. Let Vµ denote the harmonic function with boundary
trace µ.

Vµ ∈ Lq
ρ(D) ⇐⇒ µ ∈W−2/q,q.

(c) µ ∈W−2/q,q =⇒ µ is q-good.

(d) Remark: If µ ∈W−2/q,q then µ vanishes on sets of C2/q,q′-capacity
zero.

(e) A theorem of Feyel - de la Pradelle: Assume µ ≥ 0. Then

µ vanishes on sets of C2/q,q′-capacity zero ⇐⇒
µ is the limit of an increasing sequence of measures in W−2/q,q.

(f) If µ vanishes on sets of C2/q,q′-capacity zero then µ is q-good.

Moshe Marcus Semilinear elliptic



Main ingredients in the proof of IV.2 ; µ denotes a finite measure on ∂D.

(a) If µ is q-good then it vanishes on removable sets.

(b) Assume µ ≥ 0. Let Vµ denote the harmonic function with boundary
trace µ.

Vµ ∈ Lq
ρ(D) ⇐⇒ µ ∈W−2/q,q.

(c) µ ∈W−2/q,q =⇒ µ is q-good.

(d) Remark: If µ ∈W−2/q,q then µ vanishes on sets of C2/q,q′-capacity
zero.

(e) A theorem of Feyel - de la Pradelle: Assume µ ≥ 0. Then

µ vanishes on sets of C2/q,q′-capacity zero ⇐⇒
µ is the limit of an increasing sequence of measures in W−2/q,q.

(f) If µ vanishes on sets of C2/q,q′-capacity zero then µ is q-good.

Moshe Marcus Semilinear elliptic



V. Solutions blowing up on a subset of ∂D: subcritical case.
We consider the problem

−∆u + uα = 0 in D, u
s−→∞ at F , u = 0 on ∂D \ F , (12)

where F ⊂ ∂D assuming q < (N + 1)/(N − 1).

Theorem V.1 The problem possesses a solution if and only if F is closed.
Furthermore the solution is unique. (M+Veron 1996)

Overview of proof:

(a) If y ∈ ∂D there exists a unique solution of (12) such that F = {y}.
Denote this solution by Uy .

Remark: There exist infinitely many solutions of the problem

−∆u + uα = 0 in D, u →∞ at y , u = 0 on ∂D \ {y}.

(b) If u is a solution of (12) then

u ≥ Uy ∀y ∈ F .
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(c) Let {yn} be a dense sequence in F and let An := {y1, · · · , yn}. Then
{VAn} is an increasing sequence of solutions whose limit WF is the
minimal solution of (12).

(d) WF
s−→∞ at F̄ . Therefore ′F closed′ is a necessary condition for

existence.

(e) If F is closed there exists a maximal solution UF of (12).

(f) There exists a constant c such that

WF ≤ UF ≤ cWF .

(g) The above implies that UF = WF .
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VI. Solutions blowing up on a subset of ∂D: supercritical
case.
When q ≥ (N + 1)/(N − 1) the problem (12) is not well posed; it may
have infinitely many solutions. (This was shown by Le Gall in 1997.)
Therefore one must interpret ’strong blow-up’ in a more refined way. It
turns out that the correct topology in this context is the C2/q,q′-fine
topology and the appropriate definition of ’strong blow-up’ is:

u
sq−→∞ (i.e. u tends q-strongly to ∞) at a point y ∈ ∂D means that,

for every C2/q,q′-fine neighborhood A of y ,
∫
A∩D |u|

qρdx =∞.

Thus we consider the problem

−∆u + uα = 0 in D, u
sq−→∞ at F , u = 0 on ∂D \ F . (13)

For q < (N + 1)/(N − 1), the fine topology is the same as the Euclidean
topology so ’q-strong blow up’ reduces to ’strong blow up’.
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We need an additional definition:
A solution u of the equation is moderate if

∫
D |u|

qρdx <∞; it is
σ-moderate if it is the limit of an increasing sequence of moderate
solutions.

Theorem VI.1 Problem (13) possesses a solution if and only if F is
C2/q,q′-finely closed. Furthermore the solution is unique in the class of
σ-moderate solutions. (M+Veron 2007)

For q = 2 Mselati (2001) proved that every positive solution is
σ-moderate. This was extended by Dynkin (2004) to 1 < q ≤ 2.
Therefore:

Theorem VI.2 If 1 < q ≤ 2 and F is C2/q,q′-finely closed, problem (13)
possesses a unique solution.
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