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The problem

The linear Boltzmann equation in the d -dimensional torus Td , d ≥ 2







∂t f + v · ∇x f + σ (f − Kf ) = 0 (t, x , v) ∈ R+ × T
d × V

f (0, x , v) = f in(x , v) ∈ L1
(

T
d × V

)

(x , v) ∈ T
d × V

Velocity space: V = {v ∈ R
d : 0 < vm ≤ |v | ≤ vM} or V = S

d−1

Normalization on T
d × V :

∫

Td

dx =

∫

V

dv = 1

Scattering operator Kf :=

∫

V

k(v ,w)f (t, x ,w) dw with

k ∈ L∞(V × V ),

∫

V

k(v ,w) dw = 1 and k(v ,w) > 0 a.e. on V × V

Cross section σ ∈ L∞(Td), with σ ≥ 0 a.e. and

∫

Td

σ(x)dx > 0
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The problem

Taxonomy

Non degenerate cross section:

σ ∈ L∞(Td ) and there exists m > 0 such that σ ≥ m a.e. in T
d

Degenerate cross section:

σ ∈ L∞(Td ), σ ≥ 0 a.e. in T
d ,

∫

Td

σ(x)dx > 0 but it does not exists

m > 0 such that σ ≥ m for a.e. x belonging to T
d
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Convergence to equilibrium for non degenerate cross sections

Convergence to equilibrium: the non degenerate case

Theorem (Ukai, Point, Ghidouche - 1978)

If σ(x) is non degenerate, there exist C , γ > 0 such that the solution of
the transport equation satisfies the estimate

‖f (t, · , · )− f∞‖L2(Td×Sd−1) ≤ Ce−γt‖f in‖L2(Td×Sd−1).

Theorem (Mouhot, Neumann - 2006)

If σ(x) is non degenerate, there exist two explicit, strictly positive
constants C and γ, such that the solution of the transport equation
satisfies the estimate

‖f (t, · , · )− f∞‖H1(Td×Sd−1) ≤ Ce−γt‖f in‖H1(Td×Sd−1).
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Convergence to equilibrium for degenerate cross sections Degeneracy in isolated points

Degeneracy in isolated points

First suppose that the cross section σ : Td → R+ is degenerate and
satisfies, moreover, the following property:

Assumption

There exist xi ∈ T
d , i = 1, . . . ,N, Cσ > 0 and λσ > 0 such that

for a.e. x ∈ T
d , σ(x) ≥ Cσ inf

i=1,...,N
|x − xi |λσ .

Assumption on the scattering kernel

k ≡ 1, f̄ :=

∫

V

f (t, x ,w) dw .
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Convergence to equilibrium for degenerate cross sections Degeneracy in isolated points

Theorem (Desvillettes, S. - 2009)

Consider the linear transport equation with a cross section
σ ∈ L∞(Td ) ∩ H1(Td) satisfying the previous assumption, k ≡ 1, and with
an initial condition f in ≥ 0 a.e. such that f in ∈ L∞(Td × V ),
∇x f̄

in ∈ L2(Td ), and v ⊗ v : ∇x∇x f
in ∈ L2(Td × V ).

Then there exists a unique nonnegative solution f := f (t, x , v) to this
system in C (R+; L

2(T × V )).

The solution f converges when t → +∞ to its asymptotic profile

f∞(x , v) :=

∫

Td

∫

V

f in(y ,w) dwdy

and
||f (t, ·, ·) − f∞||2L2(T×V ) ≤ C1 t

− 1
1+2 λσ .

The explicit constant C1 depends on Cσ, λσ, ||σ||H1(Td )∩L∞(Td ), and f in.
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Convergence to equilibrium for degenerate cross sections Degeneracy in isolated points

Strategy of proof

Proposition (Desvillettes, Villani - 2001)

Let z and y be two nonnegative C 2 functions defined on R+ and satisfying
(for all t > 0)

{

−z ′(t) ≥ α1 y
1+δ(t),

y ′′(t) ≥ α3 z(t)− α2y
1−ε(t),

for some constants δ ≥ 0, ε ∈]0, 1[ and α1, α2, α3 > 0.

Then there exists a constant α4 > 0 depending only on x(0), α1, α2, α3, δ
and ε such that (for all t > 0)

z(t) ≤ α4 t
− 1−ε

δ+ε .
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Convergence to equilibrium for degenerate cross sections Degeneracy in isolated points

The entropy/entropy production pair

H(f ) =

∫

Td×V

|f − f∞|2 dvdx , D(f ) =

∫

Td×V

|f − f̄ |2 dvdx .

Relationship between entropy production and D:
∫

σ |f − f̄ |2 dvdx ≤ ‖σ‖L∞(Td )D(f ).

By interpolation:

D(f )1+λσ ≤ β1

∫

σ |f − f̄ |2 dvdx , β1 > 0

We deduce










−dH(f )

dt
≥ 2β1 D(f )1+λσ

d2

dt2
D(f ) ≥ β2 H(f )− β3 D(f )1/2
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Convergence to equilibrium for degenerate cross sections A counterexample

The domain
For all r ∈ (0, 1/2) consider the periodic open set

Zr = {x ∈ R
d : dist(x ,Zd) > r}

together with the associated fundamental domain Yr = Zr/Z
d .

F. Salvarani (University of Pavia) Degenerate kinetic equations February 15th, 2013 15 / 45



Convergence to equilibrium for degenerate cross sections A counterexample

The forward exit time
Forward exit time for a particle starting from x ∈ Zr in the direction
v ∈ S

d−1

τr (x , v) = inf{t > 0 : x + tv ∈ ∂Zr}

Definition of the forward exit time on the quotient space Yr × S
d−1

τr (x + k , v) = τr (x , v) for all (x , v) ∈ Zr × S
d−1 and k ∈ Z

d

On Yr × S
d−1, equipped with its Borel σ-algebra, define µr as the

probability measure proportional to the Lebesgue measure on Yr × S
d−1:

dµr (y , v) =
dydv

|Yr | |Sd−1|

Distribution of τr under µr :

Φr (t) := µr

(

{(x , v) ∈ Yr × S
d−1 : τr (y , v) > t}

)
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Convergence to equilibrium for degenerate cross sections A counterexample

The distribution of forward exit time

Theorem (Bourgain, Golse, Wennberg - 1998, 2000)

Let d ≥ 2. Then there exist two positive constants C1 and C2 such that,
for all r ∈ (0, 1/2) and each t > 1/rd−1

C1

rd−1
t−1 ≤ Φr (t) ≤

C2

rd−1
t−1.
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Convergence to equilibrium for degenerate cross sections A counterexample

The counterexample

A particular choice of σ and f
in

Choose
σ(x) = 1Td\Yr

and
f in(x , v) = f in(x) = 1Yr

Remarks:

The only steady solution with the same mass as the initial condition
f in is the constant function f∞ = |Yr |.
Some particles never meet the scattering region, i.e.
{x ∈ T

d : σ(x) > 0}, because of the presence of infinite channels.
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Convergence to equilibrium for degenerate cross sections A counterexample

An upper bound on the convergence speed to equilibrium
The only equilibrium solution to which f can converge in L2(Td × S

d−1)
as t → +∞ is

f∞ =
1

|Sd−1|

∫

Td×Sd−1

f in(x , v) dxdv = |Yr |.

Study of the L2-norm

∫

Td×Sd−1

(f − f∞)2 dxdv ≥
∫

Yr×Sd−1

(f − f∞)2 dxdv

=

∫

Yr×Sd−1

1τr (x ,−v)>t(f − f∞)2 dxdv

+

∫

Yr×Sd−1

1τr (x ,−v)≤t(f − f∞)2 dxdv

= I + J.

F. Salvarani (University of Pavia) Degenerate kinetic equations February 15th, 2013 19 / 45



Convergence to equilibrium for degenerate cross sections A counterexample

Duhamel’s formula

f (t, x , v) = f in(x − tv , v) exp

(

−
∫ t

0
σ(x − sv) ds

)

+

∫ t

0
exp

(

−
∫ s

0
σ(x − τv) dτ

)

σ(x − sv)f̄ (s, x − sv) ds

≥ f in(x − tv , v) exp

(

−
∫ t

0
σ(x − sv) ds

)

Since τr (x ,−v) > t =⇒ σ(x − sv) = 0 for all s ∈ [0, t]:

f (t, x , v)1τr (x ,−v)>t ≥ f in(x − tv , v)1τr (x ,−v)>t .

From τr (x ,−v) > t =⇒ x − tv ∈ Yr =⇒ f in(x − tv , v) = 1:

f (t, x , v)1τr (x ,−v)>t ≥ 1τr (x ,−v)>t
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Convergence to equilibrium for degenerate cross sections A counterexample

Since f∞ < 1: 1τr (x ,−v)>t f∞ ≤ 1τr (x ,−v)>t ≤ 1τr (x ,−v)>tf (t, x , v).
Hence

I =

∫

Yr×Sd−1

(1τr (x ,−v)>t f − 1τr (x ,−v)>t f∞)2 dxdv

≥
∫

Yr×Sd−1

1τr (x ,−v)>t(1− f∞)2 dxdv

= (1− |Yr |)2
∫

Yr×Sd−1

1τr (x ,−v)>t dxdv

= (1− |Yr |)2|Yr | |Sd−1|Φr (t).

Therefore

I ≥ (1− |Yr |)2|Yr | |Sd−1| C1

rd−1
t−1

for all t > r1−d .
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Convergence to equilibrium for degenerate cross sections A counterexample

Bound on J:

J =

∫

Yr×Sd−1

1τr (x ,−v)≤t(f − f∞)2 dxdv ≥ 0,

Hence
∫

Td×Sd−1

(f − f∞)2 dxdv ≥ C1

rd−1
(1− |Yr |)2|Yr | |Sd−1| t−1

or, equivalently,

‖f − f∞‖
L2(Td×Sd−1) ≥

C√
t
.
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Convergence to equilibrium for degenerate cross sections A counterexample

Theorem (Bernard, S. - 2012)

For all r ∈ (0, 1/2), there exists an initial condition f in ∈ L∞(Td × S
d−1)

satisfying f in(x , v) ≥ 0 for a.e. (x , v) ∈ T
d × S

d−1 and such that, for each
cross section σ ∈ L∞(Td ) satisfying σ(x) ≥ 0 for a.e. x ∈ T

d and
σ(x) = 0 for a.e. x ∈ Yr , the solution f of the transport problem satisfies

‖f − f∞‖
L2(Td×Sd−1) ≥

C√
t

for each t > r1−d , where

f∞ =
1

|Sd−1|

∫

Td×Sd−1

f in(x , v) dxdv

and C is a positive constant.
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Convergence to equilibrium for degenerate cross sections A counterexample

Numerical simulation of the long-time decay (De Vuyst, S.)
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Convergence to equilibrium for degenerate cross sections The geometrical condition

Definition

The cross section σ ≡ σ(x) is said to verify the geometrical condition if
there exist T0 and C > 0 such that

∫ T0

0
σ (φx ,v(s)) ds ≥ C a.e. in (x , v) ∈ T

d × V ,

where φx ,v designates the linear flow starting at x ∈ T
d in the direction

−v ∈ V :
φx ,v : t 7→ x − tv .

The geometrical condition entails that, for a.e. (x , v) ∈ T
d × V ,

there exists t ∈ (0,T0) such that φx ,v (t) ∈
{

x ∈ T
d |σ(x) > 0

}

.

In 1D: geometrical condition always fulfilled for cross sections that are
strictly positive on a sub-domain of the interval (0, 1) with positive
Lebesgue measure, since |v | ≥ vm > 0.
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Convergence to equilibrium for degenerate cross sections The geometrical condition

Theorem (Bernard, S. - 2012)

Let σ ∈ L∞
(

T
d
)

be a non-negative cross section satisfying the
geometrical condition. Then there exist two constants M > 0 and α > 0
such that the solution f of the transport problem satisfies the inequality

∥

∥

∥

∥

f −
∫

Td×V

f in (x , v) dxdv

∥

∥

∥

∥

L1(Td×V )
≤ Me−αt

∥

∥f in
∥

∥

L1(Td×V )

for all t ∈ R+.
Conversely, if the solution of the linear Boltzmann equation converges
uniformly in L1 to its equilibrium state at an exponential rate, then σ must
satisfy the geometrical condition.
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Convergence to equilibrium for degenerate cross sections The geometrical condition

The semigroup formulation of the problem
Define the transport operator B := A0 −Mσ + Kσ with domain

D (B) =
{

f ∈ L1
(

T
d × V

)
∣

∣

∣
v · ∇x f ∈ L1

(

T
d × V

)}

.

The collisionless transport operator is

(A0f ) (x , v) := −v · ∇x f for each f ∈ D (A0) ,

with domain D (A0) = D (B).

The absorption and the scattering operator are

(Mσf ) (x , v) := σ(x)f (x , v) for each f ∈ L1
(

T
d × V

)

and

(Kσf )(x , v) := σ(x)

∫

V

k(v ,w)f (x ,w)dw for each f ∈ L1
(

T
d × V

)

with
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Convergence to equilibrium for degenerate cross sections The geometrical condition

The abstract Cauchy problem











d

dt
f = Bf

f (0, x , v) = f in(x , v) ∈ T
d × V .

The operator B generates a strongly continuous positive semigroup on
L1(Td × V ) T ≡ (Tt)t≥0

GOAL: prove the existence of a pair (M, α) of positive constants such that

‖Tt − P‖L(L1(Td× V )) (t) ≤ Me−αt ,

where

P (f ) =

∫

Td× V

f (x , v)dxdv for each f ∈ L1
(

T
d × V

)

.
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Convergence to equilibrium for degenerate cross sections The geometrical condition

A result concerning postive semigroups

Theorem

Let (Gt)t≥0 be a bounded, quasi-compact, irreducible, positive

C0-semigroup on L1
(

T
d × V

)

with spectral bound zero. Then there exist
a positive rank-one projection P and suitable constants C ≥ 1 and a > 0
such that

‖Gt − P‖L(L1(Td× V )) ≤ Ce−at for each t ≥ 0.

Check, under the assumptions above, that

the spectral bound of B is zero,

T is irreducible,

the geometrical condition implies that T is quasi-compact.
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The spectral bound of T
Proposition

Let B be the transport operator with domain D (B) and let T be the
semigroup generated by B . Then s(T ) = s(B) = 0.

T is a strongly continuous positive semigroup in L1
(

T
d × V

)

=⇒ its
spectral bound s(T ) is equal to its growth bound ω0 (T ):

s(B) = ω0 (T ) :=inf
{

ω ∈ R

∣

∣

∣
∃ M ≥ 1:‖Tt‖L(L1(Td× V ))≤ Meωt ∀t ≥ 0

}

ω0 (T ) =
1

t
ln r (Tt) for each t > 0, r(Tt) = sup{|λ| : λ ∈ σ(Tt)}

For each t ≥ 0,

r (Tt) ≤ ‖Tt‖L(L1(Td× V )) = 1 and Tt

(

1Td× V

)

= 1Td× V

r (Tt) = 1 for each t ≥ 0
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Irreducibility

Definition

Banach lattice (of type Lp): a real Banach space E endowed with an
ordering ≥ compatible with the vector structure such that, if f , g ∈ E and
|f | ≥ |g |, then ‖f ‖E ≥ ‖g‖E .

Example: the space L1
(

T
d × V

)

, endowed with the standard L1-norm,
with the partial order defined by

f ≥ 0 if and only if f (x , v) ≥ 0 a.e. on T
d × V .

Let E be a Banach lattice. The space L (E ) of bounded operators on E

can be ordered in the following way: Let A,B ∈ L (E ) then

0 ≤ A ≤ B if and only if, for each nonnegative x ∈ E , 0 ≤ Ax ≤ Bx .
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Order ideals

Definition

A closed vector subspace W of a Banach lattice E is called order ideal if,
when x ∈ W and y ∈ E , |y | ≤ |x | implies y ∈ W .
Notation: I (E ) is the set of the order ideals of E .

Definition

Let G be a operator in a Banach lattice E and G ≡ (Gt)t≥0 be a
semigroup.
An order ideal W is a G -invariant if G (W ) ⊂ W .
Notation: I (G ) := {W ∈ I (E ) |G (W ) ⊂ W } is the set of G -invariants.
We denote

I (G) :=
⋂

t≥0

I (Gt)

and we say that an order ideal W is a G-invariant if W ∈ I (G).
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Irreducibility of T
Definition

An operator G ∈ L
(

L1
(

T
d × V

))

is said to be irreducible if and only if

I (G ) =
{

{0} , L1
(

T
d × V

)}

.

Likewise, a semigroup G is irreducible if

I (G) =
{

{0} , L1
(

T
d × V

)}

.

Proposition

The semigroup T generated by the transport operator B is irreducible in
L1

(

T
d × V

)

.

F. Salvarani (University of Pavia) Degenerate kinetic equations February 15th, 2013 34 / 45



Convergence to equilibrium for degenerate cross sections The geometrical condition

Irreducibility of T
Definition

An operator G ∈ L
(

L1
(

T
d × V

))

is said to be irreducible if and only if

I (G ) =
{

{0} , L1
(

T
d × V

)}

.

Likewise, a semigroup G is irreducible if

I (G) =
{

{0} , L1
(

T
d × V

)}

.

Proposition

The semigroup T generated by the transport operator B is irreducible in
L1

(

T
d × V

)

.

F. Salvarani (University of Pavia) Degenerate kinetic equations February 15th, 2013 34 / 45



Convergence to equilibrium for degenerate cross sections The geometrical condition

Irreducibility of T
Definition

An operator G ∈ L
(

L1
(

T
d × V

))

is said to be irreducible if and only if

I (G ) =
{

{0} , L1
(

T
d × V

)}

.

Likewise, a semigroup G is irreducible if

I (G) =
{

{0} , L1
(

T
d × V

)}

.

Proposition

The semigroup T generated by the transport operator B is irreducible in
L1

(

T
d × V

)

.

F. Salvarani (University of Pavia) Degenerate kinetic equations February 15th, 2013 34 / 45



Convergence to equilibrium for degenerate cross sections The geometrical condition

Quasi-compactness of T I

Definition

The essential resolvent of A ∈ L (E ) is

ρess (A) := {λ ∈ C |λI − A is Fredholm} ,

and its essential spectrum is

σess (A) := C \ ρess (A) .

The essential radius of A is

ress (A) := sup {|λ| |λ ∈ σess (A)} .
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Quasi-compactness of T II

Definition

A semigroup G ≡ (Gt)t≥0 is said to be quasi-compact on L1
(

T
d × V

)

if

and only if there exist a compact operator C on L1
(

T
d × V

)

and a
constant t0 > 0 such that

‖Gt0 − C‖L(L1(Td×V )) < 1.

Proposition

The semigroup T is quasi-compact on L1
(

T
d × V

)

if and only if

there exists to > 0 such that ress (Tto ) < 1.
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A control of the essential radius of T
Define S ≡ (St)t≥0 by the formula

Stg(x , v) := e−
∫ t

0
σ(x−vs)dsg(x − vt, v) for all g ∈ L1

(

T
d × V

)

.

The semigroup T can be seen as a perturbation of S by Duhamel’s
formula

Tt = St +

∫ t

0
SsKσTt−sds. (1)

Proposition

Under the assumptions above we have, for each t > 0,

ress (Tt) ≤ r (St) .
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The asymptotic behaviour of the essential radius

In order to prove that T is quasi-compact on L1
(

T
d × V

)

, it is enough to
prove that for some t0 > 0, r (St0) < 1:

Proposition

If σ verifies the geometrical condition, then

lim
t→+∞

r (St) = 0.

The geometrical condition means that there exist T0 and C such that

∫ T0

0
σ(x − sv)ds > C a.e. in (x , v) ∈ T

d × V .
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The asymptotic behaviour of the essential radius II
Since σ ≥ 0 we have, for each t > T0 (⌊x⌋: largest integer ≤ x):

∫ t

0
σ(x − sv)ds ≥

∫

⌊

t
T0

⌋

T0

0
σ(x − sv)ds

≥

⌊

t
T0

⌋

∑

n=0

∫ T0

0
σ ((x − nT0v)− sv) ds ≥

⌊

t

T0

⌋

C .

Hence

‖St‖L(L1(Td×V )) ≤ e
−
⌊

t
T0

⌋

C
for each t ≥ T0.

Since r (St) ≤ ‖St‖L(L1(Td×V )) we deduce

r (St) ≤ e
−C

⌊

t
T0

⌋

for each t ≥ T0 =⇒ lim
t→+∞

r (St) = 0.
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The characterization of P
Sketch of the proof:

If σ verifies the geometrical condition, then limt→+∞ ress (Tt) = 0.

The spectrum of B is discrete. In particular, s(A) is a pole of the
resolvent R(A).

B is the generator of an irreducible semigroup T : the residue P

associated to s(A) = 0 is a projection onto KerB , that is
one-dimensional.

By conservation of the mass, we have, for each f ∈ L1
(

T
d × V

)

,
∫

Td×V

Pf (x , v) dxdv =

∫

Td×V

f (x , v) dxdv .

By convexity (i.e. Jensen’s inequality),

Pf =

∫

Td×V

f (x , v) dxdv .
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On the sharpness of the geometrical condition

The quasi-compactness of T in L1
(

T
d × V

)

implies the
quasi-compactness of S in L1

(

T
d × V

)

as a consequence of:

Proposition (Caselles - 1987)

Let E be a Banach lattice. Let S ,T ∈ L(E ) be such that

0 ≤ S ≤ T .

If r(T ) ≤ 1 and ress(T ) < 1, then ress(S) < 1.

Lemma

The semigroup S is quasi-compact on L1
(

T
d × V

)

if T is quasi-compact
on L1

(

T
d × V

)

.
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The quasi-compactness of T and S
By Duhamel’s Formula:

Tt = St +

∫ t

0
SsKσTt−sds, for all t ≥ 0.

T and S are positive semigroups and Kσ is a positive operator, =⇒
∫ t

0
SsKσTt−sds ≥ 0 for each t ≥ 0.

The equality above implies that Tt ≥ St for each t ≥ 0. Besides,

r (Tt) = 1 for each t ≥ 0.

Since T is quasi-compact on L1
(

T
d × V

)

, there exists t0 such that

ress (Tt0) < 1.

Hence Caselles’ Theorem implies that

ress (St0) < 1.
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The geometrical condition

Assume that ‖St‖L(L1(Td×V )) → 0 as t → +∞.

S ≡ (St)t≥0 is defined by the formula

Stg(x , v) := e−
∫ t

0
σ(x−vs)dsg(x − vt, v) for all g ∈ L1

(

T
d × V

)

.

This implies that there exist T0 and C such that

∫ T0

0
σ(x − sv)ds > C a.e. in (x , v) ∈ T

d × V .
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