Asymptotic-Preserving schemes for highly anisotropic elliptic problems

Alexei Lozinski

Institut de Mathématiques de Toulouse Université Paul Sabatier
e-mail : alexei.lozinski@math.univ-toulouse.fr

Joint work with

Pierre Degond Fabrice Deluzet Jacek Narski Claudia Negulescu
(Toulouse)
(Toulouse)
(Toulouse)
(Marseille)

Financial support by :
Fondation RTRA "Sciences et Technologies Aéronautiques et Spatiales" projet "Plasmax" (IMT et ONERA-Toulouse)

Outline

- Problem : A diffusion equation with extremely strong anisotropy in the diffusion matrix.
- Goal : Design an algorithm which solves the problem regardless of the anisotropy strength.
- Tool : Asymptotic Preserving (AP) approach.

A typical boundary value problem

$$
\begin{cases}-\frac{\partial^{2} \phi^{\varepsilon}}{\partial x^{2}}-\frac{1}{\varepsilon} \frac{\partial^{2} \phi^{\varepsilon}}{\partial y^{2}}=f & \text { in }(0,1) \times(0,1) \\ \phi^{\varepsilon}=0 & \text { for } x=0 \text { and } x=1, \\ \frac{\partial \phi^{\varepsilon}}{\partial y}=0 & \text { for } y=0 \text { and } y=1,\end{cases}
$$

with $\varepsilon=10^{-10}$, for example.

Motivations can be found in

- Flows in porous media,
- Semiconductor modeling,
- Image processing,
- Plasma physics :

Plasma in a strong magnetic field : modeling resulting in an anisotropic equation for the electron density ...

Ionospheric plasma : anisotropic equation for the electric potential ...

Anisotropic diffusion : notations

The simple geometry

The general geometry

Anisotropic diffusion : notations

- The direction of the anisotropy is defined by a given smooth vector field b, $|b|=1$. The field lines of b cannot be closed curves.
- $\Omega \subset \mathbb{R}^{2}$ or $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with boundary $\partial \Omega=\Gamma_{D} \cup \Gamma_{N}$ and outward normal n.
- We suppose $b \cdot n=0$ on Γ_{D} so that Ω is a tube made out of field lines.
- We'll also need the notations $\Gamma_{D}=\Gamma_{i n} \cup \Gamma_{\text {out }}$ depending on $b \cdot n$.
- Notations for parallel and perpendicular derivatives :

$$
\nabla_{\|} \phi:=(b \cdot \nabla \phi) b, \nabla_{\perp} \phi:=(I d-b \otimes b) \nabla \phi
$$

so that

$$
\nabla \phi=\nabla_{\|} \phi+\nabla_{\perp} \phi
$$

- The functions space for the solutions :

$$
\mathcal{V}=\left\{\phi \in H^{1}(\Omega) \mid \phi_{\Gamma_{D}}=0\right\}
$$

Anisotropic diffusion equation

- The boundary value problem with $\varepsilon>0$

$$
\begin{cases}-\frac{1}{\varepsilon} \nabla_{\|} \cdot\left(A_{\|} \nabla_{\|} \phi^{\varepsilon}\right)-\nabla_{\perp} \cdot\left(A_{\perp} \nabla_{\perp} \phi^{\varepsilon}\right)=f & \text { in } \Omega, \\ \frac{1}{\varepsilon} n \cdot\left(A_{\|} \nabla_{\|} \phi^{\varepsilon}\right)+n \cdot\left(A_{\perp} \nabla_{\perp} \phi^{\varepsilon}\right)=0 & \text { on } \Gamma_{N}, \\ \phi^{\varepsilon}=0 & \text { on } \Gamma_{D} .\end{cases}
$$

- The limit problem $(\varepsilon \rightarrow 0)$

$$
\begin{cases}-\nabla_{\|} \cdot\left(A_{\|} \nabla_{\|} \phi^{0}\right)=0 & \text { in } \Omega \\ n \cdot\left(A_{\|} \nabla_{\|} \phi^{0}\right)=0 & \text { on } \Gamma_{N} \\ \phi^{0}=0 & \text { on } \Gamma_{D} .\end{cases}
$$

Anisotropic diffusion equation

- The boundary value problem with $\varepsilon>0$

$$
\begin{cases}-\frac{1}{\varepsilon} \nabla_{\|} \cdot\left(A_{\|} \nabla_{\|} \phi^{\varepsilon}\right)-\nabla_{\perp} \cdot\left(A_{\perp} \nabla_{\perp} \phi^{\varepsilon}\right)=f & \text { in } \Omega^{\prime} \\ \frac{1}{\varepsilon} n \cdot\left(A_{\|} \nabla_{\|} \phi^{\varepsilon}\right)+n \cdot\left(A_{\perp} \nabla_{\perp} \phi^{\varepsilon}\right)=0 & \text { on } \Gamma_{N}, \\ \phi^{\varepsilon}=0 & \text { on } \Gamma_{D} .\end{cases}
$$

- The limit problem $(\varepsilon \rightarrow 0)$

$$
\begin{cases}-\nabla_{\|} \cdot\left(A_{\|} \nabla_{\|} \phi^{0}\right)=0 & \text { in } \Omega \\ n \cdot\left(A_{\|} \nabla_{\|} \phi^{0}\right)=0 & \text { on } \Gamma_{N} \\ \phi^{0}=0 & \text { on } \Gamma_{D}\end{cases}
$$

The limit problem is ill posed!
Infinity of solutions in $\mathcal{G}=\left\{\phi \in \mathcal{V} \mid \nabla_{\|} \phi=0\right\}$
The problem with small $\varepsilon>0$ is ill conditionned!

Weak formulation

- The problem with $\varepsilon>0$

$$
\frac{1}{\varepsilon} \int_{\Omega}\left(A_{\|} \nabla_{\|} \phi^{\varepsilon}\right) \cdot \nabla_{\|} \psi+\int_{\Omega}\left(A_{\perp} \nabla_{\perp} \phi^{\varepsilon}\right) \cdot \nabla_{\perp} \psi=\int_{\Omega} f \psi \quad \forall \psi \in \mathcal{V}
$$

- The limit problem $(\varepsilon \rightarrow 0)$: taking test functions in $\mathcal{G}=\left\{\phi \in \mathcal{V} \mid \nabla_{\|} \phi=0\right\}$ yields

$$
\phi^{0} \in \mathcal{G}: \quad \int_{\Omega} A_{\perp} \nabla_{\perp} \phi^{0} \cdot \nabla_{\perp} \psi=\int_{\Omega} f \psi \quad \forall \psi \in \mathcal{G}
$$

Weak formulation

- The problem with $\varepsilon>0$

$$
\frac{1}{\varepsilon} \int_{\Omega}\left(A_{\|} \nabla_{\|} \phi^{\varepsilon}\right) \cdot \nabla_{\|} \psi+\int_{\Omega}\left(A_{\perp} \nabla_{\perp} \phi^{\varepsilon}\right) \cdot \nabla_{\perp} \psi=\int_{\Omega} f \psi \quad \forall \psi \in \mathcal{V}
$$

- The limit problem $(\varepsilon \rightarrow 0)$: taking test functions in $\mathcal{G}=\left\{\phi \in \mathcal{V} \mid \nabla_{\|} \phi=0\right\}$ yields

$$
\phi^{0} \in \mathcal{G}: \quad \int_{\Omega} A_{\perp} \nabla_{\perp} \phi^{0} \cdot \nabla_{\perp} \psi=\int_{\Omega} f \psi \quad \forall \psi \in \mathcal{G}
$$

This shows

- The limit model admits a well posed formulation
- The perturbed problem $(\varepsilon \ll 1)$ would be still ill conditioned under a straight-forward discretization

AP - Assymptotic Preserving schemes

The concept introduced by S. Jin, JCP'99

A typical straightforward scheme :

$$
\begin{array}{r}
P_{h}^{\varepsilon} \xrightarrow[\text { OK }]{h \rightarrow 0} P^{\varepsilon} \\
\varepsilon \rightarrow 0 \downarrow \text { not OK } \\
P_{h}^{0} \longrightarrow P^{0}
\end{array}
$$

AP - Assymptotic Preserving schemes

The concept introduced by S. Jin, JCP'99

An AP scheme :

A typical straightforward scheme :

$$
\tilde{P}_{h}^{\varepsilon} \xrightarrow[\mathrm{OK}]{h \rightarrow 0} \tilde{P}^{\varepsilon}
$$

$$
P_{h}^{\varepsilon} \xrightarrow[\mathrm{OK}]{h \rightarrow 0} P^{\varepsilon}
$$

$P_{h}^{0} \longrightarrow P^{0}$
Here \tilde{P}^{ε} is an AP reformulation of P^{ε} :

- \tilde{P}^{ε} is equivalent to P^{ε}, but
- a straight-forward discretization of \tilde{P}^{ε} is robust with respect to the limit $\varepsilon \rightarrow 0$

Hilbert space decomposition

P. Degond, F. Deluzet, and C. Negulescu, SIAM Multiscale Model. Simul. (2009/10)

- Decomposing the space \mathcal{V} into a direct sum \mathcal{G} plussomething

$$
\mathcal{V}=\mathcal{G} \oplus^{\perp} \mathcal{A}
$$

- This entails the decomposition of the solution

$$
\begin{gathered}
\phi^{\varepsilon}=p^{\varepsilon}+q^{\varepsilon} \\
p^{\varepsilon} \in \mathcal{G}, \quad q^{\varepsilon} \in \mathcal{A}
\end{gathered}
$$

- \mathcal{G} - functions with parallel $\mathbf{G r a d i e n t}=0$
- \mathcal{A} - functions with Avarage $=0$
- $\mathcal{G} \perp \mathcal{A}$ in the sence of $L^{2}(\Omega)$
- p^{ε} - mean value of ϕ^{ε} along field lines (weigted average if $b \neq$ const
- q^{ε} - fluctuations with zero mean value

Asymptotic Preserving reformulation

$$
\begin{cases}\int_{\Omega}\left(A_{\perp} \nabla_{\perp} p^{\varepsilon}\right) \cdot \nabla_{\perp} \eta+\int_{\Omega}\left(A_{\perp} \nabla_{\perp} q^{\varepsilon}\right) \cdot \nabla_{\perp} \eta=\int_{\Omega} f \eta & \forall \eta \in \mathcal{G} \\ \int_{\Omega}\left(A_{\|} \nabla_{\|} q^{\varepsilon}\right) \cdot \nabla_{\| \xi} \xi \\ \quad+\varepsilon \int_{\Omega}\left(A_{\perp} \nabla_{\perp} p^{\varepsilon}\right) \cdot \nabla_{\perp} \xi+\varepsilon \int_{\Omega}\left(A_{\perp} \nabla_{\perp} q^{\varepsilon}\right) \cdot \nabla_{\perp} \xi=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{A}\end{cases}
$$

Asymptotic Preserving reformulation

$$
\begin{cases}\int_{\Omega}\left(A_{\perp} \nabla_{\perp} p^{\varepsilon}\right) \cdot \nabla_{\perp} \eta+\int_{\Omega}\left(A_{\perp} \nabla_{\perp} q^{\varepsilon}\right) \cdot \nabla_{\perp} \eta=\int_{\Omega} f \eta & \forall \eta \in \mathcal{G} \\ \int_{\Omega}\left(A_{\|} \nabla_{\|} q^{\varepsilon}\right) \cdot \nabla_{\| \xi} \xi \\ \quad+\varepsilon \int_{\Omega}\left(A_{\perp} \nabla_{\perp} p^{\varepsilon}\right) \cdot \nabla_{\perp} \xi+\varepsilon \int_{\Omega}\left(A_{\perp} \nabla_{\perp} q^{\varepsilon}\right) \cdot \nabla_{\perp} \xi=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{A}\end{cases}
$$

Question: How to discretize \mathcal{A} and \mathcal{G} ?

The answer is simple in the "simple geometry"

- The function space \mathcal{G} is

$$
\mathcal{G}=\left\{u(x, y)=u(x), u(\cdot) \in H_{0}^{1}\left(0, L_{x}\right)\right\}
$$

- Provided we use a tensor-product finite-element space \mathcal{V}_{h} like Q_{k}, we discretize \mathcal{G} in a straight-forward manner :

$$
\mathcal{G}_{h}=\left\{u_{h} \in \mathcal{V}_{h} \text { s.t. } u_{h}(x, y)=u_{h}(x)\right\}
$$

- We still have the decomposition:

$$
\mathcal{V}_{h}=\mathcal{G}_{h} \oplus^{\perp} \mathcal{A}_{h}
$$

with

$$
\mathcal{A}_{h}=\left\{u_{h} \in \mathcal{V}_{h} \text { s.t. } \int_{0}^{L_{y}} u_{h}(x, y) d y=0, \forall x\right\}
$$

What to do in the general geometry :

Lagrange multipliers for \mathcal{A} and \mathcal{G}; P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2010)
The \mathcal{A} space

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}, \eta\right)+a_{\perp}\left(q^{\varepsilon}, \eta\right)=\int_{\Omega} f \eta & \forall \eta \in \mathcal{G} \\ a_{\|}\left(q^{\varepsilon}, \xi\right) & \\ \quad+\varepsilon a_{\perp}\left(p^{\varepsilon}, \xi\right)+\varepsilon a_{\perp}\left(q^{\varepsilon}, \xi\right)=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{A}\end{cases}
$$

With the notations

$$
a_{\perp}(u, v)=\int_{\Omega}\left(A_{\perp} \nabla_{\perp} u\right) \cdot \nabla_{\perp} v, \quad a_{\|}(u, v)=\int_{\Omega}\left(A_{\|} \nabla_{\|} u\right) \cdot \nabla_{\|} v
$$

What to do in the general geometry :

Lagrange multipliers for \mathcal{A} and \mathcal{G}; P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2010)
The \mathcal{A} space

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}, \eta\right)+a_{\perp}\left(q^{\varepsilon}, \eta\right)=\int_{\Omega} f \eta & \forall \eta \in \mathcal{G} \\ a_{\|}\left(q^{\varepsilon}, \xi\right)+\left.\int_{\Omega}\right|^{\varepsilon} \xi & \\ +\varepsilon a_{\perp}\left(p^{\varepsilon}, \xi\right)+\varepsilon a_{\perp}\left(q^{\varepsilon}, \xi\right)=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{V} \\ \int_{\Omega} q^{\varepsilon} \chi=0 & \forall \chi \in \mathcal{G}\end{cases}
$$

With the notations

$$
a_{\perp}(u, v)=\int_{\Omega}\left(A_{\perp} \nabla_{\perp} u\right) \cdot \nabla_{\perp} v, \quad a_{\|}(u, v)=\int_{\Omega}\left(A_{\|} \nabla_{\|} u\right) \cdot \nabla_{\|} v
$$

What to do in the general geometry :

Lagrange multipliers for \mathcal{A} and \mathcal{G}; P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2010)
The \mathcal{A} space

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}, \eta\right)+a_{\perp}\left(q^{\varepsilon}, \eta\right)=\int_{\Omega} f \eta & \forall \eta \in \mathcal{G} \\ a_{\|}\left(q^{\varepsilon}, \xi\right)+\int_{\Omega} l^{\varepsilon} \xi & \\ +\varepsilon a_{\perp}\left(p^{\varepsilon}, \xi\right)+\varepsilon a_{\perp}\left(q^{\varepsilon}, \xi\right)=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{V} \\ \int_{\Omega} q^{\varepsilon} \chi=0 & \forall \chi \in \mathcal{G}\end{cases}
$$

The \mathcal{G} space
$p \in \mathcal{G} \Leftrightarrow\left\{\begin{array}{l}\nabla_{\|} p=0 \\ p \in \mathcal{V}\end{array} \Leftrightarrow\left\{\begin{array}{l}\int_{\Omega} A_{\|} \nabla_{\|} p \cdot \nabla_{\|} \lambda d x=a_{\|}(p, \lambda)=0, \quad \forall \lambda \in \mathcal{L} \\ p \in \mathcal{V}\end{array}\right.\right.$
with $\mathcal{L}:=\left\{\lambda \in L^{2}(\Omega) / \nabla_{\|} \lambda \in L^{2}(\Omega), \quad \lambda_{\mid \Gamma_{i n}}=0\right\}$

What to do in the general geometry :

Lagrange multipliers for \mathcal{A} and \mathcal{G}; P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2010)

Full system - AP5 scheme

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}, \eta\right)+a_{\perp}\left(q^{\varepsilon}, \eta\right) \quad=\int_{\Omega} f \eta & \forall \eta \in \mathcal{G} \\ a_{\|}\left(q^{\varepsilon}, \xi\right) & \\ \quad+\varepsilon_{\perp}\left(p^{\varepsilon}, \xi\right)+\varepsilon_{\perp}\left(q^{\varepsilon}, \xi\right)=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{A}\end{cases}
$$

What to do in the general geometry :

Lagrange multipliers for \mathcal{A} and \mathcal{G}; P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2010)

Full system - AP5 scheme

$$
\left\{\begin{array}{ll}
a_{\perp}\left(p^{\varepsilon}, \eta\right)+a_{\perp}\left(q^{\varepsilon}, \eta\right) \quad=\int_{\Omega} f \eta & \forall \eta \in \mathcal{G} \\
a_{\|}\left(q^{\varepsilon}, \xi\right)+\int_{\Omega} l^{\varepsilon} \xi & \\
\quad+\varepsilon a_{\perp}\left(p^{\varepsilon}, \xi\right)+\varepsilon a_{\perp}\left(q^{\varepsilon}, \xi\right)=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{V} \\
\int_{\Omega} q^{\varepsilon} \chi & =0
\end{array}, \forall \chi \in \mathcal{G}\right\}
$$

What to do in the general geometry :

Lagrange multipliers for \mathcal{A} and \mathcal{G}; P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2010)

Full system - AP5 scheme

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}, \eta\right)+a_{\perp}\left(q^{\varepsilon}, \eta\right)+a_{\|}\left(\lambda^{\varepsilon}, \eta\right)=\int_{\Omega} f \eta & \forall \eta \in \mathcal{V} \\ a_{\|}\left(p^{\varepsilon}, \kappa\right)=0 & \forall \kappa \in \mathcal{L} \\ a_{\|}\left(q^{\varepsilon}, \xi^{\xi}\right)+\int_{\Omega} l^{\varepsilon} \xi & \\ \quad+\varepsilon_{\perp}\left(p^{\varepsilon}, \tilde{\xi}\right)+\varepsilon_{\perp}\left(q^{\varepsilon}, \tilde{\xi}\right)=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{V} \\ \int_{\Omega} q^{\varepsilon} \chi+a_{\|}\left(\chi, \mu^{\varepsilon}\right)=0 & \forall \chi \in \mathcal{V} \\ a_{\|}\left(\tau, l^{\varepsilon}\right)=0 & \forall \tau \in \mathcal{L}\end{cases}
$$

Here we search for $p^{\varepsilon}, q^{\varepsilon}, l^{\varepsilon} \in \mathcal{V}$ and $\lambda^{\varepsilon}, \mu^{\varepsilon} \in \mathcal{L}$.

Why is this AP?

That's becase setting $\varepsilon=0$ yields

- $q^{\varepsilon} \in \mathcal{A}$ and

$$
\int_{\Omega} A_{\|} \nabla_{\|} q^{\varepsilon} \nabla_{\|} \xi \quad=0 \quad \forall \xi \in \mathcal{A}
$$

hence $\nabla_{\|} q^{\varepsilon}=0$, hence $q^{\varepsilon}=0$.

- The first two equation now give $\phi^{\varepsilon}=p^{\varepsilon}$ with

$$
\begin{cases}\int_{\Omega}\left(A_{\perp} \nabla_{\perp} p^{\varepsilon}\right) \cdot \nabla_{\perp} \eta+\int_{\Omega} A_{\|} \nabla_{\|} \lambda^{\varepsilon} \nabla_{\|} \eta=\int_{\Omega} f \eta & \forall \eta \in \mathcal{V} \\ \int_{\Omega} A_{\|} \nabla_{\|} p^{\varepsilon} \nabla_{\|} \kappa=0 & \forall \kappa \in \mathcal{L}\end{cases}
$$

Discretization

- Take any finite element space $V_{h} \subset H^{1}(\Omega)$ such that

$$
\left.v_{h}\right|_{\Gamma_{D}}=0 \quad \forall v_{h} \in V_{h}
$$

We have tried $\mathbb{P}_{1}, \mathbb{P}_{2} ; Q_{1}$ and Q_{2} finite elements on a rectangle

- Take L_{h} as the subspace of V_{h} such that

$$
\left.\lambda_{h}\right|_{\Gamma_{i n}}=0 \quad \forall \lambda_{h} \in L_{h}
$$

Discretization

- Take any finite element space $V_{h} \subset H^{1}(\Omega)$ such that

$$
\left.v_{h}\right|_{\Gamma_{D}}=0 \quad \forall v_{h} \in V_{h}
$$

We have tried $\mathbb{P}_{1}, \mathbb{P}_{2} ; Q_{1}$ and Q_{2} finite elements on a rectangle

- Take L_{h} as the subspace of V_{h} such that

$$
\left.\lambda_{h}\right|_{\Gamma_{i n}}=0 \quad \forall \lambda_{h} \in L_{h}
$$

- It is important to require $L_{h} \subset V_{h}$

$$
\left.\lambda_{h}\right|_{\Gamma_{D}}=0 \quad \forall \lambda_{h} \in L_{h}
$$

although it is not necessarily true on the continuous level.
On the discrete level, we do not have the uniqueness of Lagrange multipliers, if $L_{h} \not \subset V_{h}$.

Numerical results using AP5 with \mathbb{Q}_{2} finite elements on a regular grid on a square

Limit solution

Analytical solution

$$
\begin{aligned}
\phi^{\varepsilon}= & \sin \left(\pi y+\alpha\left(y^{2}-y\right) \cos (\pi x)\right) \\
& +\varepsilon \cos (2 \pi x) \sin (\pi y)
\end{aligned}
$$

Field b

$$
\begin{gathered}
b=\frac{B}{|B|} \\
B=\binom{\alpha(2 y-1) \cos (\pi x)+\pi}{\pi \alpha\left(y^{2}-y\right) \sin (\pi x)}
\end{gathered}
$$

Error vs. ε

Mesh size : 50×50

 L^{2} error on the left, H^{1} error on the right

Error vs. ε

Mesh size : 100×100

Error vs. ε

Mesh size : 200×200

3D test case

Analytical solution

$$
\begin{gathered}
b=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\phi^{\varepsilon}=\sin (\pi y) \sin (\pi z)+\varepsilon \cos (2 \pi x) \sin (\pi y) \sin (\pi z) \\
p^{\varepsilon}=\sin (\pi y) \sin (\pi z) \\
q^{\varepsilon}=\varepsilon \cos (2 \pi x) \sin (\pi y) \sin (\pi z) \\
f=2 \pi^{2}(2+\varepsilon)(\cos (2 \pi x)+1) \sin (\pi y) \sin (\pi z)
\end{gathered}
$$

3D test case

Mesh size : $40 \times 40 \times 40, \varepsilon=10^{-7}$

Looking out for simpler reformulations (AP3)

- The precise form of the decomposition $\mathcal{V}=\mathcal{G} \oplus \mathcal{A}$ is not really important.
- Why not to replace \mathcal{A} by $\mathcal{L}:=\left\{\lambda \in L^{2}(\Omega) / \nabla_{| |} \lambda \in L^{2}(\Omega), \lambda_{\mid \Gamma_{i n}}=0\right\}$?
- We have then

$$
\mathcal{V} \approx \mathcal{G} \oplus \mathcal{A}
$$

(strictly speaking, this decomposition is valid only on sufficiently smooth functions)

Looking out for simpler reformulations (AP3)

- The precise form of the decomposition $\mathcal{V}=\mathcal{G} \oplus \mathcal{A}$ is not really important.
- Why not to replace \mathcal{A} by $\mathcal{L}:=\left\{\lambda \in L^{2}(\Omega) / \nabla_{| |} \lambda \in L^{2}(\Omega), \lambda_{\mid \Gamma_{i n}}=0\right\}$?
- We have then

$$
\mathcal{V} \approx \mathcal{G} \oplus \mathcal{A}
$$

(strictly speaking, this decomposition is valid only on sufficiently smooth functions)

- We search now for $p^{\varepsilon} \in \mathcal{V}, q^{\varepsilon} \in \mathcal{L}, \lambda^{\varepsilon} \in \mathcal{L}$ such that

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}, \eta\right)+a_{\perp}\left(q^{\varepsilon}, \eta\right)+a_{\|}\left(\lambda^{\varepsilon}, \eta\right)=\int_{\Omega} f \eta & \forall \eta \in \mathcal{V} \\ a_{\|}\left(p^{\varepsilon}, \kappa\right)=0 & \forall \kappa \in \mathcal{L} \\ a_{\|}\left(q^{\varepsilon}, \xi\right)+\varepsilon_{\perp}\left(p^{\varepsilon}, \xi\right)+\varepsilon_{\perp}\left(q^{\varepsilon}, \xi\right)=\varepsilon \int_{\Omega} f \xi & \forall \xi \in \mathcal{L}\end{cases}
$$

and set $\phi^{\varepsilon}=p^{\varepsilon}+q^{\varepsilon}$ as before.

One can do even better

The idea of Jacek Narski

- We keep the decomposition $\mathcal{V} \approx \mathcal{G} \oplus \mathcal{L}$ (zero inflow conditions)
- But we set

$$
\phi^{\varepsilon}=p^{\varepsilon}+\varepsilon q^{\varepsilon}
$$

instead of $\phi^{\varepsilon}=p^{\varepsilon}+q^{\varepsilon}$

- Just substitute it into the governing equation
- We search now for $p^{\varepsilon} \in \mathcal{V}$ and $q^{\varepsilon} \in \mathcal{L}$ such that

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}+\varepsilon q^{\varepsilon}, \eta\right)+a_{\|}\left(q^{\varepsilon}, \eta\right)=\int_{\Omega} f \eta & \forall \eta \in \mathcal{V} \\ a_{\|}\left(p^{\varepsilon}, \kappa\right)=0 & \forall \kappa \in \mathcal{L}\end{cases}
$$

One can do even better

The idea of Jacek Narski

- We keep the decomposition $\mathcal{V} \approx \mathcal{G} \oplus \mathcal{L}$ (zero inflow conditions)
- But we set

$$
\phi^{\varepsilon}=p^{\varepsilon}+\varepsilon q^{\varepsilon}
$$

instead of $\phi^{\varepsilon}=p^{\varepsilon}+q^{\varepsilon}$

- Just substitute it into the governing equation
- We search now for $p^{\varepsilon} \in \mathcal{V}$ and $q^{\varepsilon} \in \mathcal{L}$ such that

$$
\begin{cases}a_{\perp}\left(p^{\varepsilon}+\varepsilon q^{\varepsilon}, \eta\right)+a_{\|}\left(q^{\varepsilon}, \eta\right)=\int_{\Omega} f \eta & \forall \eta \in \mathcal{V} \\ a_{\|}\left(p^{\varepsilon}, \kappa\right)=0 & \forall \kappa \in \mathcal{L}\end{cases}
$$

In the limit $\varepsilon=0$ we have $\phi^{\varepsilon}=p^{\varepsilon}$ by definition and q^{ε} acts like the Lagrange multiplier for the constraint $p^{\varepsilon} \in \mathcal{G}$.

Our best reformulation (AP2)

P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2011)

- Reintroduce $\phi^{\varepsilon}=p^{\varepsilon}+\varepsilon q^{\varepsilon}$ into the scheme and forget about p^{ε}.
- We search now for $\phi^{\varepsilon} \in \mathcal{V}$ and $q^{\varepsilon} \in \mathcal{L}$ such that

$$
\left\{\begin{array}{lll}
a_{\perp}\left(\phi^{\varepsilon}, \eta\right)+a_{\|}\left(q^{\varepsilon}, \eta\right) & =\int_{\Omega} f \eta, & \forall \eta \in \mathcal{V} \\
a_{\| \mid}\left(\phi^{\varepsilon}, \kappa\right)-\varepsilon a_{\| \mid}\left(q^{\varepsilon}, \kappa\right) & =0, &
\end{array}\right.
$$

Our best reformulation (AP2)

P. Degond, F. Deluzet, AL, J. Narski and C. Negulescu (2011)

- Reintroduce $\phi^{\varepsilon}=p^{\varepsilon}+\varepsilon q^{\varepsilon}$ into the scheme and forget about p^{ε}.
- We search now for $\phi^{\varepsilon} \in \mathcal{V}$ and $q^{\varepsilon} \in \mathcal{L}$ such that

$$
\left\{\begin{array}{lll}
a_{\perp}\left(\phi^{\varepsilon}, \eta\right)+a_{\|}\left(q^{\varepsilon}, \eta\right) & =\int_{\Omega} f \eta, & \forall \eta \in \mathcal{V} \\
a_{\|}\left(\phi^{\varepsilon}, \kappa\right)-\varepsilon a_{\| \mid}\left(q^{\varepsilon}, \kappa\right) & =0, &
\end{array} \quad \forall \kappa \in \mathcal{L}\right.
$$

Setting $\varepsilon=0$ yields the correct limit problem :

$$
\left\{\begin{array}{lll}
a_{\perp}\left(\phi^{0}, \eta\right)+a_{\|}\left(q^{0}, \eta\right) & =\int_{\Omega} f \eta, & \forall \eta \in \mathcal{V} \\
a_{\|}\left(\phi^{0}, \kappa\right) & =0, & \forall \kappa \in \mathcal{L}
\end{array}\right.
$$

Numerical results using AP2 with \mathbb{Q}_{2} finite elements on a

 regular grid on a square| h | L^{2}-error | H^{1}-error |
| :---: | :---: | :---: |
| 0.1 | 5.7×10^{-3} | 1.86×10^{-1} |
| 0.05 | 7.3×10^{-4} | 4.7×10^{-2} |
| 0.025 | 9.1×10^{-5} | 1.18×10^{-2} |
| 0.0125 | 1.14×10^{-5} | 2.96×10^{-3} |
| 0.00625 | 1.43×10^{-6} | 7.4×10^{-4} |
| 0.003125 | 1.78×10^{-7} | 1.85×10^{-4} |
| 0.0015625 | 2.23×10^{-8} | 4.6×10^{-5} |

The error for ϕ^{ε} in L^{2} and H^{1} norms for different mesh sizes for $\varepsilon=10^{-3}$ for the AP2 scheme.

Error vs. ε

Mesh size : 50×50

L^{2} error on the left, H^{1} error on the right

Error vs. ε

Mesh size : 100×100

L^{2} error on the left, H^{1} error on the right

Error vs. ε

Mesh size : 200×200

L^{2} error on the left, H^{1} error on the right

Condition numbers

Condition number estimate provided by the MUMPS solver for the (AP2), (AP5) and ($\mathrm{P}=$ straightforward) schemes.

Computational cost

Comparison between the Asymptotic Preserving schemes AP2, AP5 and the Singular Perturbation model (P) for $h=0.01$ (100 mesh points in each direction) and fixed $\varepsilon=10^{-6}$:
matrix size
nes number of nonzero elements
deomputation time

method	$\#$ rows	\# non zero	CPU time
AP2	20×10^{3}	621×10^{3}	5.227 s
AP5	50×10^{3}	1563×10^{3}	13.212 s
P	10×10^{3}	157×10^{3}	3.707 s

Extension to the case of a non constant ε

- The extension to the general case $\varepsilon=\varepsilon(x)$ is very simple.
- Instead of writing $u=p+\varepsilon q$, we introduce q as

$$
\nabla_{\|} q=\frac{1}{\varepsilon} \nabla_{\|} u
$$

with again $q \in \mathcal{L}$, i.e. $q=0$ on $\Gamma_{i n}$.

- This leads to almost the same reformulated system as before :

$$
\begin{cases}\int_{\Omega}\left(A_{\perp} \nabla_{\perp} u^{\varepsilon}\right) \cdot \nabla_{\perp} v d x+\int_{\Omega} A_{\|} \nabla_{\|} q^{\varepsilon} \cdot \nabla_{\|} v d x=\int_{\Omega} f v d x, & \forall v \in \mathcal{V} \\ \int_{\Omega} A_{\|} \nabla_{\|} u^{\varepsilon} \cdot \nabla_{\|} w d x-\int_{\Omega} \varepsilon A_{\|} \nabla_{\|} q^{\varepsilon} \cdot \nabla_{\|} w d x=0, & \forall w \in \mathcal{L}\end{cases}
$$

The benchmark with a variable ε

- We take a benchmark where ε is of order 1 in a part of Ω ond of order $\varepsilon_{\text {min }}$ in the remaining part :

$$
\varepsilon(x, y)=\frac{1}{2}\left[1+\tanh \left(a\left(x_{0}-x\right)\right)+\varepsilon_{\text {min }}\left(1-\tanh \left(a\left(x_{0}-x\right)\right)\right)\right],
$$

with

$$
a=50, \quad x_{0}=0.25
$$

- The exact solution :

$$
u^{\varepsilon}=\sin \left(\pi y+\alpha\left(y^{2}-y\right) \cos (\pi x)\right)+\varepsilon \cos (2 \pi x) \sin (\pi y)
$$

- The shape of Ω and the field b are as in the previous numerical experiments

Error vs. $\varepsilon_{\text {min }}$

Mesh size : 50×50

 L^{2} error on the left, H^{1} error on the right

Error vs. $\varepsilon_{\text {min }}$

Mesh size : 100×100

Error vs. $\varepsilon_{\text {min }}$

Mesh size : 200×200

L^{2} error on the left, H^{1} error on the right

What can be proved for AP5

Provided $f \in L^{2}(\Omega)$ and for every $\varepsilon>0$, the AP5 formulation admits a unique solution $\left(p^{\varepsilon}, q^{\varepsilon}\right) \in \mathcal{G} \times \mathcal{A}$, where $\phi^{\varepsilon}:=p^{\varepsilon}+q^{\varepsilon}$ is the unique solution in \mathcal{V} to the original problem.
These solutions satisfy the bounds

$$
\begin{aligned}
\left\|\phi^{\varepsilon}\right\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}, & \left\|p^{\varepsilon}\right\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)} \\
& \left\|\nabla_{\left\|q^{\varepsilon}\right\|_{L^{2}(\Omega)} \leq C \varepsilon} \leq f\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

with an ε-independent constant $C>0$. We thus have

$$
\phi^{\varepsilon} \rightarrow \phi^{0}, p^{\varepsilon} \rightarrow \phi^{0} \text { and } q^{\varepsilon} \rightarrow 0 \quad \text { in } H^{1}(\Omega) \text { as } \varepsilon \rightarrow 0,
$$

where $\phi^{0} \in \mathcal{G}$ is the unique solution of the Limit problem.

What can be proved for AP2

Provided $f \in L^{2}(\Omega)$ and for every $\varepsilon>0$, the AP2 formulation admits a unique solution $\left(\phi^{\varepsilon}, q^{\varepsilon}\right) \in \mathcal{V} \times \mathcal{L}$, where ϕ^{ε} is the unique solution in \mathcal{V} to the original problem.
These solutions satisfy the bounds

$$
\left\|\phi^{\varepsilon}\right\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}, \quad\left\|\nabla_{\|} q^{\varepsilon}\right\|_{L^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)},
$$

with an ε-independent constant $C>0$. We thus have

$$
\phi^{\varepsilon} \rightarrow \phi^{0}, \text { and } \quad q^{\varepsilon} \rightharpoonup \lambda^{0} \quad \text { in } H^{1}(\Omega) \text { as } \varepsilon \rightarrow 0,
$$

where $\phi^{0} \in \mathcal{G}$ is the unique solution of the Limit problem and λ^{0} is the corresponding Lagrange multiplier.

Numerical analysis

Something that our limit problem (L) and the scheme (AP2) resemble very much :

- An abstract saddle-point problem : find $(u, q) \in X \times M$ such that

$$
\begin{aligned}
a(u, v)+b(q, v) & =<f, v> & \forall v \in X \\
b(w, u) & =0 & \forall w \in M
\end{aligned}
$$

- Approximation by penalty (cf. the book by Girault\&Raviart, section 4.3) : find $\left(u^{\varepsilon}, q^{\varepsilon}\right) \in X \times M$ such that

$$
\begin{aligned}
a\left(u^{\varepsilon}, v\right)+b\left(q^{\varepsilon}, v\right) & =<f, v> & \forall v \in X \\
b\left(w, u^{\varepsilon}\right)-\varepsilon c\left(v^{\varepsilon}, w\right) & =0 & \forall w \in M
\end{aligned}
$$

- We have existence, uniqueness, convergence $\left(u^{\varepsilon}, q^{\varepsilon}\right) \rightarrow(u, q)$ under the assumtion

$$
\forall q \in M \quad: \quad \sup _{v \in X} \frac{b(q, v)}{\|v\|_{X}} \geq \beta\|q\|_{M}
$$

Does it apply to the analysis of (AP2)?

- No
- We could define

$$
\begin{gathered}
X=\mathcal{V}, \quad M=\mathcal{L} \\
a(u, v)=a_{\perp}(u, v), \quad b(q, v)=a_{\|}(q, v), \quad c(q, w)=a_{\|}(q, w)
\end{gathered}
$$

so that (AP2) seems like the penalized saddle-point problem above.

- But the inf-sup does not hold :

$$
\inf _{q \in \mathcal{L}} \sup _{v \in \mathcal{V}} \frac{a_{\|}(q, v)}{\|v\| v}=\inf _{q \in \mathcal{L}} \sup _{v \in \mathcal{V}} \frac{\int \nabla_{\|} q \cdot \nabla_{\|} v}{\left(\int\left|\nabla_{\|} v\right|^{2}+\int\left|\nabla_{\perp} v\right|^{2}\right)^{1 / 2}}=0
$$

The proper setting of the limit problem

- Consider the problem : find $(u, q) \in \mathcal{V} \times \mathcal{L}$ with usual \mathcal{V} and \mathcal{L} such that

$$
\begin{aligned}
a_{\perp}(u, v)+a_{\| \mid}(q, v) & =(f, v) & & \forall v \in \mathcal{V} \\
a_{\|}(u, w)-\varepsilon a_{\|}(q, w) & =0 & & \forall w \in \mathcal{L}
\end{aligned}
$$

- Define the norm

$$
|q|^{*}=\sup _{v \in \mathcal{V}} \frac{a_{\|}(v, q)}{\|v\|_{V}}
$$

Searching $(u, q) \in \mathcal{V} \times \mathcal{L}^{*}$ is the proper setting for the limit problem $\varepsilon=0$.

- This choice does not work when $\varepsilon>0$. Indeed, the term $a_{\| \mid}(q, w)$ makes no sense if we suppose only $(q, w) \in \mathcal{L}^{*}$.
- A new norm on \mathcal{L}

$$
|q|_{\varepsilon}=|q|^{*}+\sqrt{\varepsilon}|q|_{\|}
$$

This is indeed a norm on our old \mathcal{L} since the new norm is equivalent to the old one

$$
|q|_{\varepsilon} \leq(1+\sqrt{\varepsilon})|q|_{\|} \text {and }|q|_{\|} \leq \frac{1}{\sqrt{\varepsilon}}|q|_{\varepsilon}
$$

Well-posedness

Introducing the coupled bilinear norm on $X=\mathcal{V} \times \mathcal{L}$

$$
c((u, q),(v, w))=a_{\perp}(u, v)+a_{\| \mid}(q, v)+a_{\|}(u, w)-\varepsilon a_{\|}(q, w)
$$

we see immediately that it is continuous with the ε-independent constant

$$
\begin{aligned}
c((u, q),(v, w)) & \leq|u|_{\perp}|v|_{\perp}+|q|_{\|}|v|_{\|}+|u|_{\|}|w|_{\|}+\left.\left.\varepsilon\right|_{\mid q}\right|_{\|}|w|_{\|} \\
& \leq 2|u, q|_{X}|v, w|_{X}
\end{aligned}
$$

with

$$
|u, q|_{X}=\left(|u|_{V}^{2}+|q|_{\varepsilon}^{2}\right)^{1 / 2}
$$

We also have the infsup

$$
\inf _{(u, q) \in X} \sup _{(v, w) \in X} \frac{c((u, q),(v, w))}{|u, q|_{X}|v, w|_{X}} \geq \beta
$$

with an ε-independent constant β.

Discretization

- Let us now add the subscript h everywhere :

$$
\begin{aligned}
a_{\perp}\left(u_{h}, v_{h}\right)+a_{\|}\left(q_{h}, v_{h}\right) & =\left(f, v_{h}\right) & & \forall v_{h} \in V_{h} \\
a_{\| \mid}\left(u_{h}, w_{h}\right)-\varepsilon a_{\|}\left(q_{h}, w_{h}\right) & =0 & & \forall w_{h} \in L_{h}
\end{aligned}
$$

- The bilinear form c is still continuous on $X_{h}=V_{h} \times L_{h}$. But we also need the infsup

$$
\begin{equation*}
\inf _{\left(u_{h}, q_{h}\right) \in X_{h}} \sup _{\left(v_{h}, w_{h}\right) \in X_{h}} \frac{c\left(\left(u_{h}, q_{h}\right),\left(v_{h}, w_{h}\right)\right)}{\left|u_{h}, q_{h}\right| x\left|v_{h}, w_{h}\right| x} \geq \beta \tag{1}
\end{equation*}
$$

Well-posedness of the discrete problem

We give first a general result providing the sufficient conditions for the discrete inf-sup to hold.

Lemma

Suppose that $L_{h} \subset V_{h}$ and the discrete inf-sup for the form $a_{\|}$holds with respect to the star norm

$$
\inf _{q_{h} \in L_{h}} \sup _{v_{h} \in V_{h}} \frac{a_{\|}\left(q_{h}, v_{h}\right)}{\left|q_{h}\right|^{*}\left|v_{h}\right| v} \geq \alpha_{1}
$$

with some $\alpha_{1}>0$. Moreover, for any $u_{h} \in V_{h}$ denote $u_{h}^{0} \in L_{h}$ such that $a_{\| \mid}\left(u_{h}^{0}, w_{h}\right)=a_{\|}\left(u_{h}, w_{h}\right)$ for all $w_{h} \in L_{h}$ and suppose

$$
\left|u_{h}\right|_{\perp}^{2}+\left|u_{h}^{0}\right|_{\|}^{2} \geq \alpha_{2}\left|u_{h}\right|_{V}^{2}
$$

with some $\alpha_{2}>0$. Then the discrete inf-sup property (1) holds with a constant $\beta>0$ that depends only on α_{1} and α_{2}.

Conclusions

- The AP approach provides a powerful tool to construct the robust numerical methods for anisotropic problems, including the situations where the anisotropy strength varies wildly throughout the domain
- The decomposition of the type " $p^{\varepsilon}+\varepsilon q^{\varepsilon "}$ will be very helpful in more complicated problems in plasma simulation, as for instance, Euler-Lorentz equations

$$
\begin{aligned}
& \partial_{t} n+\nabla \cdot(n u)=0 \\
& m\left(\partial_{t}(n u)+\nabla \cdot(n u \otimes u)\right)+\nabla p(n)=e n(E+u \times B)
\end{aligned}
$$

An abundant literature exists already on the AP schemes for this kind of problems (P. Degond, M.-H. Vignal, S . Brull, A. Mouton ...)

