On the long-time asymptotics for degenerate kinetic equations

Francesco Salvarani

University of Pavia, Italy

Séminaire de mathématiques appliquées Collège de France

February 15th, 2013

F. Salvarani (University of Pavia)

Degenerate kinetic equations

Structure of the talk

The problem

2 Convergence to equilibrium for non degenerate cross sections

3 Convergence to equilibrium for degenerate cross sections

- Degeneracy in isolated points
- A counterexample
- The geometrical condition

Table of contents

The problem

2) Convergence to equilibrium for non degenerate cross sections

3 Convergence to equilibrium for degenerate cross sections

- Degeneracy in isolated points
- A counterexample
- The geometrical condition

4 References

< 回 > < 三 > < 三 >

The linear Boltzmann equation in the *d*-dimensional torus \mathbb{T}^d , $d \geq 2$

$$egin{aligned} &\partial_t f + v \cdot
abla_{ imes} f + \sigma \left(f - \mathcal{K} f
ight) = 0 & (t, x, v) \in \mathbb{R}_+ imes \mathbb{T}^d imes V \ &f(0, x, v) = f^{in}(x, v) \in L^1 \left(\mathbb{T}^d imes V
ight) & (x, v) \in \mathbb{T}^d imes V \end{aligned}$$

Velocity space: $V = \{v \in \mathbb{R}^d : 0 < v_m \le |v| \le v_M\}$ or $V = \mathbb{S}^{d-1}$

Normalization on $\mathbb{T}^d \times V$: $\int_{\mathbb{T}^d} dx = \int_V dv = 1$

Scattering operator $Kf := \int_V k(v, w)f(t, x, w) dw$ with

 $k \in L^{\infty}(V \times V)$, $\int_{V} k(v, w) dw = 1$ and k(v, w) > 0 a.e. on $V \times V$

Cross section $\sigma \in L^{\infty}(\mathbb{T}^d)$, with $\sigma \geq 0$ a.e. and $\int_{\mathbb{T}^d} \sigma(x) dx > 0$

Taxonomy

Non degenerate cross section:

 $\sigma \in L^\infty(\mathbb{T}^d)$ and there exists m>0 such that $\sigma \geq m$ a.e. in \mathbb{T}^d

Degenerate cross section:

 $\sigma \in L^{\infty}(\mathbb{T}^d)$, $\sigma \ge 0$ a.e. in \mathbb{T}^d , $\int_{\mathbb{T}^d} \sigma(x) dx > 0$ but it does not exists m > 0 such that $\sigma \ge m$ for a.e. x belonging to \mathbb{T}^d

・ 同 ト ・ ヨ ト ・ ヨ ト

Taxonomy

Non degenerate cross section:

 $\sigma \in L^{\infty}(\mathbb{T}^d)$ and there exists m > 0 such that $\sigma \geq m$ a.e. in \mathbb{T}^d

Degenerate cross section:

 $\sigma \in L^{\infty}(\mathbb{T}^d)$, $\sigma \ge 0$ a.e. in \mathbb{T}^d , $\int_{\mathbb{T}^d} \sigma(x) dx > 0$ but it does not exists m > 0 such that $\sigma \ge m$ for a.e. x belonging to \mathbb{T}^d

- (理) - (正) - (正) - (正)

Taxonomy

Non degenerate cross section:

 $\sigma \in L^{\infty}(\mathbb{T}^d)$ and there exists m > 0 such that $\sigma \ge m$ a.e. in \mathbb{T}^d

Degenerate cross section:

 $\sigma \in L^{\infty}(\mathbb{T}^d)$, $\sigma \ge 0$ a.e. in \mathbb{T}^d , $\int_{\mathbb{T}^d} \sigma(x) dx > 0$ but it does not exists m > 0 such that $\sigma \ge m$ for a.e. x belonging to \mathbb{T}^d

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ .

Table of contents

The problem

Convergence to equilibrium for non degenerate cross sections

3) Convergence to equilibrium for degenerate cross sections

- Degeneracy in isolated points
- A counterexample
- The geometrical condition

4 References

- A TE N - A TE N

Convergence to equilibrium: the non degenerate case

Theorem (Ukai, Point, Ghidouche - 1978)

If $\sigma(x)$ is non degenerate, there exist C, $\gamma > 0$ such that the solution of the transport equation satisfies the estimate

$$\|f(t,\cdot,\cdot)-f_{\infty}\|_{L^{2}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}\leq Ce^{-\gamma t}\|f^{in}\|_{L^{2}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}.$$

Theorem (Mouhot, Neumann - 2006)

If $\sigma(x)$ is non degenerate, there exist two explicit, strictly positive constants *C* and γ , such that the solution of the transport equation satisfies the estimate

 $\|f(t,\cdot,\cdot)-f_{\infty}\|_{H^1(\mathbb{T}^d\times\mathbb{S}^{d-1})}\leq Ce^{-\gamma t}\|f^{in}\|_{H^1(\mathbb{T}^d\times\mathbb{S}^{d-1})}.$

Convergence to equilibrium: the non degenerate case

Theorem (Ukai, Point, Ghidouche - 1978)

If $\sigma(x)$ is non degenerate, there exist C, $\gamma > 0$ such that the solution of the transport equation satisfies the estimate

$$\|f(t,\cdot,\cdot)-f_{\infty}\|_{L^{2}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}\leq Ce^{-\gamma t}\|f^{in}\|_{L^{2}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}.$$

Theorem (Mouhot, Neumann - 2006)

If $\sigma(x)$ is non degenerate, there exist two explicit, strictly positive constants *C* and γ , such that the solution of the transport equation satisfies the estimate

 $\|f(t,\,\cdot\,,\,\cdot\,)-f_{\infty}\|_{H^{1}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}\leq Ce^{-\gamma t}\|f^{in}\|_{H^{1}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}.$

Convergence to equilibrium: the non degenerate case

Theorem (Ukai, Point, Ghidouche - 1978)

If $\sigma(x)$ is non degenerate, there exist C, $\gamma > 0$ such that the solution of the transport equation satisfies the estimate

$$\|f(t,\cdot,\cdot)-f_{\infty}\|_{L^{2}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}\leq Ce^{-\gamma t}\|f^{in}\|_{L^{2}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}.$$

Theorem (Mouhot, Neumann - 2006)

If $\sigma(x)$ is non degenerate, there exist two explicit, strictly positive constants *C* and γ , such that the solution of the transport equation satisfies the estimate

$$\|f(t,\cdot,\cdot)-f_{\infty}\|_{H^{1}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}\leq Ce^{-\gamma t}\|f^{in}\|_{H^{1}(\mathbb{T}^{d}\times\mathbb{S}^{d-1})}.$$

Table of contents

The problem

2 Convergence to equilibrium for non degenerate cross sections

3 Convergence to equilibrium for degenerate cross sections

- Degeneracy in isolated points
- A counterexample
- The geometrical condition

4 References

< 回 > < 三 > < 三 >

Table of contents

The problem

2 Convergence to equilibrium for non degenerate cross sections

3 Convergence to equilibrium for degenerate cross sections

- Degeneracy in isolated points
- A counterexample
- The geometrical condition

4 References

4 3 6 4 3

Degeneracy in isolated points

First suppose that the cross section $\sigma : \mathbb{T}^d \to \mathbb{R}_+$ is degenerate and satisfies, moreover, the following property:

Assumption

There exist $x_i \in \mathbb{T}^d$, $i=1,\ldots,N$, $C_\sigma>0$ and $\lambda_\sigma>0$ such that

for a.e.
$$x \in \mathbb{T}^d$$
, $\sigma(x) \ge C_\sigma \inf_{i=1,\dots,N} |x-x_i|^{\lambda_\sigma}$.

Assumption on the scattering kernel

$$k \equiv 1, \qquad \overline{f} := \int_V f(t, x, w) \, dw.$$

F. Salvarani (University of Pavia)

(日) (同) (三) (三) (三)

Degeneracy in isolated points

First suppose that the cross section $\sigma : \mathbb{T}^d \to \mathbb{R}_+$ is degenerate and satisfies, moreover, the following property:

Assumption

There exist
$$x_i \in \mathbb{T}^d$$
, $i = 1, \dots, N$, $C_\sigma > 0$ and $\lambda_\sigma > 0$ such that

for a.e.
$$x \in \mathbb{T}^d$$
, $\sigma(x) \ge C_{\sigma} \inf_{i=1,\dots,N} |x-x_i|^{\lambda_{\sigma}}$.

Assumption on the scattering kernel

$$k \equiv 1, \qquad \overline{f} := \int_V f(t, x, w) \, dw.$$

F. Salvarani (University of Pavia)

・ 同 ト ・ ヨ ト ・ ヨ ト

Degeneracy in isolated points

First suppose that the cross section $\sigma : \mathbb{T}^d \to \mathbb{R}_+$ is degenerate and satisfies, moreover, the following property:

Assumption

There exist
$$x_i \in \mathbb{T}^d$$
, $i = 1, \dots, N$, $C_\sigma > 0$ and $\lambda_\sigma > 0$ such that

for a.e.
$$x \in \mathbb{T}^d$$
, $\sigma(x) \ge C_{\sigma} \inf_{i=1,\dots,N} |x-x_i|^{\lambda_{\sigma}}$.

Assumption on the scattering kernel

$$k\equiv 1, \qquad \overline{f}:=\int_V f(t,x,w)\,dw.$$

< 回 > < 三 > < 三 >

Theorem (Desvillettes, S. - 2009)

Consider the linear transport equation with a cross section $\sigma \in L^{\infty}(\mathbb{T}^d) \cap H^1(\mathbb{T}^d)$ satisfying the previous assumption, $k \equiv 1$, and with an initial condition $f^{in} \geq 0$ a.e. such that $f^{in} \in L^{\infty}(\mathbb{T}^d \times V)$, $\nabla_x \overline{f}^{in} \in L^2(\mathbb{T}^d)$, and $v \otimes v : \nabla_x \nabla_x f^{in} \in L^2(\mathbb{T}^d \times V)$.

Then there exists a unique nonnegative solution f := f(t, x, v) to this system in $C(\mathbb{R}_+; L^2(\mathbb{T} \times V))$.

The solution f converges when $t \to +\infty$ to its asymptotic profile

$$f_{\infty}(x,v) := \int_{\mathbb{T}^d} \int_V f^{in}(y,w) \, dw dy$$

and

$$||f(t,\cdot,\cdot)-f_{\infty}||^{2}_{L^{2}(\mathbb{T}\times V)} \leq C_{1} t^{-\frac{1}{1+2\lambda_{\sigma}}}.$$

The explicit constant C_1 depends on C_{σ} , λ_{σ} , $||\sigma||_{H^1(\mathbb{T}^d) \cap L^{\infty}(\mathbb{T}^d)}$, and f^{in} .

< ロト < 同ト < ヨト < ヨト

Strategy of proof

Proposition (Desvillettes, Villani - 2001)

Let z and y be two nonnegative C^2 functions defined on \mathbb{R}_+ and satisfying (for all t > 0)

$$\left\{ egin{array}{l} -z'(t)\geq lpha_1\,y^{1+\delta}(t), \ y''(t)\geq lpha_3\,z(t)-lpha_2y^{1-arepsilon}(t), \end{array}
ight.$$

for some constants $\delta \geq 0$, $\varepsilon \in]0,1[$ and α_1 , α_2 , $\alpha_3 > 0$.

Then there exists a constant $\alpha_4 > 0$ depending only on x(0), α_1 , α_2 , α_3 , δ and ε such that (for all t > 0)

$$z(t) \leq \alpha_4 t^{-rac{1-arepsilon}{\delta+arepsilon}}.$$

イロト 人間ト イヨト イヨト

The entropy/entropy production pair

$$H(f) = \int_{\mathbb{T}^d \times V} |f - f_\infty|^2 \, dv dx, \qquad D(f) = \int_{\mathbb{T}^d \times V} |f - \overline{f}|^2 \, dv dx.$$

Relationship between entropy production and D:

$$\int \sigma |f - \overline{f}|^2 \, dv dx \leq \|\sigma\|_{L^{\infty}(\mathbb{T}^d)} D(f).$$

By interpolation:

$$D(f)^{1+\lambda_{\sigma}} \leq \beta_1 \int \sigma |f - \overline{f}|^2 \, dv dx, \quad \beta_1 > 0$$

We deduce

$$\left\{ egin{array}{l} -rac{d\mathcal{H}(f)}{dt} \geq 2eta_1 \, D(f)^{1+\lambda_\sigma} \ rac{d^2}{dt^2} D(f) \geq eta_2 \, \mathcal{H}(f) -eta_3 \, D(f)^{1/2} \end{array}
ight.$$

4 薄み 4 薄み

Table of contents

The problem

2 Convergence to equilibrium for non degenerate cross sections

3 Convergence to equilibrium for degenerate cross sections

• Degeneracy in isolated points

A counterexample

• The geometrical condition

4 References

A B K A B K

The domain For all $r \in (0, 1/2)$ consider the periodic open set

$$Z_r = \{x \in \mathbb{R}^d : dist(x, \mathbb{Z}^d) > r\}$$

together with the associated fundamental domain $Y_r = Z_r / \mathbb{Z}^d$.

The forward exit time

Forward exit time for a particle starting from $x \in Z_r$ in the direction $v \in \mathbb{S}^{d-1}$

$$\tau_r(x,v) = \inf\{t > 0 : x + tv \in \partial Z_r\}$$

Definition of the forward exit time on the quotient space $Y_r imes \mathbb{S}^{d-1}$

 $au_r(x+k,v) = au_r(x,v)$ for all $(x,v) \in Z_r imes \mathbb{S}^{d-1}$ and $k \in \mathbb{Z}^d$

On $Y_r \times \mathbb{S}^{d-1}$, equipped with its Borel σ -algebra, define μ_r as the probability measure proportional to the Lebesgue measure on $Y_r \times \mathbb{S}^{d-1}$:

$$d\mu_r(y,v) = rac{dydv}{|Y_r| |\mathbb{S}^{d-1}|}$$

Distribution of τ_r under μ_r :

$$\Phi_r(t) := \mu_r\left(\{(x,v) \in Y_r \times \mathbb{S}^{d-1} : \tau_r(y,v) > t\}\right)$$

The distribution of forward exit time

Theorem (Bourgain, Golse, Wennberg - 1998, 2000)

Let $d \ge 2$. Then there exist two positive constants C_1 and C_2 such that, for all $r \in (0, 1/2)$ and each $t > 1/r^{d-1}$

$$\frac{C_1}{r^{d-1}} t^{-1} \le \Phi_r(t) \le \frac{C_2}{r^{d-1}} t^{-1}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The counterexample

A particular choice of
$$\sigma$$
 and f^{in}
 Choose
$$\sigma(x) = 1\!\!1_{\mathbb{T}^d \setminus Y_r}$$

and

Choose

$$f^{in}(x,v) = f^{in}(x) = \mathbb{1}_{Y_r}$$

Remarks:

The only steady solution with the same mass as the initial condition

• Some particles never meet the scattering region, i.e.

The counterexample

A particular choice of
$$\sigma$$
 and f^{in}
Choose
$$\sigma(x) = \mathbb{1}_{\mathbb{T}^d \setminus Y}$$

and

Choose

$$f^{in}(x,v) = f^{in}(x) = \mathbb{1}_{Y_r}$$

Remarks:

 The only steady solution with the same mass as the initial condition f^{in} is the constant function $f_{\infty} = |Y_r|$.

• Some particles never meet the scattering region, i.e.

< ロト < 同ト < ヨト < ヨト

The counterexample

A particular choice of
$$\sigma$$
 and f^{in}
Choose $\sigma(x) = \mathbbm{1}_{\mathbb{T}^d \setminus Y_r}$

and

Choose

$$f^{in}(x,v) = f^{in}(x) = \mathbb{1}_{Y_r}$$

Remarks:

 The only steady solution with the same mass as the initial condition f^{in} is the constant function $f_{\infty} = |Y_r|$.

• Some particles never meet the scattering region, i.e. $\{x \in \mathbb{T}^d : \sigma(x) > 0\}$, because of the presence of infinite channels.

< 日 > < 同 > < 回 > < 回 > < 回 >

An upper bound on the convergence speed to equilibrium The only equilibrium solution to which f can converge in $L^2(\mathbb{T}^d \times \mathbb{S}^{d-1})$ as $t \to +\infty$ is

$$f_{\infty} = \frac{1}{|\mathbb{S}^{d-1}|} \int_{\mathbb{T}^d \times \mathbb{S}^{d-1}} f^{in}(x, v) \, dx dv = |Y_r|.$$

Study of the L^2 -norm

$$\begin{split} \int_{\mathbb{T}^d \times \mathbb{S}^{d-1}} (f - f_{\infty})^2 \, dx dv &\geq \int_{Y_r \times \mathbb{S}^{d-1}} (f - f_{\infty})^2 \, dx dv \\ &= \int_{Y_r \times \mathbb{S}^{d-1}} \mathbb{1}_{\tau_r(x, -v) > t} (f - f_{\infty})^2 \, dx dv \\ &+ \int_{Y_r \times \mathbb{S}^{d-1}} \mathbb{1}_{\tau_r(x, -v) \le t} (f - f_{\infty})^2 \, dx dv \\ &= I + J. \end{split}$$

F. Salvarani (University of Pavia)

< 回 > < 三 > < 三 >

Duhamel's formula

$$f(t, x, v) = f^{in}(x - tv, v) \exp\left(-\int_0^t \sigma(x - sv) \, ds\right)$$

+
$$\int_0^t \exp\left(-\int_0^s \sigma(x - \tau v) \, d\tau\right) \sigma(x - sv) \bar{f}(s, x - sv) \, ds$$

$$\geq f^{in}(x - tv, v) \exp\left(-\int_0^t \sigma(x - sv) \, ds\right)$$

Since
$$\tau_r(x, -v) > t \Longrightarrow \sigma(x - sv) = 0$$
 for all $s \in [0, t]$:
 $f(t, x, v) \mathbb{1}_{\tau_r(x, -v) > t} \ge f^{in}(x - tv, v) \mathbb{1}_{\tau_r(x, -v) > t}.$

From $\tau_r(x, -v) > t \Longrightarrow x - tv \in Y_r \Longrightarrow f^{in}(x - tv, v) = 1$: $f(t, x, v) \mathbb{1}_{\tau_r(x, -v) > t} \ge \mathbb{1}_{\tau_r(x, -v) > t}$

イロト 不得下 イヨト イヨト 二日

Since
$$f_{\infty} < 1$$
: $\mathbb{1}_{\tau_r(x,-v)>t} f_{\infty} \leq \mathbb{1}_{\tau_r(x,-v)>t} \leq \mathbb{1}_{\tau_r(x,-v)>t} f(t,x,v)$.
Hence
 $I = \int_{Y_r \times \mathbb{S}^{d-1}} (\mathbb{1}_{\tau_r(x,-v)>t} f - \mathbb{1}_{\tau_r(x,-v)>t} f_{\infty})^2 dx dv$
 $\geq \int_{Y_r \times \mathbb{S}^{d-1}} \mathbb{1}_{\tau_r(x,-v)>t} (1 - f_{\infty})^2 dx dv$
 $= (1 - |Y_r|)^2 \int_{Y_r \times \mathbb{S}^{d-1}} \mathbb{1}_{\tau_r(x,-v)>t} dx dv$
 $= (1 - |Y_r|)^2 |Y_r| |\mathbb{S}^{d-1} |\Phi_r(t).$

Therefore

$$I \ge (1 - |Y_r|)^2 |Y_r| |\mathbb{S}^{d-1}| \frac{C_1}{r^{d-1}} t^{-1}$$

for all $t > r^{1-d}$.

3

・ロト ・聞ト ・ヨト ・ヨト

Bound on *J*:

$$J=\int_{Y_r\times\mathbb{S}^{d-1}}\mathbb{1}_{\tau_r(x,-v)\leq t}(f-f_\infty)^2\,dxdv\geq 0,$$

Hence

$$\int_{\mathbb{T}^d \times \mathbb{S}^{d-1}} (f - f_{\infty})^2 \, dx dv \geq \frac{C_1}{r^{d-1}} (1 - |Y_r|)^2 |Y_r| \, |\mathbb{S}^{d-1}| \, t^{-1}$$

or, equivalently,

$$\|f-f_{\infty}\|_{L^{2}\left(\mathbb{T}^{d}\times\mathbb{S}^{d-1}
ight)}\geq rac{C}{\sqrt{t}}.$$

3

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 1 □

Theorem (Bernard, S. - 2012)

For all $r \in (0, 1/2)$, there exists an initial condition $f^{in} \in L^{\infty}(\mathbb{T}^d \times \mathbb{S}^{d-1})$ satisfying $f^{in}(x, v) \ge 0$ for a.e. $(x, v) \in \mathbb{T}^d \times \mathbb{S}^{d-1}$ and such that, for each cross section $\sigma \in L^{\infty}(\mathbb{T}^d)$ satisfying $\sigma(x) \ge 0$ for a.e. $x \in \mathbb{T}^d$ and $\sigma(x) = 0$ for a.e. $x \in Y_r$, the solution f of the transport problem satisfies

$$\|f-f_{\infty}\|_{L^{2}\left(\mathbb{T}^{d} imes\mathbb{S}^{d-1}
ight)}\geqrac{\mathcal{C}}{\sqrt{t}}$$

for each $t > r^{1-d}$, where

$$f_{\infty} = \frac{1}{|\mathbb{S}^{d-1}|} \int_{\mathbb{T}^d \times \mathbb{S}^{d-1}} f^{in}(x, v) \, dx dv$$

and C is a positive constant.

- 4 同 6 4 日 6 4 日 6

Numerical simulation of the long-time decay (De Vuyst, S.)

Particle method 10⁹ numerical particles, r = 0.3, $\sigma = 3$ Uniform mesh 100 × 100 × 100 on $\mathbb{T}^2 \times (0, 2\pi)$

F. Salvarani (University of Pavia)

Table of contents

The problem

2 Convergence to equilibrium for non degenerate cross sections

3 Convergence to equilibrium for degenerate cross sections

- Degeneracy in isolated points
- A counterexample
- The geometrical condition

4 References

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definition

The cross section $\sigma \equiv \sigma(x)$ is said to verify the geometrical condition if there exist T_0 and C > 0 such that

$$\int_0^{T_0} \sigma\left(\phi_{x, v}(s)
ight) ds \geq C$$
 a.e. in $(x, v) \in \mathbb{T}^d imes V,$

where $\phi_{x,v}$ designates the linear flow starting at $x \in \mathbb{T}^d$ in the direction $-v \in V$:

$$\phi_{x,v}: t \mapsto x - tv.$$

- The geometrical condition entails that, for a.e. (x, v) ∈ T^d × V, there exists t ∈ (0, T₀) such that φ_{x,v}(t) ∈ {x ∈ T^d | σ(x) > 0}.
- In 1D: geometrical condition always fulfilled for cross sections that are strictly positive on a sub-domain of the interval (0,1) with positive Lebesgue measure, since |v| ≥ v_m > 0.

Definition

The cross section $\sigma \equiv \sigma(x)$ is said to verify the geometrical condition if there exist T_0 and C > 0 such that

$$\int_0^{T_0} \sigma\left(\phi_{x, v}(s)
ight) ds \geq C$$
 a.e. in $(x, v) \in \mathbb{T}^d imes V,$

where $\phi_{x,v}$ designates the linear flow starting at $x \in \mathbb{T}^d$ in the direction $-v \in V$:

$$\phi_{x,v}: t \mapsto x - tv.$$

 The geometrical condition entails that, for a.e. (x, v) ∈ T^d × V, there exists t ∈ (0, T₀) such that φ_{x,v}(t) ∈ {x ∈ T^d | σ(x) > 0}.

In 1D: geometrical condition always fulfilled for cross sections that are strictly positive on a sub-domain of the interval (0,1) with positive Lebesgue measure, since |v| ≥ v_m > 0.

F. Salvarani (University of Pavia)

Definition

The cross section $\sigma \equiv \sigma(x)$ is said to verify the geometrical condition if there exist T_0 and C > 0 such that

$$\int_0^{T_0} \sigma\left(\phi_{x, v}(s)
ight) ds \geq C$$
 a.e. in $(x, v) \in \mathbb{T}^d imes V,$

where $\phi_{x,v}$ designates the linear flow starting at $x \in \mathbb{T}^d$ in the direction $-v \in V$:

$$\phi_{x,v}: t \mapsto x - tv.$$

- The geometrical condition entails that, for a.e. (x, v) ∈ T^d × V, there exists t ∈ (0, T₀) such that φ_{x,v}(t) ∈ {x ∈ T^d | σ(x) > 0}.
- In 1D: geometrical condition always fulfilled for cross sections that are strictly positive on a sub-domain of the interval (0,1) with positive Lebesgue measure, since |v| ≥ v_m > 0.

F. Salvarani (University of Pavia)
Theorem (Bernard, S. - 2012)

Let $\sigma \in L^{\infty}(\mathbb{T}^d)$ be a non-negative cross section satisfying the geometrical condition. Then there exist two constants M > 0 and $\alpha > 0$ such that the solution f of the transport problem satisfies the inequality

$$\left\|f - \int_{\mathbb{T}^d \times V} f^{in}(x, v) \, dx dv \right\|_{L^1(\mathbb{T}^d \times V)} \leq M e^{-\alpha t} \left\|f^{in}\right\|_{L^1(\mathbb{T}^d \times V)}$$

for all $t \in \mathbb{R}_+$.

Conversely, if the solution of the linear Boltzmann equation converges uniformly in L^1 to its equilibrium state at an exponential rate, then σ must satisfy the geometrical condition.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

The semigroup formulation of the problem Define the transport operator $B := A_0 - M_\sigma + K_\sigma$ with domain $D(B) = \left\{ f \in L^1 \left(\mathbb{T}^d \times V \right) \mid v \cdot \nabla_x f \in L^1 \left(\mathbb{T}^d \times V \right) \right\}.$

The collisionless transport operator is

$$(A_0f)(x,v) := -v \cdot \nabla_x f$$
 for each $f \in D(A_0)$,

with domain $D(A_0) = D(B)$.

The absorption and the scattering operator are

$$(M_{\sigma}f)(x,v):=\sigma(x)f(x,v) ext{ for each } f\in L^1\left(\mathbb{T}^d imes V
ight)$$

and

$$(K_{\sigma}f)(x,v) := \sigma(x) \int_{V} k(v,w) f(x,w) dw \text{ for each } f \in L^{1} \left(\mathbb{T}^{d} \times V \right)$$

The abstract Cauchy problem

$$\begin{cases} \frac{d}{dt}f = Bf\\ f(0, x, v) = f^{in}(x, v) \in \mathbb{T}^d \times V. \end{cases}$$

The operator *B* generates a strongly continuous positive semigroup on $L^1(\mathbb{T}^d \times V) \mathcal{T} \equiv (T_t)_{t \ge 0}$

GOAL: prove the existence of a pair (M, α) of positive constants such that

$$\|T_t - P\|_{\mathcal{L}\left(L^1\left(\mathbb{T}^d \times V\right)\right)}(t) \leq Me^{-\alpha t},$$

where

$$P(f) = \int_{\mathbb{T}^d \times V} f(x, v) dx dv$$
 for each $f \in L^1(\mathbb{T}^d \times V)$.

- 4 同 6 4 日 6 4 日 6

Theorem

Let $(G_t)_{t\geq 0}$ be a bounded, quasi-compact, irreducible, positive C_0 -semigroup on $L^1(\mathbb{T}^d\times V)$ with spectral bound zero. Then there exist a positive rank-one projection P and suitable constants $C\geq 1$ and a>0 such that

$$\|G_t - P\|_{\mathcal{L}(L^1(\mathbb{T}^d \times V))} \leq Ce^{-at}$$
 for each $t \geq 0$.

Check, under the assumptions above, that

- the spectral bound of B is zero,
- \mathcal{T} is irreducible,
- the geometrical condition implies that ${\mathcal T}$ is quasi-compact.

イロト 不得下 イヨト イヨト 二日

Theorem

Let $(G_t)_{t\geq 0}$ be a bounded, quasi-compact, irreducible, positive C_0 -semigroup on $L^1(\mathbb{T}^d\times V)$ with spectral bound zero. Then there exist a positive rank-one projection P and suitable constants $C\geq 1$ and a>0 such that

$$\|G_t - P\|_{\mathcal{L}(L^1(\mathbb{T}^d \times V))} \leq Ce^{-at}$$
 for each $t \geq 0$.

Check, under the assumptions above, that

- the spectral bound of B is zero,
- \mathcal{T} is irreducible,
- the geometrical condition implies that ${\mathcal T}$ is quasi-compact.

イロト 不得下 イヨト イヨト 二日

Theorem

Let $(G_t)_{t\geq 0}$ be a bounded, quasi-compact, irreducible, positive C_0 -semigroup on $L^1(\mathbb{T}^d\times V)$ with spectral bound zero. Then there exist a positive rank-one projection P and suitable constants $C\geq 1$ and a>0 such that

$$\|G_t - P\|_{\mathcal{L}(L^1(\mathbb{T}^d \times V))} \leq Ce^{-at}$$
 for each $t \geq 0$.

Check, under the assumptions above, that

• the spectral bound of B is zero,

• \mathcal{T} is irreducible,

• the geometrical condition implies that ${\mathcal T}$ is quasi-compact.

イロト 不得下 イヨト イヨト 二日

Theorem

Let $(G_t)_{t\geq 0}$ be a bounded, quasi-compact, irreducible, positive C_0 -semigroup on $L^1(\mathbb{T}^d\times V)$ with spectral bound zero. Then there exist a positive rank-one projection P and suitable constants $C\geq 1$ and a>0 such that

$$\|G_t - P\|_{\mathcal{L}(L^1(\mathbb{T}^d \times V))} \leq Ce^{-at}$$
 for each $t \geq 0$.

Check, under the assumptions above, that

- the spectral bound of B is zero,
- \mathcal{T} is irreducible,
- the geometrical condition implies that \mathcal{T} is quasi-compact.

(日) (同) (三) (三) (三)

Theorem

Let $(G_t)_{t\geq 0}$ be a bounded, quasi-compact, irreducible, positive C_0 -semigroup on $L^1(\mathbb{T}^d\times V)$ with spectral bound zero. Then there exist a positive rank-one projection P and suitable constants $C\geq 1$ and a>0 such that

$$\|G_t - P\|_{\mathcal{L}\left(L^1\left(\mathbb{T}^d \times V\right)\right)} \leq Ce^{-at}$$
 for each $t \geq 0$.

Check, under the assumptions above, that

- the spectral bound of B is zero,
- \mathcal{T} is irreducible,
- the geometrical condition implies that ${\mathcal T}$ is quasi-compact.

イロト 人間ト イヨト イヨト

The spectral bound of ${\mathcal T}$

Proposition

Let *B* be the transport operator with domain D(B) and let \mathcal{T} be the semigroup generated by *B*. Then $s(\mathcal{T}) = s(B) = 0$.

 \mathcal{T} is a strongly continuous positive semigroup in $L^1(\mathbb{T}^d \times V) \Longrightarrow$ its spectral bound $s(\mathcal{T})$ is equal to its growth bound $\omega_0(\mathcal{T})$:

$$s(B) = \omega_0\left(\mathcal{T}
ight) := \inf \left\{ \omega \in \mathbb{R} \; \left| \; \exists \; M \geq 1 : \left\| \left. \mathcal{T}_t
ight\|_{\mathcal{L}\left(L^1\left(\mathbb{T}^d imes \; V
ight)
ight)} \leq M e^{\omega t} \; orall t \geq 0
ight\}
ight\}$$

 $\omega_0(\mathcal{T}) = \frac{1}{t} \ln r(\mathcal{T}_t) \text{ for each } t > 0, \qquad r(\mathcal{T}_t) = \sup\{|\lambda| : \lambda \in \sigma(\mathcal{T}_t)\}$

For each $t \geq 0$,

 $r\left(\mathit{T}_{t}\right) \leq \left\|\mathit{T}_{t}\right\|_{\mathcal{L}\left(L^{1}\left(\mathbb{T}^{d}\times \ V\right)\right)} = 1 \text{ and } \mathit{T}_{t}\left(\mathbb{1}_{\mathbb{T}^{d}\times \ V}\right) = \mathbb{1}_{\mathbb{T}^{d}\times \ V}$

 $r(T_t) = 1$ for each $t \ge 0$

Irreducibility

Definition

Banach lattice (of type L^p): a real Banach space E endowed with an ordering \geq compatible with the vector structure such that, if $f, g \in E$ and $|f| \geq |g|$, then $||f||_E \geq ||g||_E$.

Example: the space $L^1(\mathbb{T}^d \times V)$, endowed with the standard L^1 -norm, with the partial order defined by

 $f \ge 0$ if and only if $f(x, v) \ge 0$ a.e. on $\mathbb{T}^d \times V$.

Let *E* be a Banach lattice. The space $\mathcal{L}(E)$ of bounded operators on *E* can be ordered in the following way: Let $A, B \in \mathcal{L}(E)$ then

 $0 \le A \le B$ if and only if, for each nonnegative $x \in E$, $0 \le Ax \le Bx$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Order ideals

Definition

A closed vector subspace W of a Banach lattice E is called order ideal if, when $x \in W$ and $y \in E$, $|y| \le |x|$ implies $y \in W$. Notation: $\mathcal{I}(E)$ is the set of the order ideals of E.

Definition

Let G be a operator in a Banach lattice E and $\mathcal{G} \equiv (G_t)_{t \ge 0}$ be a semigroup.

An order ideal W is a *G*-invariant if $G(W) \subset W$. Notation: $\mathcal{I}(G) := \{ W \in \mathcal{I}(E) \mid G(W) \subset W \}$ is the set of *G*-in

$$\mathcal{I}(\mathcal{G}) := \bigcap_{t \ge 0} \mathcal{I}(G_t)$$

and we say that an order ideal W is a $\mathcal G$ -invariant if $W\in\mathcal I\left(\mathcal G
ight).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Order ideals

Definition

A closed vector subspace W of a Banach lattice E is called order ideal if, when $x \in W$ and $y \in E$, $|y| \le |x|$ implies $y \in W$. Notation: $\mathcal{I}(E)$ is the set of the order ideals of E.

Definition

Let G be a operator in a Banach lattice E and $\mathcal{G} \equiv (G_t)_{t \ge 0}$ be a semigroup.

An order ideal W is a G-invariant if $G(W) \subset W$.

Notation: $\mathcal{I}(G) := \{ W \in \mathcal{I}(E) \mid G(W) \subset W \}$ is the set of *G*-invariants. We denote

$$\mathcal{I}(\mathcal{G}) := \bigcap_{t \ge 0} \mathcal{I}(\mathcal{G}_t)$$

and we say that an order ideal W is a $\mathcal G ext{-invariant}$ if $W\in\mathcal I\left(\mathcal G
ight).$

イロト イポト イヨト イヨト

Order ideals

Definition

A closed vector subspace W of a Banach lattice E is called order ideal if, when $x \in W$ and $y \in E$, $|y| \le |x|$ implies $y \in W$. Notation: $\mathcal{I}(E)$ is the set of the order ideals of E.

Definition

Let G be a operator in a Banach lattice E and $\mathcal{G} \equiv (G_t)_{t \ge 0}$ be a semigroup.

An order ideal W is a G-invariant if $G(W) \subset W$.

Notation: $\mathcal{I}(G) := \{ W \in \mathcal{I}(E) \mid G(W) \subset W \}$ is the set of *G*-invariants. We denote

$$\mathcal{I}(\mathcal{G}) := \bigcap_{t \ge 0} \mathcal{I}(\mathcal{G}_t)$$

and we say that an order ideal W is a \mathcal{G} -invariant if $W \in \mathcal{I}(\mathcal{G})$.

Irreducibility of ${\mathcal T}$

Definition

An operator $G \in \mathcal{L}\left(L^1\left(\mathbb{T}^d \times V\right)\right)$ is said to be irreducible if and only if

$$\mathcal{I}(G) = \left\{ \{0\}, L^1\left(\mathbb{T}^d \times V\right) \right\}.$$

Likewise, a semigroup $\mathcal G$ is irreducible if

$$\mathcal{I}\left(\mathcal{G}
ight)=\left\{\left\{0
ight\},L^{1}\left(\mathbb{T}^{d} imes V
ight)
ight\}.$$

Proposition

The semigroup \mathcal{T} generated by the transport operator B is irreducible in $L^1(\mathbb{T}^d \times V)$.

F. Salvarani (University of Pavia)

Degenerate kinetic equations

February 15th, 2013 34 / 45

・白マト ・ヨト ・ヨー

Irreducibility of ${\mathcal T}$

Definition

An operator $\ensuremath{\mathcal{G}} \in \mathcal{L}\left(L^1\left(\mathbb{T}^d imes \ V
ight)
ight)$ is said to be irreducible if and only if

$$\mathcal{I}(G) = \left\{ \{0\}, L^1\left(\mathbb{T}^d \times V\right) \right\}.$$

Likewise, a semigroup \mathcal{G} is irreducible if

$$\mathcal{I}(\mathcal{G}) = \left\{ \{0\}, L^1\left(\mathbb{T}^d \times V\right) \right\}.$$

Proposition

The semigroup \mathcal{T} generated by the transport operator B is irreducible in $L^1(\mathbb{T}^d \times V)$.

F. Salvarani (University of Pavia)

イロト イロト イロト

Irreducibility of ${\mathcal T}$

Definition

An operator $G \in \mathcal{L}\left(L^1\left(\mathbb{T}^d \times V\right)\right)$ is said to be irreducible if and only if

$$\mathcal{I}(G) = \left\{ \{0\}, L^1\left(\mathbb{T}^d \times V\right) \right\}.$$

Likewise, a semigroup \mathcal{G} is irreducible if

$$\mathcal{I}\left(\mathcal{G}
ight)=\left\{\left\{0
ight\},L^{1}\left(\mathbb{T}^{d} imes V
ight)
ight\}.$$

Proposition

The semigroup \mathcal{T} generated by the transport operator B is irreducible in $L^1(\mathbb{T}^d \times V)$.

F. Salvarani (University of Pavia)

< 白! ▶

Quasi-compactness of \mathcal{T} I

Definition

The essential resolvent of $A \in \mathcal{L}(E)$ is

$$\rho_{ess}(A) := \{\lambda \in \mathbb{C} \mid \lambda I - A \text{ is Fredholm}\},$$

and its essential spectrum is

 $\sigma_{ess}(A) := \mathbb{C} \setminus \rho_{ess}(A).$

The essential radius of A is

 $r_{ess}(A) := \sup \left\{ \left| \lambda \right| \, \left| \, \lambda \in \sigma_{ess}(A) \right\}
ight\}.$

Quasi-compactness of ${\mathcal T}$ II

Definition

A semigroup $\mathcal{G} \equiv (G_t)_{t \geq 0}$ is said to be quasi-compact on $L^1(\mathbb{T}^d \times V)$ if and only if there exist a compact operator C on $L^1(\mathbb{T}^d \times V)$ and a constant $t_0 > 0$ such that

 $\|G_{t_0}-C\|_{\mathcal{L}\left(L^1\left(\mathbb{T}^d\times V\right)\right)}<1.$

Proposition

The semigroup ${\mathcal T}$ is quasi-compact on $L^1\left({\mathbb T}^d imes V
ight)$ if and only if

there exists $t_o > 0$ such that $r_{ess}(T_{t_o}) < 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quasi-compactness of \mathcal{T} II

Definition

A semigroup $\mathcal{G} \equiv (G_t)_{t \geq 0}$ is said to be quasi-compact on $L^1(\mathbb{T}^d \times V)$ if and only if there exist a compact operator C on $L^1(\mathbb{T}^d \times V)$ and a constant $t_0 > 0$ such that

$$\|G_{t_0}-C\|_{\mathcal{L}\left(L^1\left(\mathbb{T}^d\times V\right)\right)}<1.$$

Proposition

The semigroup ${\mathcal T}$ is quasi-compact on $L^1\left({\mathbb T}^d imes V
ight)$ if and only if

there exists $t_o > 0$ such that $r_{ess}(T_{t_o}) < 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quasi-compactness of $\mathcal T$ II

Definition

A semigroup $\mathcal{G} \equiv (G_t)_{t \geq 0}$ is said to be quasi-compact on $L^1(\mathbb{T}^d \times V)$ if and only if there exist a compact operator C on $L^1(\mathbb{T}^d \times V)$ and a constant $t_0 > 0$ such that

$$\|G_{t_0}-C\|_{\mathcal{L}\left(L^1\left(\mathbb{T}^d\times V\right)\right)}<1.$$

Proposition

The semigroup \mathcal{T} is quasi-compact on $L^1\left(\mathbb{T}^d \times V\right)$ if and only if

there exists $t_o > 0$ such that $r_{ess}(T_{t_o}) < 1$.

F. Salvarani (University of Pavia)

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A control of the essential radius of ${\cal T}$

Define $\mathcal{S} \equiv (S_t)_{t \geq 0}$ by the formula

$$S_tg(x,v):=e^{-\int_0^t\sigma(x-vs)ds}g(x-vt,v) \ \ \mbox{for all} \ g\in L^1\left(\mathbb{T}^d imes V
ight).$$

The semigroup \mathcal{T} can be seen as a perturbation of \mathcal{S} by Duhamel's formula

$$T_t = S_t + \int_0^t S_s K_\sigma T_{t-s} ds.$$
(1)

Proposition

Under the assumptions above we have, for each t > 0,

 $r_{ess}\left(T_{t}
ight)\leq r\left(S_{t}
ight).$

F. Salvarani (University of Pavia)

A control of the essential radius of ${\mathcal T}$

Define $\mathcal{S} \equiv (S_t)_{t \geq 0}$ by the formula

$$S_t g(x,v) := e^{-\int_0^t \sigma(x-vs)ds} g(x-vt,v) ext{ for all } g \in L^1\left(\mathbb{T}^d imes V
ight).$$

The semigroup ${\mathcal T}$ can be seen as a perturbation of ${\mathcal S}$ by Duhamel's formula

$$T_t = S_t + \int_0^t S_s K_\sigma T_{t-s} ds.$$
(1)

Proposition

Under the assumptions above we have, for each t > 0,

 $r_{ess}(T_t) \leq r(S_t).$

The asymptotic behaviour of the essential radius

In order to prove that \mathcal{T} is quasi-compact on $L^1(\mathbb{T}^d \times V)$, it is enough to prove that for some $t_0 > 0$, $r(S_{t_0}) < 1$:

Proposition

If σ verifies the geometrical condition, then

 $\lim_{t\to+\infty}r(S_t)=0.$

The geometrical condition means that there exist T_0 and C such that

$$\int_0^{T_0} \sigma(x-sv) ds > C$$
 a.e. in $(x,v) \in \mathbb{T}^d imes V.$

- ロ ト - 4 同 ト - 4 回 ト - - - 回

The asymptotic behaviour of the essential radius II Since $\sigma \ge 0$ we have, for each $t > T_0$ ($\lfloor x \rfloor$: largest integer $\le x$):

$$\int_{0}^{t} \sigma(x - sv) ds \ge \int_{0}^{\left\lfloor \frac{t}{T_{0}} \right\rfloor T_{0}} \sigma(x - sv) ds$$
$$\ge \sum_{n=0}^{\left\lfloor \frac{t}{T_{0}} \right\rfloor} \int_{0}^{T_{0}} \sigma\left((x - nT_{0}v) - sv\right) ds \ge \left\lfloor \frac{t}{T_{0}} \right\rfloor C.$$

Hence

$$\|S_t\|_{\mathcal{L}\left(L^1\left(\mathbb{T}^d\times V\right)\right)} \leq e^{-\left\lfloor \frac{t}{T_0}
ight
vert^C}$$
 for each $t \geq T_0$.

Since $r(S_t) \leq ||S_t||_{\mathcal{L}(L^1(\mathbb{T}^d \times V))}$ we deduce $r(S_t) \leq e^{-C\left\lfloor \frac{t}{T_0} \right\rfloor}$ for each $t \geq T_0 \Longrightarrow \lim_{t \to +\infty} r(S_t) = 0.$

イロト イポト イヨト イヨト 三日

The characterization of *P* Sketch of the proof:

- If σ verifies the geometrical condition, then $\lim_{t\to+\infty} r_{ess}(T_t) = 0$.
- The spectrum of B is discrete. In particular, s(A) is a pole of the resolvent R(A).
- B is the generator of an irreducible semigroup T: the residue P associated to s(A) = 0 is a projection onto KerB, that is one-dimensional.
- By conservation of the mass, we have, for each $f \in L^1(\mathbb{T}^d \times V)$,

$$\int_{\mathbb{T}^d \times V} Pf(x, v) \, dx dv = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

• By convexity (i.e. Jensen's inequality),

$$Pf = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

- 4 間 医 4 国 医 4 国 5

Sketch of the proof:

- If σ verifies the geometrical condition, then $\lim_{t\to+\infty} r_{ess}(T_t) = 0$.
- The spectrum of B is discrete. In particular, s(A) is a pole of the resolvent R(A).
- B is the generator of an irreducible semigroup T: the residue P associated to s(A) = 0 is a projection onto KerB, that is one-dimensional.
- By conservation of the mass, we have, for each $f \in L^1\left(\mathbb{T}^d imes V
 ight)$,

$$\int_{\mathbb{T}^d \times V} Pf(x, v) \, dx dv = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

• By convexity (i.e. Jensen's inequality),

$$Pf = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of the proof:

- If σ verifies the geometrical condition, then $\lim_{t\to+\infty} r_{ess}(T_t) = 0$.
- The spectrum of *B* is discrete. In particular, *s*(*A*) is a pole of the resolvent *R*(*A*).
- B is the generator of an irreducible semigroup T: the residue P associated to s(A) = 0 is a projection onto KerB, that is one-dimensional.
- By conservation of the mass, we have, for each $f \in L^1\left(\mathbb{T}^d imes V
 ight)$,

$$\int_{\mathbb{T}^d \times V} Pf(x, v) \, dx dv = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

• By convexity (i.e. Jensen's inequality),

$$Pf = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

- 4 同 6 4 日 6 4 日 6

Sketch of the proof:

- If σ verifies the geometrical condition, then $\lim_{t\to+\infty} r_{ess}(T_t) = 0$.
- The spectrum of B is discrete. In particular, s(A) is a pole of the resolvent R(A).
- B is the generator of an irreducible semigroup T: the residue P associated to s(A) = 0 is a projection onto KerB, that is one-dimensional.

• By conservation of the mass, we have, for each $f \in L^1(\mathbb{T}^d \times V)$,

$$\int_{\mathbb{T}^d \times V} Pf(x, v) \, dx dv = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

• By convexity (i.e. Jensen's inequality),

$$Pf = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

イロト 人間ト イヨト イヨト

Sketch of the proof:

- If σ verifies the geometrical condition, then $\lim_{t\to+\infty} r_{ess}(T_t) = 0$.
- The spectrum of B is discrete. In particular, s(A) is a pole of the resolvent R(A).
- B is the generator of an irreducible semigroup T: the residue P associated to s(A) = 0 is a projection onto KerB, that is one-dimensional.
- By conservation of the mass, we have, for each $f \in L^1\left(\mathbb{T}^d imes V
 ight)$,

$$\int_{\mathbb{T}^d\times V} Pf(x,v)\,dxdv = \int_{\mathbb{T}^d\times V} f(x,v)\,dxdv.$$

• By convexity (i.e. Jensen's inequality),

$$Pf = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

Sketch of the proof:

- If σ verifies the geometrical condition, then $\lim_{t\to+\infty} r_{ess}(T_t) = 0$.
- The spectrum of B is discrete. In particular, s(A) is a pole of the resolvent R(A).
- B is the generator of an irreducible semigroup T: the residue P associated to s(A) = 0 is a projection onto KerB, that is one-dimensional.
- By conservation of the mass, we have, for each $f \in L^1\left(\mathbb{T}^d imes V
 ight)$,

$$\int_{\mathbb{T}^d\times V} Pf(x,v)\,dxdv = \int_{\mathbb{T}^d\times V} f(x,v)\,dxdv.$$

• By convexity (i.e. Jensen's inequality),

$$Pf = \int_{\mathbb{T}^d \times V} f(x, v) \, dx dv.$$

(4) E (4) E (4)

On the sharpness of the geometrical condition

The quasi-compactness of \mathcal{T} in $L^1(\mathbb{T}^d \times V)$ implies the quasi-compactness of \mathcal{S} in $L^1(\mathbb{T}^d \times V)$ as a consequence of:

Proposition (Caselles - 1987)

Let *E* be a Banach lattice. Let $S, T \in \mathcal{L}(E)$ be such that

 $0 \leq S \leq T$.

If $r(T) \leq 1$ and $r_{ess}(T) < 1$, then $r_{ess}(S) < 1$.

Lemma

The semigroup S is quasi-compact on $L^1(\mathbb{T}^d \times V)$ if \mathcal{T} is quasi-compact on $L^1(\mathbb{T}^d \times V)$.

イロト イポト イヨト イヨト 三日

On the sharpness of the geometrical condition

The quasi-compactness of \mathcal{T} in $L^1(\mathbb{T}^d \times V)$ implies the quasi-compactness of \mathcal{S} in $L^1(\mathbb{T}^d \times V)$ as a consequence of:

Proposition (Caselles - 1987)

Let *E* be a Banach lattice. Let $S, T \in \mathcal{L}(E)$ be such that

 $0 \leq S \leq T$.

If
$$r(T) \leq 1$$
 and $r_{ess}(T) < 1$, then $r_{ess}(S) < 1$.

Lemma

The semigroup S is quasi-compact on $L^1(\mathbb{T}^d \times V)$ if \mathcal{T} is quasi-compact on $L^1(\mathbb{T}^d \times V)$.

イロト イポト イヨト イヨト

The guasi-compactness of \mathcal{T} and \mathcal{S} By Duhamel's Formula:

$$T_t = S_t + \int_0^t S_s \mathcal{K}_\sigma T_{t-s} ds, ext{ for all } t \geq 0.$$

 \mathcal{T} and \mathcal{S} are positive semigroups and \mathcal{K}_{σ} is a positive operator, \Longrightarrow $\int_{0}^{t} S_{s} K_{\sigma} T_{t-s} ds \geq 0 \text{ for each } t \geq 0.$

The equality above implies that $T_t \ge S_t$ for each $t \ge 0$. Besides,

$$r(T_t) = 1$$
 for each $t \ge 0$.

Since \mathcal{T} is quasi-compact on $L^1(\mathbb{T}^d \times V)$, there exists t_0 such that $r_{\rm ess}(T_{t_0}) < 1.$

Hence Caselles' Theorem implies that

 $r_{ess}(S_{t_0}) < 1.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

The geometrical condition

Assume that
$$||S_t||_{\mathcal{L}(L^1(\mathbb{T}^d \times V))} \to 0$$
 as $t \to +\infty$.
 $S \equiv (S_t)_{t>0}$ is defined by the formula

$$S_tg(x,v):=e^{-\int_0^t\sigma(x-vs)ds}g(x-vt,v) ext{ for all }g\in L^1\left(\mathbb{T}^d imes V
ight).$$

This implies that there exist T_0 and C such that

$$\int_0^{T_0} \sigma(x-sv) ds > C \text{ a.e. in } (x,v) \in \mathbb{T}^d \times V.$$

< 回 > < 三 > < 三 >

Table of contents

The problem

2 Convergence to equilibrium for non degenerate cross sections

3 Convergence to equilibrium for degenerate cross sections

- Degeneracy in isolated points
- A counterexample
- The geometrical condition

4 References

< 回 > < 三 > < 三 >

Bibliography

Laurent Desvillettes, FS, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Mat. 133, 8 (2009) 848-858

Étienne Bernard, FS, *On the convergence to equilibrium for degenerate transport problems*, Arch. Rational Mech. Anal., in press (2013)

Étienne Bernard, FS, On the exponential decay to equilibrium of the degenerate linear Boltzmann equation, preprint (2012)

Florian De Vuyst, FS, *Numerical investigation of the long-time behaviour for degenerate neutron transport*, article in preparation (2013)

- ロ ト - 4 同 ト - 4 回 ト - - - 回