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Inverse problem: Determine the geometry (imaging) and some physical
properties (identification) of inclusions from the knowledge of diffracted
fields (associated with several incident waves).

nonlinear problem

unstable with respect to measurement error (ill-posed problem)

uniqueness is not guaranteed with only several measurements?

None of the existing numerical methods can efficiently treat the problem
in its general setting.
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Inverse problem: Determine the geometry (imaging) and some physical
properties (identification) of inclusions from the knowledge of diffracted
fields (associated with several incident waves).
Commonly used approaches: (linearization of the inverse problem)

The Kirchhoff approximation (high frequencies)

The Born approximation (weak scatterer, low frequencies, small
inclusions)

⇒ Provide a satisfying solution for a large variety of practical problems
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In our case: We consider problems for which the linearization is not
possible (strongly non linear problems)

inclusions with high contrast, frequency in the resonant regime

important multiple scattering effects (closely spaced objects)

⇒ We use multistatic data at fixed or multiple frequencies.

Goal: Get reliable qualitative information with few a priori information.
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Typical targeted applications:

Imaging of urban infrastructures, landmines, . . . (GPR)

Microwave imaging of malignancies or blood content tissues

Nondestructive testing of complex media

Physical (nonhomogeneous, anisotropic) properties are not known (a pri-
ori).



Outline

Part I. Beginning of the story...

Sampling Methods for Imaging problems

Imaging of anisotropic inclusions using electromagnetic waves
Interior transmission problem

Part II. The story continues...

Qualitative identification procedures

Transmission eigenvalues (or eigenfrequencies)!
Application to the identification problem and to nondestructive
testings



Part I

Sampling Methods for Imaging problems



Mathematical Model: Forward problem

Constant permeability µ = µ0.

ε and σ can be matrices. ε = ε0 and σ = 0 in R3 \D.

Inclusion D is characterized by the index N

N(x) = ε(x)
ε0

+ iσ(x)
ε0ω

, N(x) = I in R3 \D

Wave number: k2 = ε0 µ0 ω
2

(i) curl curlE − k2N E = pδ(x− x0) in R3,

(ii) Es = E − Ei ∈ Hloc(curl,R3)

(iii) lim
r→∞

(curlEs × x− ik r Es) = 0

Incident electromagnetic field Ei:

curl curlEi − k2Ei = pδ(x− x0) in R3



Mathematical Model: Inverse problem

Measurements

Scatterers

Ei(x;x0, p) = G(x;x0)p

Γ
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Es(x;x0, p)× ν
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G(x;x0): the Green tensor of the background medium.

Inverse problem: Determine D and N from the knowledge of
Es(x;x0, p)× ν, for all x0 ∈ Σ, p ∈ Tx0 , and all x ∈ Γ.

Theorem (Cakoni-Colton, 2003): Assume that the complement of D is
connected, and (N − I) is positive definite on D, then D is uniquely
determined.

However, N cannot be uniquely determined, even if measurements are
available for a range of frequencies k ∈ [k1, k2].
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Retrieve the geometry: Sampling Methods
Linear Sampling Method, Factorization, Probe Method, MUSIC, Reciprocity Gap . . .

A quick development in recent years after the introduction of the Linear
Sampling Method by D. Colton and A. Kirsch in 1996...

Algorithms are not based on a linearization assumption

Do not require a forward solver and a priori knowledge on the
physical parameters

Quick methods (trivially parallel)!

Limitations:

Use multi-static data (at a fixed frequency)

Precision strongly dependent on the number of measurements

Only the geometrical information is provided

Tutorial Monographs:

Cakoni-Colton (’06) LSM for the scalar problem

Grinberg-Kirsch (’08) The Factorization method
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Principle of a “sampling method”

Associate with a sampling point z of the probed domain a criterion G(z)
that indicates whether z is in the interior or the exterior of the scatterer.

Inversion scheme: consider a collection of points (zi)i=1,··· ,N meshing
the probed region and evaluate G(zi) for each zi.

The computation of G needs to be quick!

Proposed methods differ according to the choice and the way of
computing of G.



The Linear Sampling Method (LSM)
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G(x;x0): the Green tensor of the background medium.

Near field equation of LSM: seek gz ∈ H̃
− 1

2
curl(Σ) such that for all x ∈ Γ,

(F gz)(x) :=
∫

Σ
ν(x)× Es(x;x0, gz(x0)) ds(x0) ' ν(x)×G(x; z) q

Fg scattered wave associated with: (Hg)(x) :=
∫

Σ
G (x, y)g(y) ds(y)



The Linear Sampling Method (LSM)
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Ei(x;x0, p) = G(x;x0)p

Γ

x

Es(x;x0, p)× ν

ν

Σ

x0

D

D

D

G(x;x0): the Green tensor of the background medium.

Near field equation of LSM: seek gz ∈ H̃
− 1

2
curl(Σ) such that for all x ∈ Γ,

(F gz)(x) :=
∫

Σ
ν(x)× Es(x;x0, gz(x0)) ds(x0) ' ν(x)×G(x; z) q

Criterion: G(z) = ‖gz‖ has large values if z /∈ D as compared with z ∈ D.



Interior Transmission Problem

(F gz)(x) ' ν(x)×G(x; z) q x ∈ Γ,

for z ∈ D, is equivalent to finding E and E0 solutions to{
curl curlE − k2N E = 0 in D,

curl curlE0 − k2E0 = 0 in D.
(1)

{
(E − E0)× ν = (G(·; z) q)× ν on ∂D,

(curlE − curlE0)× ν = curl(G(·; z) q)× ν on ∂D.
(2)

Problem (2)-(1) is called the Interior Transmission Problem.

Space of solutions: (E,E0) ∈ L2(D)3 satisfy (1) in the distributional
sense; E − E0 ∈ H(curl, D); curl(E − E0) ∈ H(curl, D) and satisfy (2)
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Interior Transmission Problem

Theorem (H. 04): Assume that (N − 1)−1 is bounded and that
Re(N − 1)−1 is a positive definite matrix field on D then ITP is of
Fredholm type.

Definition: Transmission eigenvalues (eigenfrequencies) are the values of
k for which uniqueness of ITP solutions fails.

Observations:

Uniqueness for ITP −→ Injectivity of F (←→ 1 is not an eigenvalue
of the scattering matrix)

The LSM fails for k being a transmission eigenvalue.

Theorem (continued):

If Im(N) > 0 in D then the solution is unique.

If not, then the set of k for which uniqueness fails is at most
discrete.



3-D Numerical Results (farfield data, perfect scatterer)
Collino-Fares-H. ’05

Numerical examples for dielectrics with experimental data from the
Fresnel institute : Corocco et al ’09
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Part II

A qualitative approach for the
identification problem



The identification problem: an original approach
Cakoni-Colton-H. (2008-2009)

Example of geometry reconstruction using LSM (M’B Fares)

Goal: Obtain information on N , assuming that D (or an approximation
of it) is known.

The idea is to use the transmission eigenvalues...



Interior Transmission Problem: equivalent formulation

Assume that (N − 1)−1 is bounded a.e. in D.

Define: u = E − E0.

u ∈ U(D) := {u ∈ H(curl, D); curlu ∈ H(curl, D)},

satisfies

curl curl(N − 1)−1curl curl u− k2curl curl(N − 1)−1u

−k2N(N − 1)−1curl curlu + k4N(N − 1)−1u = 0 in D,

and {
u× ν = (G(·; z) q)× ν, on ∂D,

(curl u)× ν = curl(G(·; z) q)× ν on ∂D.

Reciprocally:

E = (N − 1)−1(curl curlu− k2u)/k2

E0 = (N − 1)−1(curl curlu− k2Nu)/k2



Solvability of the Interior Transmission Problem

The key point is to observe that the variational formulation can be
written in the form

Ak(u,u′)− k2B(u,u′) = 0 for all u′ ∈ U0(D), (3)

with U0(D) := {u ∈ H0(curl, D); curlu ∈ H0(curl, D)} and

Ak(u,u′) =
(
(N − 1)−1(curlcurlu− k2u), (curlcurlu′ − k2u′)

)
D

+ k4 (u, u′)D
B(u,u′) = (curlu, curlu′)D

Definition: Transmission eigenvalues (eigenfrequencies) are the values of
k for which uniqueness of ITP solutions fails; i.e. ∃ u ∈ U0(D) non trivial
solution of (3)

−→ Quadratic eigenvalue problem.

It can be shown that it is also a linear non self-adjoint eigenvalue
problem.
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Existence of transmission eigenvalues

Remark: In the case of perfect conductors these special frequencies
correspond to Maxwell’s eigenfrequencies of the cavity D,
i.e the k > 0 such that:{

∃u ∈ H0(curl, D); u 6= 0;

curl curl u− k2u = 0 in D.

Existence of transmission eigenvalues:

1 Colton-Kress (91’) : Spherically, stratified medium: existence of
infinitely many.

2 Päıväırinta-Sylvester (’08) : (for the scalar problem), Kirsch (’09)
Cakoni-H. (’09) (generalization to the Maxwell problem): There
exist eigenvalues for N sufficiently large (or sufficiently small).

3 Cakoni-H.-Gintides (’10) : existence of infinitely many without
restrictions on N
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Existence of transmission eigenvalues

Ak(u,u′)− k2B(u,u′) = 0 for all u′ ∈ U0(D),

Idea: Consider the eigenvalues of Ak with respect to the compact and
non injective operator B, i.e. the λj(k2) such
that ker(Ak − λj(k2)B) 6= {0}.

Theorem: The eigenvalues of (λj(k2))j≥1 are given by

λj(k2) = min
W⊂Uj

( max
u∈W\{0}

(Aku, u)/(Bu, u))

where Uj denotes the set of all j-dimensional subspaces W of U0(D)
such that W ∩ ker(B) = {0}.

The transmission eigenvalues are k2 = τ , solutions to

λj(τ) = τ for some j ≥ 1.



Existence of transmission eigenvalues : basic theorem

Theorem: Assume that there exist two positive constants τ0 > 0 and
τ1 > 0 such that

Aτ0 − τ0B is positive on U0,

Aτ1 − τ1B is non positive on a m-dimensional subspace Wm of U .

Then each of the equations λj(τ) = τ for j = 1, . . . ,m, has at least one
solution in [τ0, τ1].

Assume that Im(N) = 0 a.e. in D and ‖N(x)‖2 ≥ δ > 1 for x ∈ D.

Aτ − τB is positive for all τ < τ0 = λ(D)/ supD ‖N‖2,

where λ(D) is the first Dirichlet eigenvalue of −∆ on D.

Existence of τ1 and Wm?
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Existence of transmission eigenvalues

Idea: use existence of eigenvalues for spherical geometries.

Assume ‖N‖∞ ≥ n∗ > 1

A∗τ same as Aτ with N replaced with n∗

((Aτ − τB)u,u)U0 ≤ ((A∗τ − τB)u,u)U0

τ = k∗1(r)2 first tr. eigen. associated with n∗ for the sphere S of radius r.
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((Aτ − τB)u,u)U0 ≤ ((A∗τ − τB)u,u)U0

τ = k∗1(r)2 first tr. eigen. associated with n∗ for the sphere S of radius r.

uS = u∗1 inside S, extended by 0 outside...

((Aτ − τB)uS ,uS)U0 ≤ 0
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Existence of transmission eigenvalues

Idea: use existence of eigenvalues for spherical geometries.

Assume ‖N‖∞ ≥ n∗ > 1

A∗τ same as Aτ with N replaced with n∗

((Aτ − τB)u,u)U0 ≤ ((A∗τ − τB)u,u)U0

τ = k∗1(r)2 first tr. eigen. associated with n∗ for the sphere S of radius r.

u ∈ Span{uSj ; j = 1, . . . , N(r)}

((Aτ − τB)u,u)U0 ≤ 0

=⇒ Existence of N(r) tr. eigenvalues !

But: N(r)→∞ as r → 0.

r

D



First application: a priori lower bound on material
coefficients

If ‖N(x)‖2 ≥ δ > 1 for all x ∈ D then for any positive transmission
eigenvalue k we have

sup
D
‖N(x)‖ ≥ λ(D)/k2

where λ(D) denotes the first Dirichlet eigenvalue of −∆ on D.

N → k1(N,D) ”is decreasing”:

n∗ ≤ N ≤ n∗ ⇐⇒ k1(n∗, D) ≤ k1(N,D) ≤ k1(n∗, D)

D → k1(N,D) ”is decreasing”.



How to compute the transmission eigenvalues?

Without knowing N !

Idea: use the failure of the LSM for those values: the existence of
nearby solution

(F gz)(x) ' ν(x)×G(x; z) q(=: Ee(·; z, q))

with bounded ”Herglotz norm” is no longer guaranteed if k is a
transmission eigenvalue.

Algorithm: We fix a point z in D and evaluate

k 7→ ‖gα(·; z, q)‖

where
(α+ F ∗F ) gα(·; z, q) = F ∗ (Ee(·; z, q))

We expect to observe peaks at the irregular frequencies...
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How to compute the transmission eigenvalues

Justification: Let F δ be the operator corresponding to
noisy measurements

‖F δ − F‖ ≤ δ

(α(δ) + F ∗δF δ) gδ(·; z, q) = F ∗δ (Ee(·; z, q))

Assumptions:

F δ is a family of uniformly compact operators with dense range√
α(δ)/δ → 0 as δ → 0

Theorem: Let k be a transmission eigenvalue, then for a.e. z ∈ D

lim
δ→0
‖Hgδ(·; z, q)‖L2(D) =∞

Main “formal idea of the proof”: Ee(·; z, q) cannot be “orthogonal” to
transmission eigenvectors for all z in an open set of D.
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Validation in the spherical case

3 3,15 3,3 3,45 3,6 3,75 3,9 4,05

0
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r0

Sphere with radius
r0 = 1 and n = 4.

Blue line: ‖g(·, z)‖ in terms of the wave number k

Dark line: Computed eigenvalues using numerical solutions to ITP

Circles: Computed eigenvalues using speration of variables



Possible applications to nondestructive testing

Idea: Use eigenfrequencies to obtain a qualitative information on the
presence of faults inside D

Advantage: We do not need to know N or to solve any direct problem

Limitation: Only a qualitative information can be obtained

First investigations: test the presence of cavities inside D (application:
cavities inside composite materials)

N = 1 in D0 ⊂ D

=⇒ difficulty in the mathematical analysis:

N − 1 is not invertible a.e. in D! D

D0
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ITP with presence of cavities
Cossonnière-H.

with U0(D) := {u ∈ H0(curl, D); curlu ∈ H0(curl, D)} and

U(D,D0, k
2) := {u ∈ U0(D) such that curlcurlu− k2u = 0 in D0}

Assume that k2 is not a Dirichlet and Neumann eigenvalue of −∆ in D0

and that N and (N − 1)−1 are positive definite in D \D0.

Then, solving ITP is equivalent to solve for u ∈ U(D,D0, k
2) such that

Ak(u,u′)− k2B(u,u′) = 0 for all u′ ∈ U(D,D0, k
2),

Ak(u,u′) :=
(
(N − 1)−1(curlcurlu− k2u), (curlcurlu′ − k2u′)

)
D\D0

+ k4 (u, u′)D

B(u,u′) := (curlu, curlu′)D



ITP with presence of cavities: existence of transmission
eigenvalues

Difficulty: The variational space

U(D,D0, k
2) := {u ∈ U0(D) such that curlcurlu− k2u = 0 in D0}

depends on k...

Theorem: k 7−→ Pk, where Pk : U0(D)→ U(D,D0, k
2) ⊂ U0(D)

denotes the orthogonal projection operator, is continuous.

=⇒ Similar analysis as in the case without cavities carry over by
considering

I + k2 P ∗kA
−1/2
k BkA

−1/2
k Pk : U0(D)→ U0(D)

=⇒ Existence of infinitely many transmission eigenvalues.



Countability of transmission eigenvalues

Countability of transmission eigenvalues cannot be obtained this way
since k 7−→ Pk cannot be analytic.

We substitute to Pk a projection like, but analytic operator:
P̃k : U0(D)→ U(D,D0, k

2) ⊂ U0(D)

P̃ku := u− χθku

χ is a C∞ cutoff function = 1 in D0 and 0 outside D.

θku :=
∫
D0

=G(x, y)(curlcurlu− k2u)(y) dy

Theorem: If k2 is a transmission eigenvalue then there exists non trivial
solution u ∈ U0(D) to

Ak(P̃ku, P̃ku′) + α(θku, θku′)U − k2B(P̃ku, P̃ku′) = 0

for all u′ ∈ U0(D).



ITP with presence of cavities

The set of transmission eigenvalues is discrete and +∞ is the only
point of accumulation.

If D0 ⊂ D′0 and N1 ≥ N2 > 1 then k1(D,D′0, N1) > k1(D,D0, N2).

Transmission eigenvalues satisfy

k2 ≥ k2
∗(D,D0) =

λ(D,D0)µ(D,D0)
λ(D,D0) + sup |N |µ(D,D0)

λ(D,D0) = inf
k≥0

 
inf

ψ∈U0(D,D0,k)∗
‖∇ψ‖2

L2(D)/‖ψ‖
2
L2(D\D0)

!
.

µ(D,D0) = inf
k≥0

 
inf

ψ∈U0(D,D0,k)∗
‖∇ψ‖2

L2(D)/‖ψ‖
2
L2(D0)

!

If k2 is a transmission eigenvalue then for a.e. z ∈ D,
limδ→0 ‖Hgδ‖L2(D) =∞.



Numerical validation (spherical case)

Sphere of radius 1, index n = 4
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Numerical validation (spherical case)
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Some open problems and perspectives

Improve a-priori estimates on physical properties in terms of
transmission eigenfrequencies.

Extend applications to non-destructive testing of other types of
faults and materials (dispersive).

The case of N − I changing sign (photo-acoustic tomography).

Stable identification from limited aperture data.

What about the structure of transmission eigenfunctions... and can
we say more about physical interpretations of transmission
eigenfrequencies?

Inverse spectral problem?
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End!

Thank you!


