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A peak-shaped body.

A peak-shaped (non-Lipschitz) domain Ω:

In the vicinity of the coordinate origin the domain Ω coincides
with the peak
Π = {x = (y, z) = (y1, . . . , yn−1, z) : z ∈ (0, d), z−1−γy ∈ ω}
ω is the cross-section, γ > 0 the sharpness exponent of the
peak Π (Π is a cone for γ = 0, a Lipschitz domain)

The peak– and beak– and basin–shaped domains:
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The Neumann problem for the Laplace operator.

The spectral problem

−∆u = λu in Ω, ∂νu = 0 on ∂Ω \ O,

The spectrum is discrete.

If ∂Π is the graph z = f(y), the compactness of the
embedding H1(Ω) ⊂ L2(Ω) is evident.

If not (e.g., the peak cross-section ω is an annulus), one may
apply the Hardy–type inequality

‖r−1u;L2(Ω)‖ ≤ cΩ‖u;H1(Ω)‖
and make use of the big weight r−1 where r is the distance
from O, namely the embedding operator becomes the sum of
two operator, small (in the ε-neighborhood Vδ of O) and
compact (in the Lipschitz domain Ω \ Vδ).
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The elasticity equations in three dimensions.

u = (u1, u2, u3) is a displacement vector (n = 3).

εjk(u) =
1
2

(
∂uj

∂xk
+
∂uk

∂xj

)
and σjk(u) =

3∑
p,q=1

apq
jkεjk(u)

are Cartesian components of the strain (deformation) and
stress tensors, respectively.

The differential equations and the boundary conditions:

−
3∑

k=1

∂

∂xk
σjk(u) = λρuj in Ω,

3∑
k=1

νkσjk(u) = 0 on ∂Ω \ O,

where ν = (ν1, ν2, ν3) is the outward normal
and ρ > 0 the material density.
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The variational formulation of the elasticity spectral
problem.

The elastic energy 1
2a(u, u; Ω):

a(u, u; Ω) =
∫
Ω

3∑
j,k=1

σjk(u)εjk(u) dx ≥

≥ ca

∫
Ω

3∑
j,k=1

εjk(u)εjk(u) dx =
ca
4

∫
Ω

3∑
j,k=1

∣∣∣∣∂uj

∂xk
+
∂uk

∂xj

∣∣∣∣2 dx
The integral identity:

∫
Ω

3∑
j,k=1

σjk(u)εjk(v) dx = λ

∫
Ω

ρ

3∑
j=1

ujvj dx, ∀v ∈ C∞c (Ω \ O)3
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The Korn inequality.

In a Lipschitz domain Ω:

∫
Ω

∣∣∇xuj

∣∣2 dx ≤ cΩ

( ∫
Ω

∣∣∣∣∂uj

∂xk
+
∂uk

∂xj

∣∣∣∣2 dx+
∫
Ω

∣∣uj

∣∣2 dx)

(summation over j, k = 1, 2, 3)

Some names:

Korn A. (1908), Friedrichs K.O. (1947), Gobert J. (1962),
Nečas J. (1967), Kondratiev V.A., Oleinik O.A. (1988)

The spectrum of the elasticity system with the traction-free
boundary conditions is discrete:

0 = λ1 = . . . = λ6 < λ7 ≤ . . . ≤ λm ≤ . . .→ +∞
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The absence of Korn’s inequality in a peak-shaped domain.

The family of trial vector functions:

Displacements

ψm
1 (x) = ϕm(z), ψm

2 (x) = 0, ψm
3 (x) = −y1∂zϕm(z),

where ϕm(z) = ϕ(mz), ϕ ∈ C∞c (1, 2), m→ +∞, and strains

εpq(ψm) = 0, p, q = 1, 2, ε23(ψm) = 0,

ε13(ψm) =
1
2

(
∂ψm

1

∂z
+
∂ψm

3

∂y1

)
= 0, ε33(ψm) = −y1

∂2ϕm

∂z2
.

Norms:∫
Π

|ψm(x)|2 dx ∼
(
m−1−γ

)2 ×m−1 = m−3−2γ ,

(area of the cross-section) × ( length of the support)
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The absence of Korn’s inequality in a peak-shaped domain.

The family of trial vector functions:

Displacements

ψm
1 (x) = ϕm(z), ψm

2 (x) = 0, ψm
3 (x) = −y1∂zϕm(z),

where ϕm(z) = ϕ(mz), ϕ ∈ C∞c (1, 2), m→ +∞, and strains

εpq(ψm) = 0, p, q = 1, 2, ε23(ψm) = 0,

ε13(ψm) =
1
2

(
∂ψm

1

∂z
+
∂ψm

3

∂y1

)
= 0, ε33(ψm) = −y1

∂2ϕm

∂z2
.

Norms:∫
Π

|εjk(ψm;x)|2 dx ∼ m−3−2γ ×
(
m−1−γ

)2 ×
(
m2

)2 = m−1−4γ ,

(area × length) × (y1) × (ϕ′′m)
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The absence of Korn’s inequality in a peak-shaped domain.

The family of trial vector functions:

Displacements

ψm
1 (x) = ϕm(z), ψm

2 (x) = 0, ψm
3 (x) = −y1∂zϕm(z),

where ϕm(z) = ϕ(mz), ϕ ∈ C∞c (1, 2), m→ +∞, and strains

εpq(ψm) = 0, p, q = 1, 2, ε23(ψm) = 0,

ε13(ψm) =
1
2

(
∂ψm

1

∂z
+
∂ψm

3

∂y1

)
= 0, ε33(ψm) = −y1

∂2ϕm

∂z2
.

Norms:

‖ψm;L2(Π)‖2 ∼ m−3−2γ , ‖∇xψ
m;L2(Π)‖2 ∼ m−1−2γ ,

‖ε(ψm);L2(Π)‖2 ∼ m−1−4γ .
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The appearance of the essential spectrum.

Recall the calculated norms:

‖ψm;L2(Π)‖2 ∼ m−3−2γ ,

‖∇xψ
m;L2(Π)‖2 ∼ m−1−2γ ,

‖ε(ψm);L2(Π)‖2 ∼ m−1−4γ .

The inferences:
.
.

.
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The appearance of the essential spectrum.

Recall the calculated norms:

‖ψm;L2(Π)‖2 ∼ m−3−2γ ,

‖∇xψ
m;L2(Π)‖2 ∼ m−1−2γ ,

‖ε(ψm);L2(Π)‖2 ∼ m−1−4γ .

The inferences:

The energy space E is the completion of C∞c (Ω \ O)3 in the
norm (a(u, u; Ω) + ‖ρ1/2u;L2(Ω)‖2)1/2.

.
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The appearance of the essential spectrum.

Recall the calculated norms:

‖ψm;L2(Π)‖2 ∼ m−3−2γ ,

‖∇xψ
m;L2(Π)‖2 ∼ m−1−2γ ,

‖ε(ψm);L2(Π)‖2 ∼ m−1−4γ .

The inferences:

The energy space E is the completion of C∞c (Ω \ O)3 in the
norm (a(u, u; Ω) + ‖ρ1/2u;L2(Ω)‖2)1/2.

If γ > 0, the embedding E ⊂ H1(Ω)3 is wrong!

.
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The appearance of the essential spectrum.

Recall the calculated norms:

‖ψm;L2(Π)‖2 ∼ m−3−2γ ,

‖∇xψ
m;L2(Π)‖2 ∼ m−1−2γ ,

‖ε(ψm);L2(Π)‖2 ∼ m−1−4γ .

The inferences:

The energy space E is the completion of C∞c (Ω \ O)3 in the
norm (a(u, u; Ω) + ‖ρ1/2u;L2(Ω)‖2)1/2.

If γ > 0, the embedding E ⊂ H1(Ω)3 is wrong!

If γ ≥ 1, the embedding E ⊂ L2(Ω)3 is not compact, thus,
the essential spectrum is not empty!
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The anisotropic weighted Korn inequality in
peak-shaped domains (an incomplete version).

Nazarov, 1998, 2008:∫
Ω

(
r−2|u3|2 + r−2+2γ

(
|u1|2 + |u2|2

))
dx ≤

≤ cΩ

( ∫
Ω

∣∣∣∣∂uj

∂xk
+
∂uk

∂xj

∣∣∣∣2 dx+
∫
Ω

∣∣uj

∣∣2 dx).
z=x

3

x
2

x
1
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The anisotropic weighted Korn inequality in
peak-shaped domains (an incomplete version).

Nazarov, 1998, 2008:∫
Ω

(
r−2|u3|2 + r−2+2γ

(
|u1|2 + |u2|2

))
dx ≤

≤ cΩ

( ∫
Ω

∣∣∣∣∂uj

∂xk
+
∂uk

∂xj

∣∣∣∣2 dx+
∫
Ω

∣∣uj

∣∣2 dx).
The inferences:

If γ < 1 the embedding E ⊂ L2(Ω)3 is compact and the
spectrum of the elasticity problem for a body with an
insufficient sharp peak is discrete.

The essential spectrum cannot appear due to longitudinal
vibrations.
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The continuous spectrum.

The essential and continuous spectra coincide:

Due to a series of results by V. Maz’ya and B. Plamenevskii, the
kernel of the problem operator in weighted Sobolev spaces has a
finite dimension.
Thus an eigenvalue of infinite multiplicity is impossible.

The physical conclusions:

The continuous spectrum provokes for wave processes.
Since the continuous spectrum is caused by the peak top,
the wave processes must be located in the peak.

A wave process in a finite volume may produce
a black hole for vibration.
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The continuous spectrum.

The essential and continuous spectra coincide:

Due to a series of results by V. Maz’ya and B. Plamenevskii, the
kernel of the problem operator in weighted Sobolev spaces has a
finite dimension.
Thus an eigenvalue of infinite multiplicity is impossible.

The physical conclusions (unfortunately not mine!):

The continuous spectrum provokes for wave processes.
Since the continuous spectrum is caused by the peak top,
the wave processes must be located in the peak.

A wave process in a finite volume may produce
a black hole for vibration.
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Preparing a thought experiment.

metal brick

angular end

peak-shaped end
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A thought experiment.
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A thought experiment.



21

A thought experiment.
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A thought experiment.

plasticine
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A thought experiment.

NO
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The real experiment.

The engineering theory:

Mironov M.A. (1988, 1992, ...), Krylov V.V. (2002, 2004...)
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Wave processes. An engineering model.

The one-dimensional theory of beams (Mironov M.A.;1988):

d2

dz2
B(z)

d2

dz2
w(z) = λρM(z)w(z), z ∈ (0, 1),

.
where B(z) = b

(
z2

)4
is the inertia moment and M(z) = m

(
z2

)2

is the area of the cross-section.

The differential equation of the Euler type (indeed, 8−2×2=4):

d2

dz2
z8 d

2

dz2
w(z) = µz4w(z), z ∈ (0, 1),

w(z) = zβ−5/2 ⇒
(
β2 − 49

4

)2(
β2 − 25

4

)2
= µ,

β2
± =

49 + 25
8

±
√

(49 + 25)2

64
− 49× 25

16
+ µ



26

Wave processes. An engineering model (Mironov ;1988).

Waves :

β2
± = 8−1

(
49 + 25±

√
(49− 25)2 + 64µ

)
The right-hand side with minus is positive if and only if

µ < µ∗ = 4−25272.

If µ < µ∗, four solutions have the form z±β±−5/2, two
solutions with +β± possess finite energy

∫
z8

∣∣∂2
zw(z)

∣∣2dz.
If µ ≥ µ∗, two solutions have the form z±iβ−−5/2 and imply
oscillating waves while the energy is infinite for three solutions
with the exponents −β+ − 5/2 and ±iβ− − 5/2 and the
problem cannot have a solution in H2.
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Wave processes. An engineering model (Mironov ;1988).

Harmonic oscillations:

exp(itκ)z±iβ−5/2 = z−5/2 exp(i(tκ± β ln z))

z−5/2 is the normalization factor such that the integral∫
z8|∂2

zw(z)|2 dy over the cross-section (z−1dz is taken off)
stays constant.

The function above does not change if tκ± β ln z =const.
Hence, during the time interval of length ∆t the relative
distance of the wave propagation is equal to exp(∓β−1κ∆t)
and it takes an infinite time either to go to the top (minus),
or to come from the top (plus).
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The mathematical theory is not completed yet.

Some results:

If γ = 1, the continuous spectrum includes [λ†,+∞).
If γ > 1, the continuous spectrum implies [0,+∞).
Under a symmetry assumption, an infinite series of
eigenvalues are embedded into the continuous spectrum.

Accumulation effect for eigenvalues of elastic bodies with
blunted peaks and peak-shaped inclusions.

Some publications:

Nazarov S.A. The spectrum of the elasticity problem for a
spiked body. Siberian Math. J. 49, 5 (2008)

Bakharev F. L., Nazarov S.A. On the structure of the
spectrum of the elasticity problem for a body with a
super-sharp spike. Siberian Math. J. 50, 4 (2009)

Nazarov S.A. Oscillations of an elastic body with a heavy rigid
spike-shaped inclusion J. Appl. Math. Mech. 72, 5 (2008)
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Beak-shaped solids.

Some results:

If γ = 1, the essential spectrum includes the ray [λ†,+∞).
If γ > 1, the essential spectrum includes the point λ = 0.

Publications:

Nazarov S.A., Polyakova O.R. Asymptotic behavior of the
stress-strain state near a spatial singularity of the boundary of
the beak tip type J. Appl. Math. Mech. 57, 5 (1993)

Cardone G., Nazarov S.A., Taskinen J. A criterion for the
existence of the essential spectrum for beak-shaped elastic
bodies J. Math. Pures Appl. 92, 6 (2009)
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Plates with sharp edges (Mikhlin S.G.; 1970)

Degenerate forth-order equation:

The criterium of the continuous spectrum is proved in

Campbell A., Nazarov S.A., Sweers G. H. Spectra
of two-dimensional models for thin plates with sharp edges
SIAM J. Math. Anal. 42, 6 (2010)
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Plates with sharp edges (Mikhlin S.G.; 1970)

Degenerate forth-order equation:

The criterium of the continuous spectrum is proved in

Campbell A., Nazarov S.A., Sweers G. H. Spectra
of two-dimensional models for thin plates with sharp edges
SIAM J. Math. Anal. 42, 6 (2010)

The common weak point:

RADIATION CONDITIONS ARE NOT CREATED YET!

For a scalar problem in

Nazarov S.A., Taskinen J. Radiation conditions
at the top of a rotational cusp in the theory of water-waves
M2AN 45 (2011)
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Vibrating Black Holes.
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Vibrating Black Holes.
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The Neumann problem for elliptic system of second-order
equations.

The spectral problem.

D(−∇x)
>A(x)D(∇x)u(x) = λB(x)u(x), x ∈ Ω,

D(ν(x)
>A(x)D(∇x)u(x) = 0, x ∈ ∂Ω \ O.

the peak Π = {x = (y, z) : z ∈ (0, d), z−1−γy ∈ ω}.
u = (u1, . . . , uk)> is the column vector function.

λ is the spectral parameter.
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The algebraic completeness.

The coefficient matrices.

A and B are matrices of sizes K ×K and k × k, respectively,
Hermitian, positive definite, measurable, uniformly bounded.

The matric differential operator.

D(∇x) is a K × k matrix of first-order differential operators
with constant (complex) coefficients.

D(ξ) is algebraically complete (Nečas J., 1967), that is, with
a certain ρD ∈ N = {1, 2, . . . }, for any row p = (p1, . . . , pk)
of homogeneous polynomials in ξ of degree ρ ≥ ρD, one finds
a polynomial row q = (q1, . . . , qK) such that

p(ξ) = q(ξ)D(ξ), ξ ∈ Rn

The elasticity system is a particular case with k = 3 and K = 6.
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The variational formulation.

The integral identity.

(AD(∇x)u,D(∇x)v)Ω = λ(Bu, v)Ω, ∀v ∈ H1(Ω)k.

The generalized Korn inequality in a Lipschitz domain.

The algebraic completeness provides (Nečas J., 1967)

‖u;H1(Θ)‖ ≤ cDΘ
(
‖D(∇x)u;L2(Θ)‖+ ‖u;L2(Θ)‖

)
, u ∈ H1(Θ)k.

The polynomial property (Nazarov S., 1997, 1999).

For any point x0 and any domain Ξ ⊂ Rn and with some
finite-dimensional subspace P of vector polynomials,
(A(x0)D(∇x)u,D(∇x)v)Ξ = 0, u ∈ H1(Ξ)k ⇔ u ∈ P

∣∣
Ξ
.

⇒ the ellipticity and the Shapiro–Lopatinskii conditions.

p = (p1, . . . , pk)> ∈ P ⇒ degpj < ρD

In elasticity P is the space of rigid motions
(translations+rotations)
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The criterion of the discrete spectrum.

Theorem.

The spectrum of the problem in the peak-shaped domain Ω is
discrete for any γ > 0 if and only if
the polynomial subspace P does not contain a polynomial
dependent on z, i.e. ∂zp = 0 for any p ∈ P.

If the polynomial subspace P includes a polynomial
p(y, z) = pmzm + pm−1zm−1 + · · ·+ p1z1 + p0

with m ≥ 1 and pj ∈ Ck, pm 6= 0,
then in the case γ ≥ 1/m the continuous spectrum σc of the
problem is not empty. Moreover, 0 ∈ σc for γ > 1/m.

For the elasticity problem a rotation vector depends on z.
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The operator formulation of the boundary value problem.

The Hilbert space.

Let H be the completion of C∞c (Ω \ O)k with respect to the norm
generated by the scalar product

〈u, v〉 = (AD(∇x)u,D(∇x)v)Ω + (Bu, v)Ω.

The continuous positive self-adjoint operator T is defined by

〈T u, v〉 = (Bu, v)Ω, u, v ∈ H.

The new spectral parameter µ = (1 + λ)−1.

The variational formulation of the boundary value problem
(AD(∇x)u,D(∇x)v)Ω = λ(Bu, v)Ω, ∀v ∈ H1(Ω)k.

is equivalent to the abstract equation
T u = µu, u ∈ H.
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Steps of the proof.

Step 1.

If ∂zp = 0 for any p ∈ P, then the following weighted Korn
inequality is valid:

‖r−1u;L2(Ω)‖ ≤ c
(
‖D(∇x)u;L2(Ω)‖+ ‖u;L2(Ω)‖

)
This inequality is similar to the Hardy-type inequality in the case of
the Laplace operator but the proof needs some matric algebra.

Step 2.

A sequence {um} in H is constructed and the properties
‖um;H‖ ≥ c > 0; um → 0 weakly inH;
‖T um − um;H‖ → 0

of the singular Weyl sequence for the operator T
at the point µ = 1 are verified.
The structure of the test functions is
approximately the same as in elasticity.
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The paper.

Nazarov S.A. On the essential spectrum of boundary value
problems for systems of differential equations in a bounded
peak-shaped domain. Funct. Anal. Appl. 43,1 (2009).
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The paper.

Nazarov S.A. On the essential spectrum of boundary value
problems for systems of differential equations in a bounded
peak-shaped domain. Funct. Anal. Appl. 43,1 (2009).

     THANK YOU

 FOR ATTENTION !


