Semilinear elliptic problems with measure data.

Moshe Marcus

Department of Mathematics, Technion 32000 Haifa, ISRAEL
E-mail: marcusm@math.technion.ac.il

Paris, November 09

We discuss boundary value problems of the form

$$
\begin{align*}
-\Delta u+g(u) & =0, \quad \text { in } D \tag{1}\\
u & =\mu, \quad \text { on } \partial D, \tag{2}
\end{align*}
$$

D a domain in \mathbb{R}^{N}, μ a Borel measure on ∂D,

$$
g \in C(\mathbb{R}), \quad g \uparrow, \quad g(0)=0, \quad \lim _{t \rightarrow \infty} g(t) / t=\infty
$$

We discuss boundary value problems of the form

$$
\begin{align*}
-\Delta u+g(u) & =0, \quad \text { in } D \tag{1}\\
u & =\mu, \quad \text { on } \partial D, \tag{2}
\end{align*}
$$

D a domain in \mathbb{R}^{N}, μ a Borel measure on ∂D,

$$
g \in C(\mathbb{R}), \quad g \uparrow, \quad g(0)=0, \quad \lim _{t \rightarrow \infty} g(t) / t=\infty
$$

For μ bounded, a solution of (1)-(2) means:

$$
\begin{align*}
& \quad u \in L^{1}(D), \quad g(u) \in L_{\rho}^{1}(D) \\
& -\int_{D} u \Delta \phi d x+\int_{D} g(u) \phi d x=-\int_{\partial D} \partial_{\mathbf{n}} \phi d \mu \tag{3}
\end{align*}
$$

for every $\phi \in C^{2}(\bar{D})$ such that $\phi=0$ on ∂D.

Along with (1) we consider the corresponding non-homogeneous equation,

$$
\begin{equation*}
-\Delta u+g(u)=\tau \text { in } D \tag{4}
\end{equation*}
$$

Along with (1) we consider the corresponding non-homogeneous equation,

$$
\begin{equation*}
-\Delta u+g(u)=\tau \text { in } D \tag{4}
\end{equation*}
$$

History.

Beginnings

Emden (1897), Fowler (1931): Radial solutions in the case $g(t)=t^{q}$.
Bieberbach (1916): Equation $-\Delta u+e^{u}=0$.
Keller (1957): Equations with general nonlinearity, motivated by a model in astrophysics introduced by Chandrasekhar.

The geometric connection.
The equation $-\Delta u+k(x) u^{q}=0, q=(N+2) /(N-2)$ and the Yamabe problem.

In this context the problem

$$
-\Delta u+k(x) u^{q}=0 \quad \text { in } D, \quad u \rightarrow \infty \text { at } \partial D
$$

is of particular interest because of its relation to the problem of complete Riemannian metrics.

The geometric connection.
The equation $-\Delta u+k(x) u^{q}=0, q=(N+2) /(N-2)$ and the Yamabe problem.

In this context the problem

$$
-\Delta u+k(x) u^{q}=0 \quad \text { in } D, \quad u \rightarrow \infty \text { at } \partial D
$$

is of particular interest because of its relation to the problem of complete Riemannian metrics.

A solution of $-\Delta u+k(x) g(u)=0, k>0$ in D, blowing up on ∂D is called a large solution. The existence, asymptotic behavior and uniqueness of large solutions was first studied by Loewner and Nirenberg (1972), for $-\Delta u+u^{q}=0, q=(N+2) /(N-2)$ in smooth domains. In the 90 's the subject of large solutions received much attention. The questions of existence and uniqueness have been studied in various contexts:
General non-linearities, non-smooth domains, the problem on manifolds etc.

The probabilistic connection.
Branching processes, superdiffusions are related to equations

$$
u_{t}-\Delta u+u^{\alpha}=0, \quad \text { and } \quad-\Delta u+u^{\alpha}=0
$$

$1<\alpha \leq 2$.
These have been central subjects of study in probability for almost five decades, Watanabe (1965, 68, 69), Dawson (1975, 77, 89 ...), Perkins (1988-1991, 2001), Dynkin (1990 and on)), Le Gall (1990 and on) and others. In particular a paper of Dynkin from 1991 focused attention on the PDE connection. This gave a strong impetus to the study of boundary value problems with measure data.

A solution of

$$
-\Delta u+u^{\alpha}=0 \quad \text { in } D, \quad u \rightarrow \infty \text { at } \partial D,
$$

corresponds to a branching process in D which never crosses the boundary, i.e. becomes extinct in D.

A solution of

$$
-\Delta u+u^{\alpha}=0 \quad \text { in } D, \quad u \rightarrow \infty \text { at } \partial D
$$

corresponds to a branching process in D which never crosses the boundary, i.e. becomes extinct in D.

If F is a closed subset of ∂D, a solution of

$$
-\Delta u+u^{\alpha}=0 \quad \text { in } D, \quad u \xrightarrow{\mathrm{~s}} \infty \text { at } F, \quad u=0 \text { on } \partial D \backslash F,
$$

corresponds to a branching process in D which is barred from crossing ∂D at F.

The notation $u \xrightarrow{\mathrm{~s}} \infty$ (i.e. u tends strongly to ∞) at a point $y \in \partial D$ means that, for every neighborhood A of $y, \int_{A \cap D}|u|^{q} \rho d x=\infty$. If $1<\alpha<(N+1) /(N-1)$ the 'neighborhood' is in the Euclidean topology. If $\alpha \geq(N+1) /(N-1)$, the 'neighborhood' is in another (q dependent) topology.

Main questions.

For which sets F does such a solution exist? Is the solution unique? For which sets is a barrier at F removable?
What is the rate of blow up at F ?
The study of these questions depends on the study of boundary value problems with measure boundary data.

Two basic features of the problem.
A. The absorption effect.

If $g(t) \rightarrow \infty$ sufficiently fast as $t \rightarrow \infty$ then the absorption effect balances the diffusion effect:

$$
\begin{aligned}
& \text { for every compact } K \subset D, \exists C_{K} \text { such that } \\
& \sup _{K} u \leq C_{K} \text { for every solution } u \text { of (1). }
\end{aligned}
$$

A sharp criterion was supplied by Keller and Osserman (separately, 1955). It is satisfied for example by

$$
g(t)=|t|^{q-1} t, \quad q>1, \quad g(t)=\max \left(e^{t}-1,0\right)
$$

B. The comparison principle.

Let u_{1}, u_{2} be solutions of (1)-(2) with $\mu=\mu_{1}, \mu=\mu_{2}$ respectively. Then

$$
\mu_{1} \leq \mu_{2} \Longrightarrow u_{1} \leq u_{2}
$$

I. Classical results for general nonlinearities.
(i) Uniqueness: If $\partial D \in C^{2}$

$$
\begin{equation*}
-\Delta u+g(u)=\tau \text { in } D, \quad u=\mu \text { on } \partial D \tag{5}
\end{equation*}
$$

has at most one solution.
I. Classical results for general nonlinearities.
(i) Uniqueness: If $\partial D \in C^{2}$

$$
\begin{equation*}
-\Delta u+g(u)=\tau \text { in } D, \quad u=\mu \text { on } \partial D \tag{5}
\end{equation*}
$$

has at most one solution.
(ii) Existence for L^{1} data:

If $D \in C^{2}, \tau=f d x, \mu=h d S, f \in L_{\rho}^{1}(D), h \in L^{1}(\partial D)$ then (5) has a solution.

These results are due partly to Brezis and Strauss (1970) and partly to Brezis in the 70's (mostly unpublished).
(iii) If g satisfies OK criterion: Existence of maximal solution of

$$
-\Delta u+g(u)=0 \text { in } D
$$

(Loewner-Nirenberg 1972)
(iii) If g satisfies OK criterion: Existence of maximal solution of

$$
-\Delta u+g(u)=0 \text { in } D
$$

(Loewner-Nirenberg 1972)
(iv) If g satisfies $O K$ criterion, D is Lipschitz, $F \subset \partial D$ closed:

Existence of maximal solution of
$-\Delta u+g(u)=0, \quad$ in $D, \quad u \rightarrow \infty$ at $F, \quad u=0$ on $\partial D \backslash F$.
II. Results for equation $(*)-\Delta u+u^{q}=\tau, q>1$.
(i) If $\tau=\delta_{P}, P \in D$, equation ($*$) has a solution iff $q<N /(N-2)$.

Corollary. If $q<N /(N-2)$ then $(*)$ has a solution for every finite measure τ.
(Benilan - Brezis 197-)
$q_{i n t}=N /(N-2)$ is the critical exponent for $\left({ }^{*}\right)$.
II. Results for equation $(*)-\Delta u+u^{q}=\tau, q>1$.
(i) If $\tau=\delta_{P}, P \in D$, equation ($*$) has a solution iff $q<N /(N-2)$.

Corollary. If $q<N /(N-2)$ then $(*)$ has a solution for every finite measure τ.
(Benilan - Brezis 197-)
$q_{i n t}=N /(N-2)$ is the critical exponent for $\left({ }^{*}\right)$.
For the supercritical case, $q \geq q_{i n t}$:
(ii) Equation $\left(^{*}\right)$ has a solution if and only if:

$$
C_{2, q^{\prime}}(E)=0 \Longrightarrow \tau(E)=0 .
$$

(Baras and Pierre, 1984)
Here $C_{2, q^{\prime}}$ denotes Bessel capacity. For compact sets $K \subset \mathbb{R}^{N}$:

$$
C_{2, q^{\prime}}(K)=\inf \left\{\|\varphi\|_{W^{2}, q^{\prime}}: \varphi \geq 0, \varphi \geq 1 \text { on } K .\right\}
$$

III. Bounded measure data on ∂D : subcritical case.

Assume $\partial D \in C^{2}$.
(i) For $P \in \partial D$:

$$
\begin{equation*}
-\Delta u+|u|^{q-1} u=0 \text { in } D, \quad u=\delta_{P} \text { on } \partial D \tag{7}
\end{equation*}
$$

has a solution iff $q<(N+1) /(N-1)$.
Corollary. If $q<(N+1) /(N-1)$ then

$$
\begin{equation*}
-\Delta u+|u|^{q-1} u=0 \text { in } D, \quad u=\mu \text { on } \partial D \tag{8}
\end{equation*}
$$

has a solution for every finite measure μ. (Gmira - Veron, 1991)
$q_{b n d}=(N+1) /(N-1)$ is the critical exponent for (7).
(ii) Let μ be a finite measure on ∂D and let V_{μ} denote the harmonic function in D with boundary trace μ. Assume that g is odd. If

$$
\text { (Ad) } \quad \int_{D} g\left(V_{|\mu|}\right) \rho d x<\infty, \quad \rho(x)=\operatorname{dist}(x, \partial D)
$$

then

$$
\begin{equation*}
-\Delta u+g(u)=0 \text { in } D, \quad u=\mu \text { on } \partial D \tag{9}
\end{equation*}
$$

has a solution. ($\mathrm{M}+$ Veron 1998)
The result follows from the fact that, if (AD) holds, $V_{|\mu|}$ is a supersolution and $-V_{|\mu|}$ is a subsolution of the boundary value problem (9).

If μ satisfies condition (Ad) we say that μ is admissible relative to g.

Let K be the Poisson kernel for $-\Delta$ in D. Then, for $y \in \partial D$, $V_{\delta_{P}}(x)=K(x, y)$. We note that, if $q<(N+1) /(N-1)$ then

$$
\int_{D} K(x, y)^{q} \rho d x<\infty
$$

Therefore (ii) implies (i).

Let K be the Poisson kernel for $-\Delta$ in D. Then, for $y \in \partial D$, $V_{\delta_{P}}(x)=K(x, y)$. We note that, if $q<(N+1) /(N-1)$ then

$$
\int_{D} K(x, y)^{q} \rho d x<\infty
$$

Therefore (ii) implies (i).

A relation between the homogeneous and nonhomogeneous problems.
Under fairly general conditions on g (e.g. convexity):
If (9) has a solution then the boundary value problem

$$
\begin{equation*}
-\Delta u+g(u)=\tau \text { in } D, \quad u=\mu \text { on } \partial D \tag{10}
\end{equation*}
$$

has a solution, provided that the equation has some solution in D.
IV. Bounded measure data on ∂D : supercritical case.

We assume that $\partial D \in C^{2}$ and consider

$$
\text { (BVPq) } \quad-\Delta u+|u|^{q-1} u=0 \text { in } D, \quad u=\mu \text { on } \partial D
$$

for $q \geq q_{\text {bnd }}=(N+1) /(N-1)$.
A closed set $F \subset \partial D$ is removable for (BVPq) if: the only non-negative solution of

$$
-\Delta u+|u|^{q-1} u=0 \text { in } D, \quad u=0 \text { on } \partial D \backslash F
$$

is $u \equiv 0$.
A set $E \subset \partial D$ is removable if every closed subset is removable.

IV. Bounded measure data on ∂D : supercritical case.

We assume that $\partial D \in C^{2}$ and consider

$$
\text { (BVPq) } \quad-\Delta u+|u|^{q-1} u=0 \text { in } D, \quad u=\mu \text { on } \partial D
$$

for $q \geq q_{b n d}=(N+1) /(N-1)$.
A closed set $F \subset \partial D$ is removable for (BVPq) if: the only non-negative solution of

$$
-\Delta u+|u|^{q-1} u=0 \text { in } D, \quad u=0 \text { on } \partial D \backslash F
$$

is $u \equiv 0$.
A set $E \subset \partial D$ is removable if every closed subset is removable. Here a 'solution' means: For every neighborhood A of F

$$
\begin{align*}
u \in L^{1}(D \backslash A), \quad g(u) & \in L_{\rho}^{1}(D \backslash A) \\
-\int_{D} u \Delta \phi d x+\int_{D} g(u) \phi d x & =-\int_{\partial D} \partial_{\mathbf{n}} \phi d \mu \tag{11}
\end{align*}
$$

for every $\phi \in C^{2}(\bar{D})$ such that $\phi=0$ on $\partial D \cup(D \cap A)$.

We say that a finite measure μ on ∂D is q-good if

$$
\text { (BVPq) } \quad-\Delta u+|u|^{q-1} u=0 \text { in } D, \quad u=\mu \text { on } \partial D
$$

possesses a solution.

The following results were obtained, during the 90's: by probabilistic techniques - Le Gall $(q=2)$, Dynkin and Kuznetsov ($q_{\text {bnd }} \leq q \leq 2$); by analytic methods $-\mathrm{M}+\operatorname{Veron}$ (all $q \geq q_{b n d}$).

Theorem IV. 1

A set $E \subset \partial D$ is removable

$$
C_{2 / q, q^{\prime}}(E)=0 .
$$

Theorem IV. 2

A finite measure μ is q-good

μ vanishes on sets of $C_{2 / q, q^{\prime}}$-capacity zero.

Main ingredients in the proof of IV. 2 ; μ denotes a finite measure on ∂D.
(a) If μ is q-good then it vanishes on removable sets.
(b) Assume $\mu \geq 0$. Let V_{μ} denote the harmonic function with boundary trace μ.

$$
V_{\mu} \in L_{\rho}^{q}(D) \Longleftrightarrow \mu \in W^{-2 / q, q} .
$$

(c) $\mu \in W^{-2 / q, q} \Longrightarrow \mu$ is q-good.
(d) Remark: If $\mu \in W^{-2 / q, q}$ then μ vanishes on sets of $C_{2 / q, q^{\prime}}$-capacity zero.

Main ingredients in the proof of IV. 2 ; μ denotes a finite measure on ∂D.
(a) If μ is q-good then it vanishes on removable sets.
(b) Assume $\mu \geq 0$. Let V_{μ} denote the harmonic function with boundary trace μ.

$$
V_{\mu} \in L_{\rho}^{q}(D) \Longleftrightarrow \mu \in W^{-2 / q, q} .
$$

(c) $\mu \in W^{-2 / q, q} \Longrightarrow \mu$ is q-good.
(d) Remark: If $\mu \in W^{-2 / q, q}$ then μ vanishes on sets of $C_{2 / q, q^{\prime}}$-capacity zero.
(e) A theorem of Feyel - de la Pradelle: Assume $\mu \geq 0$. Then

$$
\mu \text { vanishes on sets of } C_{2 / q, q^{\prime}} \text {-capacity zero }
$$

μ is the limit of an increasing sequence of measures in $W^{-2 / q, q}$.
(f) If μ vanishes on sets of $C_{2 / q, q^{\prime}}$-capacity zero then μ is q-good.
V. Solutions blowing up on a subset of ∂D : subcritical case. We consider the problem

$$
\begin{equation*}
-\Delta u+u^{\alpha}=0 \quad \text { in } D, \quad u \xrightarrow{\mathrm{~s}} \infty \text { at } F, \quad u=0 \text { on } \partial D \backslash F, \tag{12}
\end{equation*}
$$

where $F \subset \partial D$ assuming $q<(N+1) /(N-1)$.
Theorem V. 1 The problem possesses a solution if and only if F is closed. Furthermore the solution is unique. ($\mathrm{M}+$ Veron 1996)
Overview of proof:
(a) If $y \in \partial D$ there exists a unique solution of (12) such that $F=\{y\}$. Denote this solution by U_{y}.

Remark: There exist infinitely many solutions of the problem

$$
-\Delta u+u^{\alpha}=0 \quad \text { in } D, \quad u \rightarrow \infty \text { at } y, \quad u=0 \text { on } \partial D \backslash\{y\} .
$$

(b) If u is a solution of (12) then

$$
u \geq U_{y} \quad \forall y \in F
$$

(c) Let $\left\{y_{n}\right\}$ be a dense sequence in F and let $A_{n}:=\left\{y_{1}, \cdots, y_{n}\right\}$. Then $\left\{V_{A_{n}}\right\}$ is an increasing sequence of solutions whose limit W_{F} is the minimal solution of (12).
(d) $W_{F} \xrightarrow{\mathrm{~s}} \infty$ at \bar{F}. Therefore ${ }^{\prime} F$ closed' is a necessary condition for existence.
(e) If F is closed there exists a maximal solution U_{F} of (12).
(f) There exists a constant c such that

$$
W_{F} \leq U_{F} \leq c W_{F} .
$$

(g) The above implies that $U_{F}=W_{F}$.

VI. Solutions blowing up on a subset of ∂D : supercritical

 CASE.When $q \geq(N+1) /(N-1)$ the problem (12) is not well posed; it may have infinitely many solutions. (This was shown by Le Gall in 1997.) Therefore one must interpret 'strong blow-up' in a more refined way. It turns out that the correct topology in this context is the $C_{2 / q, q^{\prime}}$ fine topology and the appropriate definition of 'strong blow-up' is:
$u \xrightarrow{\mathrm{sq}} \infty$ (i.e. u tends \mathbf{q}-strongly to ∞) at a point $y \in \partial D$ means that, for every $C_{2 / q, q^{\prime}}$-fine neighborhood A of $y, \int_{A \cap D}|u|^{a} \rho d x=\infty$.
Thus we consider the problem

$$
\begin{equation*}
-\Delta u+u^{\alpha}=0 \quad \text { in } D, \quad u \xrightarrow{\text { sq }} \infty \text { at } F, \quad u=0 \text { on } \partial D \backslash F . \tag{13}
\end{equation*}
$$

For $q<(N+1) /(N-1)$, the fine topology is the same as the Euclidean topology so 'q-strong blow up' reduces to 'strong blow up'.

We need an additional definition:
A solution u of the equation is moderate if $\int_{D}|u|^{q} \rho d x<\infty$; it is σ-moderate if it is the limit of an increasing sequence of moderate solutions.

We need an additional definition:
A solution u of the equation is moderate if $\int_{D}|u|^{q} \rho d x<\infty$; it is σ-moderate if it is the limit of an increasing sequence of moderate solutions.

Theorem VI. 1 Problem (13) possesses a solution if and only if F is $C_{2 / q, q^{\prime}}$ finely closed. Furthermore the solution is unique in the class of σ-moderate solutions. (M+Veron 2007)

For $q=2$ Mselati (2001) proved that every positive solution is σ-moderate. This was extended by Dynkin (2004) to $1<q \leq 2$. Therefore:

Theorem VI. 2 If $1<q \leq 2$ and F is $C_{2 / q, q^{\prime}}$-finely closed, problem (13) possesses a unique solution.

