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The linear transport equation (classically)

Given b : R+ ×Rd → Rd smooth vectorfield, u smooth. Consider the Cauchy
problem in R+ ×Rd

{
∂tu(t, x) + b(t, x) · ∇u(t, x) = 0
u(0, x) = u(x)

(1)

and the flow generated by b :
{

∂tΦs,t(x) = b(t, Φs,t(x))

Φs,s(x) = x

Solutions to (??) are constant on the trajectories of b :

d
dt

u(t, Φ0,t(x)) = ∂tu(t, Φ0,t(x)) + ∂tΦ0,t(x) · ∇u(t, Φ0,t(x)) = 0

Method of characteristics
The unique solution to (??) is u(t, x) = u(Φ−1

0,t (x)).



Non-smooth vectorfields

Weak formulation {
∂tu + div (bu) − (div b)u = 0
u(0, x) = u(x)

Testing with smooth θ

∫
θ(x)u(t, x)dx =

∫
θ(x)u(x)dx

+

∫ t

0
ds

∫
(u(s, x)b(s, x) · ∇θ(x) + u(s, x)θ(x)div b(s, x))dx

! Existence of L∞ weak solutions when b ∈ Lp, div b ∈ L1
loc and u ∈ L∞

! [DiPerna-Lions] Renormalized solutions: uniqueness and stability of
L∞ weak solutions when b ∈ L1(W1,p) ∩ L∞ and div b ∈ L∞

! [Ambrosio] Renormalized solutions for BV vectorfields
! Use the transport equation to select a flow Φ defined almost everywhere



SDEs with non-smooth coefficients

Idea:
Perturb the equation of characteristics by an additive Brownian noise acting
on all components.

Why?

Consider the SDE in Rd

dXt = b(t, Xt)dt + dWt, X0 = x0

! Strong solutions for b Lipshitz (+ linear growth) by fixed point method
! [Veretennikov] b bounded ⇒ uniqueness of strong solutions
! [Krylov-Röckner] Strong uniqueness for b in Sobolev spaces
! [Davie] b bounded ⇒ unique solution for a.e. Brownian path

⇒ The noise regularizes the flow of the vectorfield b⇐



Stochastic flow

To implement the method of characteristics we need information on
dependence on initial conditions.

Definition
A stochastic flow is a family of maps {Φs,t : Rd → Rd}0!s!t!T such that
! Φs,t(x) is σ({Wr − Wq}s!q!r!t) measurable for any x ∈ Rd, 0 ! s ! t ! T;
! limt→s+ Φs,t(x) = x, a.s. for any x, s, t;
! Φu,t(Φs,u(x)) = Φs,t(x)

Theorem (Kunita)

If b ∈ C1,α then there exists a C1,α′ -stochastic flow Φs,t for any α ′ < α solving the
SDE

Φs,t(x) = x +

∫ t

s
b(u, Φs,u(x))du + Wt − Ws

for any x ∈ Rd.



The Itô trick (I)

The regularization effect can be understood easily in the case b(t, x) = b(x).
Consider

Xt = x +

∫ t

0
b(Xs)ds + Wt

Try the Itô trick: interpret the integral over time as a correction in an Itô
formula:

G(Xt) = G(x) +

∫ t

0
∇G(Xs)dWs +

∫ t

0
LG(Xs)ds

with L = ∆/2 + b · ∇. Assume that we can solve the elliptic problem

λG − LG = b

for some λ > 0 ( maybe very large ), then

Xt + G(Xt) = x + G(x) + Wt +

∫ t

0
∇G(Xs)dWs −

∫ t

0
λG(Xs)ds

where G "has two derivatives more" than b. Setting ψ(x) = x + G(x) we get

ψ(Xt) = ψ(x) +

∫ t

0
∇ψ(Xs)dWs −

∫ t

0
λG(Xs)ds



The Itô trick (II)

Theorem (Elliptic estimates)
For any ε > 0, ε ′ < ε, b ∈ Cε, the elliptic equation λG − LG = b has a solution
G ∈ C2,ε for which ‖G‖2,ε′ → 0 as λ → ∞.

For λ large enough∇ψ = 1 +∇G is invertible and ψ has inverse ψ−1.
Let Yt = ψ(Xt), y = ψ(x):

Yt = y +

∫ t

0
σ̃(Ys)dWs +

∫ t

0
b̃(Ys)ds

where σ̃(y) = ∇ψ ◦ψ−1(y) and b̃(y) = λG ◦ψ−1(y).

We have σ̃ ∈ C1,ε′ , b̃ ∈ C2,ε′ and there exists a C1,ε′ -stochastic flow ϕ solving

ϕs,t(y) = y +

∫ t

s
σ̃(ϕs,u(y))dWu +

∫ t

0
b̃(ϕs,u(y))du



Stochastic flow for Cε vectorfields

By letting φs,t = ψ−1 ◦ϕs,t ◦ψ we obtain a C1,ε′ stochastic flow satisfying

φs,t(x) = x +

∫ t

s
b(φs,u(x))du + Wt − Ws

! this flow is the unique strong solution to the SDE
! it does not depend on the choice of λ.
! we have an equation for ∇φs,t(x):

∇ψ(φs,t(x))∇φs,t(x) = ∇ψ(x) +

∫ t

s
λ∇G(φs,u(x))∇φs,u(x)du

+

∫ t

s
∇2ψ(φs,u(x))∇φs,u(x)dWu

! by a stopping procedure we can assume b locally in Cε (+ linear growth)



Push-forward

For smooth b we have
∫

θ(φs,t(x))dx =

∫
θ(x)

dx
Js,t(x)

where Js,t(x) = | det∇φs,t(x)| (Jacobian determinant) satisfy the differential
equation

d
dt

Js,t(x) = div b(φs,t(x)) Js,t(x), Js,s(x) = 1.

(the stochastic perturbation is solenoidal). Then

Js,t(x) = exp
(∫ t

s
div b(φs,u(x))du

)

For b ∈ Cε by an approximation procedure and another Itô trick we get

Js,t(x) = exp
(

Γ(φs,t(x)) − Γ(x) +

∫ t

s
∇Γ(φs,u(x))dWu +

∫ t

s
λΓ(φs,u(x))du

)

where Γ ∈ C1,ε′ solve λΓ − LΓ = div b in the sense of distributions.



Stochastic transport equation

The simplest stochastic perturbation which is compatible with the method of
characteristics leads to the Stratonovich SPDE






dtut + bt · ∇ut dt +
d∑

i=1

∇iut ◦ dWi
t = 0

u0(x) = u(x)

and to the related SDE for the flow of characteristics:
{

dtΦs,t(x) = b(t, Φs,t(x))dt + dWt

Φs,s(x) = x

Euristically we must have again ut(x) = u(Φ−1
0,t (x)).



Assume that b is locally bounded and div b ∈ Lq
loc.

Definition

Given u ∈ Lp
loc, for some p " 1 a solution of the stochastic transport equation

(STE) in Lp
loc is a measurable function (u(t, x, ω), t " 0, x ∈ Rd, ω ∈ Ω) such

that
(i) for P-a.e. ω ∈ Ω, x ∈ Rd, R > 0, supt∈[0,T]

∫
B(x,R) |u(t, x, ω)|p dx < ∞

(ii) for any test function θ ∈ C0
0(R

d), the process t *→
∫
Rd u(t, x)θ(x)dx is

continuous and Ft-adapted;
(iii) for any test function θ ∈ C∞

0 (Rd), the process t *→
∫
Rd u(t, x)θ(x)dx is an

Ft-semimartingale satisfying

∫

Rd
u(t, x)θ(x)dx =

∫

Rd
u(x)θ(x)dx +

d∑

i=1

∫ t

0

(∫

Rd
u(s, x)Diθ(x)dx

)
◦ dWi

s

+

∫ t

0
ds

∫

Rd
u(s, x)[b(x) · ∇θ(x) + div b(x)θ(x)]dx



Main result

Theorem
Assume b ∈ Cε and div b ∈ Lq and ε > d/q. The STE has a unique solution u for
any u ∈ Lp

loc and u(t, x) = u(φ−1
0,t (x)).

Note that by the pushforward formula
∫

Rd
f (x)g ◦ φs,t(x)Js,t(x)dx =

∫

Rd
f ◦ φ−1

s,t (x)g(x)dx

with Js,t(x) ! C locally. So if f ∈ Lp
loc, g ∈ Lq

loc we have f ◦ φ−1
s,t ∈ Lp

loc and
∫

A
|f ◦ φ−1

s,t (x)|pdx =

∫

φ−1
s,t (A)

|f (x)|pJs,t(x)dx < ∞.



Existence
First we need to prove that

∫
u(t, x)θ(x)dx is a semimartingale.

Let φt = φ0,t. Take a smooth test function θ, by Itô formula

θ(φt(y)) = θ(y) +

∫ t

0
Lbθ(φs(y))ds +

∫ t

0
∇θ(φs(y)) · dWs.

Let Jε
t (y) the Jacobian determinant of the flow φε

t for the regularized
vectorfield bε. Since bε is smooth: dJε

t (y) = div bε(φt(y))Jε
t (y)dt.

Then
∫

u(y)θ(φt(y))Jε
t (y)dy =

∫
u(y)θ(y)dy +

∫ t

0
ds

∫
u(y)Lbθ(φs(y))Jε

s (y)dy

+

∫ t

0
ds

∫
u(y)θ(φs(y))div bε(φs(y))Jε

s (y)dy

+

∫ t

0
dWs ·

∫
u(y)∇θ(φs(y))Jε

s (y)dy

In the limit ε → 0 each term converges so

lim
ε→0

∫
u(y)θ(φt(y))Jε

t (y)dy =

∫
u(y)θ(φt(y))Jt(y)dy =

∫
u(t, y)θ(y)dy

is a semi-martingale.



Next we need to prove that the semimartingale
∫

u(t, x)θ(x)dx satisfy the
stochastic transport equation.
By the Stratonovic-Itô formula

θ(φt(y)) = θ(y) +

∫ t

0
b · ∇θ(φs(y))ds +

∫ t

0
∇θ(φs(y)) ◦ dWs.

Then
∫

u(y)θ(φt(y))Jε
t (y)dy =

∫
u(y)θ(y)dy +

∫ t

0
ds

∫
u(y)b · ∇θ(φs(y))Jε

s (y)dy

+

∫ t

0
ds

∫
u(y)θ(φs(y))div bε(φs(y))Jε

s (y)dy

+

∫ t

0
dWs ◦

∫
u(y)∇θ(φs(y))Jε

s (y)dy

and take the limit ε → 0 to conclude.



Uniqueness

Goal
Prove that if u(t, x) solve the STE then we must have u(t, x) = u(φ−1

t (x)).

We start by smoothing u. Define

uε(t, y) =

∫
u(t, x)ϑε (y − x) dx, u0,ε(y) =

∫
u(x)ϑε (y − x) dx.

Since u is a solution to STE we get

uε(t, y) = u0,ε(y) +

∫ t

0

[∫
u(s, x)b(x) · ∇xϑε(y − x)dx

]
ds

+

∫ t

0
ds

∫
u(s, x)div b(x)ϑε(y − x)dx

+
d∑

i=1

∫ t

0

[∫
u(s, x)Dxiϑε (y − x) dx

]
◦ dWi

s



Let bδ = ϑδ ∗ b and let φδ the associated flow.

By Stratonovich version of Itô-Wentzel calculus

d
dt

uε(t, φδ
t (x)) =

{∫
u(t, z)

[
(b(z) − bδ(y)) · ∇zϑε (y − z) + div b(z)ϑε(y − z)

]
dz

}

y=φδ
t (x)

Test against ρ ∈ C∞
0 (Rd) and perform a change of variables

d
dt

∫
uε(t, φδ

t x)ρ(x)dx

=

∫ ∫
u(t, x ′)

[[
b(z) − bδ(y)

]
· ∇zϑε (y − z) + div b(z)ϑε(y − z)

]

y=φδ
t (x)

dzρ(x)dx

=

∫ ∫
u(t, z)

[[
b(z) − bδ(y)

]
· ∇zϑε (y − z) + div b(z)ϑε(y − z)

]
dzρ

(
(φδ

t )−1(y)
)

Jδt (y)dy

By an integration by parts this is equal to

=

∫ [∫
ϑε (y − z)

[
b(z) − bδ(y)

]
· ∇y

[
ρ

(
(φδ

t )−1(y)
)

Jδt (y)
]

dy
]

u(t, z)dz

+

∫ ∫ [
div b(z) − div bδ(y)

]
ϑε(y − z)ρ((φδ

t )−1(y))Jδt (y)dy u(t, z)dz

We want to show that both contributions go to zero as ε → 0 and δ → 0



First term

Aδ = lim
ε→0

∫
ϑε (y − z)

[
b(z) − bδ(y)

]
· ∇y

[
ρ

(
(φδ

t )−1y
)

Jδ
t (y)

]
dy

=
[
b(z) − bδ(z)

]
· ∇z

[
ρ

(
(φδ

t )−1(z)
)

Jδ
t (z)

]

We can prove that
|∇

[
ρ

(
(φδ

t )−1(·)
)

Jδ
t (·)

]
| " δβ

locally as δ → 0 for any β < −d/q. Moreover

|b − bδ| " δε

so |Aδ| " δε+β → 0 as soon as ε + β > 0.



Second term

∫ ∫ [
div b(z) − div bδ(y)

]
ϑε(y − z)ρ((φδ

t )−1(y))Jδ
t (y)dy u(t, z)dz

=

∫
div b(z)

(∫

Rd
ϑε(y − z)ρ((φδ

t )−1(y))Jδ
t (y)dy

)
u(t, z)dz

−

∫
div bδ(y)ρ((φδ

t )−1(y))Jδ
t (y)uε(t, y)dy

and both terms converge, as ε → 0 followed by δ → 0 to
∫

div b(y)ρ(φ−1
t (y))Jt(y)u(t, y)dy

so their difference converge to zero.



We obtained

lim
δ→0

lim
ε→0

[∫
uε(t, φδ

t x)ρ (x) dx −

∫

Rd
uε(0, x)ρ (x) dx

]
= 0.

Now ∫
uε(t, φδ

t x)ρ (x) dx =

∫ ∫
uε(t, y)ϑε(φ

δ
t (x) − y)ρ (x) dxdy

=

∫ ∫
uε(t, y)ϑε(z − y)ρ

(
(φδ

t )−1(z)
)

Jδ
t ((φδ

t )−1(z))−1dzdy

→
∫

u(t, z)ρ
(
φ−1

t (z)
)

Jt(φ
−1
t (z))−1dz

This yields
∫

u(t, z)ρ
(
φ−1

t (z)
)

Jt(φ
−1
t (z))−1dz =

∫
u(x)ρ (x) dx

for every ρ (x) ∈ C∞
0 (Rd). Choosing ρ appropriately we get

∫
u(t, z)ρ(z)dz =

∫
u(x)ρ(φt(x))Jt(x)dx =

∫
u(φ−1

t (y))ρ(y)dy.

#



Counterexamples to certain extensions

Example (Random vectorfields)

Take b(t, x) =
√

|x − Wt|, then

dXt = b(t, Xt)dt + dWt =
√

|Xt − Wt|dt + dWt.

By the change of variables Yt = Xt − Wt we obtain

dYt =
√

|Yt|dt

so path-wise uniqueness is impossible in general.

Not so artificial...



Consider a 2d stochastic Euler equation in vorticity variables

∂tξ (t, x) + (u (t, x) · ∇ξ (t, x)) dt +∇ξ (t, x) ◦ dW (t) = 0

where ξ = ∂2u1 − ∂1u2.
Formally equivalent to the "system" of stochastic ordinary equations

dXa
t =

[∫

R2
K(Xa

t − Xa′
t )ξ0(Xa′

t )da′
]

dt + dWt, a ∈ R2

for a suitable kernel K, ξ0 being the initial condition of the vorticity equation.
By the change of variable Ya

t = Xa
t − Wt we obtain

dYa
t =

[∫

R2
K(Ya

t − Ya′
t )ξ0(Xa′

t )da′
]

dt

The equation for (Ya
t ) corresponds to the classical vorticity equation

∂tξ
′ (t, x)

∂t
+ (u′ (t, x) · ∇ξ′ (t, x)) dt = 0 ξ′ = ∂2u′1 − ∂1u′2

with initial condition ξ0.



Possible way out

Consider a more complex (infinite-dimensional) noise:

dXa
t =

[∫

R2
K(Xa

t − Xa′
t )ξ0(Xa′

t )da′
]

dt +
∞∑

k=1

σk(Xa
t )dWk

t , a ∈ R2

where each point Xa is moved "almost" independently of the others.

Natural assumption
∞∑

k=1

σk(x)σk(y) = a(|x − y|)

with a(r) − a(0) , rα as r → 0, α ∈ (0, 2].

In order to hope some regularizing effect of the noise over the deterministic
(and singular) drift we seems to need small α.
Connection with the theory of stochastic flows by Le Jan-Raimond.



Merci


