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What is Radiative Transfer?

Radiative Transfer studies the interaction of electromagnetic radia-
tion viewed as a gas of photons with a background medium (fluid or
plasma, e.g. stellar or planetary atmospheres)

How the various frequencies in the radiation coming from the Sun
interact with the atmosphere of the Earth is important in the under-
standing of

ethe blue color of a cloudless sky (J.W. Strutt Rayleigh 1871)
ethe greenhouse effect (J. Fourier 1824)
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The Radiative Intensity

Radiative intensity
L(t,%,8);=chv f(t,x,&,v) , XeR®, |&|=1
——

photon # density

Example: Planck’s function for a black body at temperature T

2hu3

B,(T) := c2(ehv/kT — 1)

Stefan-Boltzmann law

7r/ B,(T)dv =XgT*,  Xpgi= 20k,
0
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Planck's Function

Lx 1084 (Jimd) Amax=0.999 ym Lx10E6 (dimé) Amax=0.500 um
Lmax = 351344 Jimd Lmax

Lmax Lmax = 1.1240+6 Jim4

Figure: Planck’s function in terms of the wavelength at temperatures
2900K (left) and 5800K (right). For a black body at 288K (Earth's
mean temperature), most of the emitted radiation is infrared.

Source: ressources.univ-lemans.fr
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The (LTE) Radiative Transfer Equation

Kinetic equation for the radiative intensity

(%Gt +d V)b, + pRul, = pR,(1—a,)Bu(T)+ prra,Jdy
—~— —_——

absorption LTE reemission scattering

mean radiative intensity J(t,X) = 417r/ L(t, X, d)dd
2

where

e p= background fluid density
e 5, = absorption coefficient
¢ [0,1] > a, = scattering albedo

Local Thermodynamic Equilibrium (LTE) relaxation to the Planck
function, analogous to a BGK model in the kinetic theory of gases
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Transmittance of Earth's Atmosphere
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Figure: Transmittance of Earth's atmosphere in terms of the wavelength.
Source: commons.wikimedia.org/wiki/File:Atmosfaerisk spredning-ru.svg
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Coupling Radiation to the Fluid Energy Balance

Energy balance in an incompressible fluid with radiation

o (p(;|ﬁ|2 soyT)+t [ Judu) 15 ((p - o - 1))
0

kinetic+internal+radiative energy
o
+Vg- <pﬁ(§ﬁ2 +cyT) +/ / cU/l,chdy>
0 S2

kinetict+internal+-radiative energy flux

= Viz(pepTVT) + Ve(pr(Vzu + (V;U)T) - 1)

where

ecy, cp = specific heats
exT = heat diffusivity
o/ = viscosity

eg = gravitational field
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Substracting the kinetic energy balance leads to the heat equation

mw@+mvgrﬂm/ pRu (1 — a,)(dy — B,(T))dv
0

FV(peprTVeT) + 2up|Veu + (Vo) T2

viscous heating

Simplifying assumptions Henceforth assume
ethat || < 1 and neglect viscous heating
ethe radiative intensity is quasi-static

1101, (8, %,0)| < 1
ethe radiative intensity is slowly varying in the horizontal variables
X = (x,y,z) and |01, (t, X, D) + |0, L(t, X,0)| < 1

— stratified radiative transfer

F. Golse Radiative Transfer in Fluids 8/32



The Coupled Radiative Transfer+Heat Equations

With & = (wy, wy,w;), set

p=w;=cosf and (wx,wy,) = sinf(cosa,sin )

27 1
(. % 1) ;:2;/0 (£ %, @)da = Jy(t, %) = ;/lzy(t,z,u)du

The coupled radiative transfer+temperature equation becomes

cv

00+ 8- VAT - Exr AT =4n [ B(1-a,)(4—BT)y
0

w0;L, + pk,ZL, = pkyaydy, + pr, (1 — a,)B,(T)
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Radiation Heating of a Pool/Lake

Assume that (x,y) € O (bounded domain in R?) and z € (0, 2),
and set Q := O x (0, 2).

Assume that p = Const., that  satisfies V- &' = 0 is a solution of
the Navier-Stokes equations. Denoting x, = pk,

o0

u- V;T — Z;CKJTA;T = % ; /fy(]- — azx)(Ju - BZ/(T))dV

0L, + kI, = kpayJy + k(1 — a,)B,(T)

7,0, )=p@), T,(Z—p)=pQ,, 0<u<l
oT
57 lon

=0, -0

] yq
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Algorithm: Iteration on the Sources

(1) Data: QF and
1
S0 =} [ e G (xy) + eI IQE ()
0

(2) Choose TO(x) and JO(X) = S,(X) for all X € Q
(3) For all (x,y) € O do
(a) forall 0 < z < Z and v > 0, compute J"(X) by

V4
JS(Y)ZSV(?)JF/O % Ex(rvlz=C)(ad) " (1-ay) B.(T"H))) (%, v, €)dC

(b) compute T"(X) by solving

{g.vﬂ-n CP,.i AT = :CT‘F//O ky(l—a,)(J]—B,(T"))dv

W’aﬂzo

(4) end for; (5) return T
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Existence+Convergence

Notation for the exponential integral

00 gy kZ /2
E1(9)::/9 <y, Cl(k)::/o E1(0)d0

Thm A Assume 0 < a, < ay < 1land 0 < Ky < Ky < Ky, and
0< QF <B,(Ty), and set TO(X) = 0.
(a) One has

0<S, =L<t<... << <B,(Ty)

0=T0<Tl<.. <T"<T'l<Ty

(b) One has (J), T") — (J,, T) solution of the radiative trans-
fer+heat equation system in the limit as n — o

Pbms Convergence rate? Uniqueness of the solution?
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Uniqueness+Convergence Rate

Thm B Under the same assumptions as Thm A, and if

i‘;%((l —ay)G(ky)) + iig(auCl(ffu)) =7<1

(a) The algorithm above converges exponentially fast

/ /Oo(u,, C ] k(1= 2)|Bo(T) = Bo(T™)|)dvds
QJO

nQ 00
< T+ itsn) oo (1-2,)Bu(Tu)dv

(b) There exists at most one solution such that

0<Tel®Q) and I, >0ae onQxS?x(0,00)
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Solving the Heat Equation for T"

Consider

B(T):= [,° k(1 —a,)B,(T)dv, increasing on (0, +00)

Lemma 1 For all R € L%3(Q) there exists a weak solution of
(H) — —MAzT+i-VgT+B(T,) =R, 9L ,0 =0

(1) f R > 0 ae. on Qand [{xX € Qst. R(X) > 0} > 0, the
solution T of (H) is unique and T > 0 a.e. on ;

(2) If R" € L%5(Q) and R’ > R a.e. on Q the weak solution T’ of
(H) with r.h.s. R’ satisfies T < T’ a.e. on Q.
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Proof of Lemma 1

For all ¢ > 0, apply the Leray-Lions theorem [BSMF 1965] to the
(nonlinear) functional A, : H(Q) — H(Q)’ defined by the formula

(AT, ¢) = [o(eTop+ VT - (A\Vz¢ + du) + B(T1)¢)dX

Since B, is increasing for each v > 0, the function B is increasing

(AT = AT, T = T) =T = T3+ |[V:(T = T)|i%
+/ (T - T)(B(T) - B(T")) d%
Q

>0

Let € — 0, by Rellich and Banach-Alaoglu, find T, s.t. for p € [1,6)

||T€||L2:O(ﬁ), Te,w— Tyin LP(Q), VT, —ViT in L3(Q)
and pass to the limit in A, ase, — 0 O
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Bounds for the Milne-Schwarzschild Integral Equation

Lemma 2 The function
kZ 2
(0,400)3k — Cl(k):/ E1(0)d9€(0,1) is increasing
0
and

zZ 1z z
| [ sez—chiniaces < iy [ Irolac
Proof Since E; is decreasing, by symmetric rearrangement

V4
sup / kEi(k|(—2z|)dz = sup /kEl(k]C—z])1[07z](z)dz
0<¢<Z Jo 0<¢<Z JR

kZ /2
< [ KEkD @oa) (e = [ E@)a0 =260k

:1[7

NN
NIN

]
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Monotonicity of Radiative Transfer (Mercier SIMA1987)

Notation for f = f(v) € L1((0,00)) and g = g(u) € LY([-1,1])
(f) = /OOO f(v)dv g = é/_lg(u)d,u, (h) = h

Lemma 3 Let (/,, T) and (I}, T') satisfy RT+heat equations; then
01Ty = T))1 ) + & V(T = T = AT = T)17or
=—-D1—-D
where Z, is the average of /, in (wx,w,) and
Dy = (1-2)(Z, - T,) = (B, T) = B(T))(Az, 51, —1757/) ) 20
D2 :<<K,l,al,((.2'1, — I,//) — (J Jl))]-ZV>I’ >> Z 0

PCPF»T

NB in Lemma 3 we have set \ := and replaced 7 with pCV
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Proof of the Monotonicity Lemma

eMultiplying both sides of the RT equation by 17, .7/ and integrating
the resulting expressions in 1 and v, and both sides of the heat
equation by 11~ 7 leads to

O (T —TL) )+ T V(T = Ty = AT — T17sr
= -D;— D,

—_—

oSince (Z, — 7)) = (J, — J}) and 1, s is independent of
D> = (rva (T, — I,) — (b — J,))Az,57, — 1452))
Since z — 1,~¢ is nondecreasing, one has
(@a—b)(1a>0 — 1p>0) > 0
so that
(T, -T) = (b = H)Az,57, = 1450) 20 = D2 >0
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eSince T — B,(T) is increasing on (0, +0o0) for all v > 0, one has
l7-7 = 1p,(7)>B, (") is independent of y, v
Since z + 1,~¢ is nondecreasing,

(Z,—Z1,) = (BT)=BAT')N))Az,57, —17577)
= ((Z,—T,) = (BAT)=B,(T)1z,>2,—1B,(1)>B,(T7)) = O

This implies that
D; >0

F. Golse Radiative Transfer in Fluids

19/32



NUMERICAL SIMULATIONS |
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The Absorption Coefficient k),
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Figure: Absorptlon k9 read from Gemini measurements. Set enhanced
absorption: k. > k0 in the infrared range 2 — 3um and k2 > &9 in the
range 8 — 14um. The X marks are the 487 grid points for the v-integrals.
Enhanced high values are truncated at x = 1.5.

F. Golse Radiative Transfer in Fluids 21/32



No Fluid Coupling (&= 0 and k7 = 0)
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Figure: Computed mean radiation intensities J,,(0) at the ground level
for k9, kI, K2 without scattering and for k2 with isotropic scattering at

altitude 6-9km and Rayleigh scattering above 9km both with o = % :
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Figure: Computed mean radiation intensities J,(Z) at the top of the
troposphere for k9, k1, k2 without scattering and for k2 with isotropic

scattering at altitude 6-9km and Rayleigh scattering above 9km both
1

with o = 5 .
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Figure: Temperatures z — T(z) in Kelvin divided by 4798 computed
with k2, k1 and k2 without scattering (o = 0) and with a scattering
1

v
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Case 2: Heating of a Pool (2D, &= 0)

1.6

scaled T"
—
S

1.2

Figure: Left: Convergence of the sequence T". Right: Color map of
T(x, z) at iteration 10.

Double iteration loop; inner loop of 3 iterations to resolve the T4

nonlinearity in the heat equation (coming from the Stefan-Boltzmann
law if x and a are both independent of v)

F. Golse Radiative Transfer in Fluids 25/32



Case 3: Heating of a Pool (3D, constant wind)

IsoMalue

%%

Figure: Velocity field and temperature. Wind velocity (10,0)", velocity
field solution of Navier-Stokes. Temperature given at the bottom.
Solution of the heat equation computed by a time-marching algorithm
based on the formula of characteristics for the drift + a quasi-Newton
method for a variational formulation of temperature diffusion.
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Case 4: Lake Geneva (3D, potential flow)

Set 7 = Vgp, where Agp = 0 with Dirichlet conditions for p on
the red part of the boundary (inlet and outlet of the Rhéne) and
Onp = 0 elsewhere. FEM P1 method with 33810 tetrahedra, and
1287 triangles on the surface.

Figure: Left: velocity vectors and pressure isolines at the surface of the
lake. Right: isolines of the surface temperature.
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Figure: Top: perspective view of a 3D color map of the temperature on
the side of the lake past a middle vertical plane. Bottom: perspective
view showing some temperature level surfaces inside the lake.

Discretization of Lake Geneva: F. Hecht (New Developments in
FreeFem++ J. Numer. Math. 2012)
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Case 5: Planetary Atmosphere Heated by the
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Figure: Temperature in the atmosphere of a planet heated by the Sun.
Thermal diffusion propagates heat in unlit regions, with or without the

presence of a counterclockwise rotating wind. (Aspect ratio enlarged.)
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lsoMalue .
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Figure: Temperature in the atmosphere of a planet heated by the Sun on
the right with (right) and without (left) almost counterclockwise rotating
wind (the axis of rotation is not perpendicular to the figure).

Wind velocity=rotating Poiseuille flow, axis£direction of the Sun
RT boundary condition: with Q deduced from Qs,,=1300W/m?

Z,(Z,—p) =0and Z,(0, ) = QuB,(Tsun), 0<p<1

F. Golse Radiative Transfer in Fluids
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Conclusions

eExistence for the radiative transfer equation with frequency depen-
dence coupled with incompressible Navier-Stokes-Fourier system
eMonotonicity structure of RT discovered by Mercier (SIMA1987)
adapted to this setting leading to uniqueness and exponential con-
vergence of an algorithm based on iteration on the sources

eFast numerical simulations in the case of stratified RT (integral
equation for the angle averaged radiative intensity) coupled with the
fluid equations solved with FreeFEM https://freefem.org
eExtension to the case of Rayleigh's scattering kernel

p(@,&) = (1 + (& - T)?)

elncreasing x,, in frequency ranges corresponding to greenhouse gases
in the RT equation alone seems insufficient to explain the enhance-
ment of greenhouse effect
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