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We study the strong approximation of a Backward SDE with finite stopping time horizon, namely the

first exit time of a forward SDE from a cylindrical domain. We use the Euler scheme approach of [4, 29].

When the domain is piecewise smooth and under a non-characteristic boundary condition, we show that

the associated strong error is at most of order h
1
4
−ε where h denotes the time step and ε is any positive

parameter. This rate corresponds to the strong exit time approximation. It is improved to h
1
2
−ε when

the exit time can be exactly simulated or for a weaker form of the approximation error. Importantly,

these results are obtained without uniform ellipticity condition.
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1. Introduction

Let T > 0 be a finite time horizon and (Ω,F ,P) be a stochastic basis supporting a d-dimensional

Brownian motion W . We assume that the filtration F = (Ft)t≤T generated by W satisfies the

usual assumptions and that FT = F .

Let (X,Y, Z) be the solution of the decoupled Brownian Forward-Backward SDE

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs (1.1)

Yt = g(τ,Xτ ) +

∫ T

t

1s<τf(Xs, Ys, Zs)ds−
∫ T

t

ZsdWs , t ∈ [0, T ] , (1.2)

where τ is the first exit time of (t,Xt)t≤T from a cylindrical domain D = [0, T ) ×O for some

open piecewise smooth connected set O ⊂ Rd, and b, σ, f and g satisfy the usual Lipschitz

continuity assumption.

This kind of systems appears in many applications. In particular, it is well known that it is

related to the solution of the semi-linear Cauchy Dirichlet problem

− Lu− f(·, u,Duσ) = 0 on D , u = g on ∂pD , (1.3)
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where L is the (parabolic) Dynkin operator associated to X , i.e. for ψ ∈ C1,2

Lψ := ∂tψ + 〈b,Dψ〉 +
1

2
Tr
[

aD2ψ
]

, a := σσ∗ ,

and ∂pD := ([0, T )× ∂O) ∪
(

{T } ∪ Ō
)

is the parabolic boundary of D. More precisely, if the

solution u of (1.3) is smooth enough, then Y = u(·, X) and Z = Duσ(·, X). Thus, in the regular

frame, solving (1.2) is essentially equivalent to solving (1.3).

In this paper, we study an Euler scheme type approximation of (1.1)-(1.2) similar to the one

introduced in [4, 29], see also [2, 3, 24]. We first consider the Euler scheme approximation X̄

of X on some grid π := {ti = ih, i ≤ n} with modulus h := T/n, n ∈ N∗. The exit time τ is

approximated by the first discrete exit time τ̄ of (ti, X̄ti
)ti∈π from D. Then, the backward Euler

scheme of (Y, Z) is defined for i = n− 1, . . . , 0 as

Ȳti
:= E

[

Ȳti+1 | Fti

]

+ 1ti<τ̄ h f(X̄ti
, Ȳti

, Z̄ti
) , Z̄ti

:= h−1E
[

Ȳti+1

(

Wti+1 −Wti

)

| Fti

]

,

with the terminal condition ȲT = g(τ̄ , X̄τ̄ ) . Here, g is a suitable extension of the boundary

condition on the whole space [0, T ]× Rd.

The main purpose of this paper is to provide bounds for the (square of the) discrete time

approximation error up to a stopping time θ ≤ T P − a.s. defined as

Err(h)2θ := max
i<n

E

[

sup
t∈[ti,ti+1]

1t≤θ|Yt − Ȳti
|2
]

+ E

[

∫ θ

0

‖Zt − Z̄φ(t)‖2dt

]

, (1.4)

where φ(t) := sup{s ∈ π : s ≤ t}.
We are interested by two important cases: θ = T and θ = τ ∧ τ̄ . The quantity Err(h)T coincides

with the usual strong approximation error computed up to T . The term Err(h)τ∧τ̄ should be

more considered as a weak approximation error, since the length of the random time interval

[0, τ ∧ τ̄ ] cannot be controlled sharply in pratice. It essentially provides a bound for Y0 − Ȳ0, or

equivalently in terms of (1.3), u(0, X0) − Ȳ0.

As in [4], [23] and [29], who considered the limit case O = Rd (i.e. τ = T ), the approximation

error can be naturally related to the error due to the approximation of X by X̄φ and the

regularity of the solution (Y, Z) of (1.2) through the quantities:

R(Y )π
S2 := max

i<n
E

[

sup
t∈[ti,ti+1]

|Yt − Yti
|2
]

and R(Z)π
H2 := E

[

∫ T

0

‖Zt − Ẑφ(t)‖2dt

]

where

Ẑti
:= h−1E

[
∫ ti+1

ti

Zsds | Fti

]

for i < n . (1.5)

In the case f = 0, Y is a martingale and Yti
is the best L2 approximation of Yt on the time

interval [ti, ti+1] by an Fti
-measurable random variable. In this case, Doob’s inequalities imply
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that E

[

supt∈[ti,ti+1] |Yt − Ȳti
|2
]

≥ E
[

|Yti+1 − Yti
|2
]

≥ c E

[

supt∈[ti,ti+1] |Yt − Yti
|2
]

, for some

universal constant c > 0.

Moreover, the definition (1.5) implies that Ẑφ is the best approximation in L2([0, T ] × Ω, dt ⊗
dP) of Z by a process which is constant on each time interval [ti, ti+1). Thus, R(Z)π

H2 ≤
E

[

∫ T

0
‖Zt − Z̄φ(t)‖2dt

]

.

This justifies why R(Y )π
S2 and R(Z)π

H2 should play a crucial role in the convergence rate of

Err(h) to 0 as h→ 0.

Bounds for similar quantities have previously been studied in [4, 29] in the case O = Rd and

in [2, 24] in the case of reflected BSDEs. All these articles use a Malliavin calculus approach to

derive a particular representation of Z. Due to the exit time, these techniques fail in our setting.

We propose a different approach that relies on mixed analytic/probabilistic arguments. Namely,

we first adapt some barrier techniques from the PDE literature, see e.g. Chapter 14 in [11] and

Section 6.2 below, to provide a bound for the modulus of continuity of u on the boundary,

and then some stochastic flows and martingale arguments to obtain an interior control on this

modulus. Under the standing assumptions of Section 2, it allows to derive that R(Y )π
S2 +

R(Z)π
H2 = O(h) and that u is 1/2-Hölder in time and Lipschitz continuous in space.

To derive our final error bound on Err(h)θ, we additionally have to take into consideration the

error coming from the approximation of τ by τ̄ . We show that E [|τ − τ̄ |] = O(h
1
2−ε) for all

ε > 0. Combined with the previous controls on R(Y )π
S2 and R(Z)π

H2 , this allows us to show

that Err(h)T = O(h
1
4−ε). Exploiting an additional control on a weaker form of error on τ − τ̄ ,

we also derive that Err(h)τ∧τ̄ = O(h
1
2−ε).

As a matter of facts, the global error is driven by the approximation error of the exit time

which propagates backward thanks to the Lipschitz continuity of u. A similar kind of behavior

has previously been observed in [14] for the weak error associated to the first boundary value

problem in the whole space, i.e. O = Rd.

Importantly, we do not assume specific non degeneracies of the diffusion coefficient but only a

uniform non characteristic boundary condition and uniform ellipticity close to the corners, recall

that O is piecewise smooth. Using the transformation proposed in [19], these results could be

extended to drivers with quadratic growth (for a bounded boundary condition g).

We note that the numerical implementation of the above scheme requires the approximation

of the involved conditional expectations. It can be performed by non-parametric regression

techniques, see e.g. [15] and [22], or a quantization approach, see e.g. [1] and [7, 8]. In both cases,

the additional error is analyzed in the above papers and can be extended to our framework. We

note that the Malliavin approach of [4] cannot be directly applied here due to the presence of

the exit time. Concerning a direct computable algorithm, we mention the work of Milstein and

Tretyakov [25] who use a simple random walk approximation of the Brownian motion. However,
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their results require strong smoothness assumptions on the solution of (1.3) as well as a uniform

ellipticity condition.

The rest of the paper is organized as follows. We start with some notations and assumptions in

Section 2. Our main results are presented in Section 3. In Section 4, we provide a first bound

on the error: it involves the error due to the discrete time approximation of τ by τ̄ and the

regularity of the solution (Y, Z) of (1.2). The discrete approximation of τ is specifically studied

in Section 5. Eventually, Section 6 is devoted to the analysis of the regularity of (1.3) and (1.2)

under our current assumptions.

2. Notations and assumptions

Any element x ∈ Rd, d ≥ 1, will be identified to a line vector with i-th component xi and

Euclidean norm ‖x‖. The scalar product on Rd is denoted by 〈x, y〉. The open ball of center x and

radius r is denoted by B(x, r), B̄(x, r) is its closure. Given a non-empty set A ⊂ Rd, we similarly

denote by B(A, r) and B̄(A, r) the sets {x ∈ Rd : d(x,A) < r} and {x ∈ Rd : d(x,A) ≤ r}
where d(x,A) stands for the Euclidean distance of x to A. For a (m×d)-dimensional matrix M ,

we denote M∗ its transpose and we write M ∈ Md if m = d. For a smooth function f(t, x), Df

and D2f stand for its gradient (as a line vector) and Hessian matrix with respect to its second

component. If it depends on some extra components, we denote by ∂tf(t, x, y, z), ∂xf(t, x, y, z),

etc... its partial gradients.

2.1. Euler scheme approximation of BSDEs

From now on, we assume that the coefficients of (1.1)-(1.2) satisfy:

(HL): There is a constant L > 0 such that for all (t, x, y, z, t′, x′, y′, z′) ∈ ([0, T ]×Rd×R×Rd)2:

‖(b, σ, g, f)(t, x, y, z) − (b, σ, g, f)(t′, x′, y′, z′)‖ ≤ L ‖(t, x, y, z) − (t′, x′, y′, z′)‖ ,

‖(b, σ, g, f)(t, x, y, z)‖ ≤ L (1 + ‖(x, y, z)‖) .

Under this assumption, it is well known, see e.g. [27, 28], that we have existence and uniqueness

of a solution (X,Y, Z) in S2 × S2 ×H2, where we denote by S2 the set of real valued adapted

continuous processes ξ satisfying ‖ξ‖S2 := E
[

supt≤T |ξt|2
]

1
2 < ∞ , and by H2 the set of

progressively measurable Rd-valued processes ζ for which ‖ζ‖H2 := E[
∫ T

0 |ζt|2dt]
1
2 < ∞ .

As usual, we shall approximate the solution of (1.1) by its Euler scheme X̄ associated to a grid

π := {ti = ih , i ≤ n} , h := T/n , n ∈ N∗ ,
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defined by

X̄t = X0 +

∫ t

0

b(X̄φ(s))ds+

∫ t

0

σ(X̄φ(s))dWs , t ≥ 0 , (2.1)

where we recall that φ(s) := argmax{ti, i ≤ n : ti ≤ s} for s ≥ 0 .

Regarding the approximation of (1.2), we adapt the approach of [29] and [4]. First, we approx-

imate the exit time τ by the first exit time of the Euler Scheme (t, X̄t)t∈π from D on the grid

π:

τ̄ := inf{t ∈ π : X̄t /∈ O} ∧ T .

Remark 2.1. Note that one could also approximate τ by τ̃ := inf{t ∈ [0, T ] : X̄t /∈ O} ∧ T ,

the first exit time of the “continuous version” of the Euler scheme (t, X̄t)t∈[0,T ], as it is done

for linear problems, i.e. f is independent of (Y, Z), see e.g. [13]. However, in the case where O
is not a half-space, this requires additional local approximations of the boundary by tangent

hyperplanes and will not allow to improve our strong approximation error, compare Corollaire

2.3.2. in [12] with Theorem 3.1 below.

Then, we define the discrete time process (Ȳ , Z̄) on π by

Ȳti
:= E

[

Ȳti+1 | Fti

]

+ 1ti<τ̄ h f(X̄ti
, Ȳti

, Z̄ti
) , (2.2)

Z̄ti
:= h−1E

[

Ȳti+1

(

Wti+1 −Wti

)

| Fti

]

, i < n , (2.3)

with the terminal condition

ȲT = g(τ̄ , X̄τ̄ ) . (2.4)

Observe that Ȳti
1ti≥τ̄ = g(τ̄ , X̄τ̄ ) and that Z̄ti

1ti≥τ̄ = 0.

One easily checks that (Ȳti
, Z̄ti

) ∈ L2 for all i ≤ n under (HL). It then follows from the

martingale representation theorem that we can find Z̃ ∈ H2 such that

Ȳti+1 − E
[

Ȳti+1 | Fti

]

=

∫ ti+1

ti

Z̃sdWs for all i < n . (2.5)

This allows us to consider a continuous time extension of Ȳ in S2 defined on [0, T ] by

Ȳt = g(τ̄ , X̄τ̄ ) +

∫ T

t

1s<τ̄ f(X̄φ(s), Ȳφ(s), Z̄φ(s))ds−
∫ T

t

Z̃sdWs . (2.6)

Remark 2.2. Observe that Z = 0 on ]τ, T ] and Z̃ = 0 on ]τ̄ , T ]. For later use, also notice that

the Itô isometry and (2.5) imply

Z̄ti
= h−1 E

[
∫ ti+1

ti

Z̃sds | Fti

]

, i < n . (2.7)
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2.2. Assumptions on O, σ and g

Our main result holds under some additional assumptions on O, σ and g. Without loss of

generality, we can specify them in terms of the constant L which appears in (HL).

We first assume that the domain O is a finite intersection of smooth domains with compact

boundaries:

(D1): We have O :=
⋂m

ℓ=1 Oℓ where m ∈ N∗ and Oℓ is a C2 domain of Rd for each 1 ≤ ℓ ≤ m.

Moreover, Oℓ has a compact boundary, sup{‖x‖ : x ∈ ∂Oℓ} ≤ L, for each 1 ≤ ℓ ≤ m.

This condition implies that there is a function d which coincides with the algebraic distance to

∂O, in particular O := {x ∈ Rd : d(x) > 0} , and is C2 outside of a neighborhood B(C, L−1)

of the set of corners

C :=

m
⋂

ℓ 6=k=1

∂Oℓ ∩ ∂Ok ,

see e.g. Appendix 14.6 in [11].

We also assume that the domain satisfies a uniform exterior sphere condition as well as a uniform

truncated interior cone condition:

(D2): For all x ∈ ∂O, there is y(x) ∈ Oc, r(x) ∈ [L−1, L] and δ(x) ∈ B(0, 1) such that

B̄(y(x), r(x)) ∩ Ō = {x}
and {x′ ∈ B(x, L−1) : 〈x′ − x, δ(x)〉 ≥ (1 − L−1)‖x′ − x‖} ⊂ Ō .

In view of (D1), these last assumptions are actually automatically satisfied outside a neighbor-

hood of the set of corners, see e.g. Appendix 14.6 in [11].

In order to ensure that the associated first boundary value problem is well posed in the (uncon-

strained) viscosity sense, we shall also assume that

a := σσ∗

satisfies a non-characteristic boundary condition outside the set of corners C and a uniform

ellipticity condition on a neighborhood of C:

(C): We have

inf{n(x)a(x)n(x)∗ : x ∈ ∂O \B(C, L−1)} ≥ L−1 where n(x) := Dd(x) ,

and

inf{ξa(x)ξ∗ : ξ ∈ ∂B(0, 1) , x ∈ Ō ∩B(C, L−1)} ≥ L−1 .
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In particular, it guarantees that the process X is non-adherent to the boundary.

Observe that n coincides with the inner normal unit on ∂O outside the set of corners. By abuse

of notations, we write n(x) for Dd(x), whenever this quantity is well defined, even if x /∈ ∂O.

Importantly, we do not assume that σ is non degenerate in the whole domain.

We finally assume that g is smooth enough:

(Hg): g ∈ C1,2([0, T ]× Rd) and ‖∂tg‖ + ‖Dg‖ + ‖D2g‖ ≤ L on [0, T ]× Rd .

Clearly, this smoothness assumption could be imposed only on a neighborhood of ∂O. Since it

is compact and Y depends on g only on ∂O, we can always construct a suitable extension of g

on Rd which satisfies the above condition. Actually, one could only assume that g is Lipschitz

in (t, x) and has a Lipschitz continuous derivative in x. With this slightly weaker condition, all

our arguments would go through after possibly replacing g by a sequence of regularized versions

and then passing to the limit, see Section 6.4 for similar kind of arguments.

3. Main results

We first provide a general control on the quantities in (1.4) in terms of R(Y )π
S2 , R(Z)π

H2 and

|τ − τ̄ |. Let us mention that this type of result is now rather standard when O = Rd, see e.g.

[4], and requires only the Lipschitz continuity assumptions of (HL) and (Hg).

Proposition 3.1. Assume that (HL) and (Hg) hold. Then, there exist CL > 0 and a positive

random variable ξL satisfying E [(ξL)p] ≤ Cp
L for all p ≥ 2 such that

Err(h)2T ≤ CL

(

h+ R(Y )π
S2 + R(Z)π

H2 + E

[

ξL|τ − τ̄ | + 1τ̄<τ

∫ τ

τ̄

‖Zs‖2ds

])

(3.1)

and

Err(h)2τ∧τ̄ ≤ Err(h)2τ+∧τ̄ ≤ CL (h+ R(Y )π
S2 + R(Z)π

H2) + E

[

E
[

ξL|τ − τ̄ | | Fτ+∧τ̄

]2
]

+ CL E

[

1τ̄<τE

[
∫ τ

τ̄

‖Zs‖ds | Fτ̄

]2
]

. (3.2)

where τ+ is the next time after τ in the grid π:

τ+ := inf{t ∈ π : τ ≤ t} .

The proof will be provided in Section 4 below. Note that we shall control Err(h)2τ∧τ̄ through

the slightly stronger term Err(h)2τ+∧τ̄ , see (3.2). This will allow us to work with stopping times

with values in the grid π which will be technically easier, see Remark 4.2 below.
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In order to provide a convergence rate for Err(h)2T and Err(h)2τ+∧τ̄ , it remains to control the

quantities R(Y )π
S2 , R(Z)π

H2 and the terms involving the difference between τ and τ̄ .

The error due to the approximation of τ by τ̄ is controlled by the following estimate that extends

to the non uniformly elliptic case previous results obtained in [12], see its Corollaire 2.3.2. The

proof of this Theorem is provided in Section 5 below.

Theorem 3.1. Assume that (HL), (D1) and (C) hold. Then, for ε ∈ (0, 1) and each positive

random variable ξ satisfying E [(ξ)p] ≤ Cp
L for all p ≥ 1, there is Cε

L > 0 such that

E

[

E
[

ξ |τ − τ̄ | | Fτ+∧τ̄

]2
]

≤ Cε
Lh

1−ε .

In particular, for each ε ∈ (0, 1/2), there is Cε
L > 0 such that

E [|τ − τ̄ |] ≤ Cε
Lh

1/2−ε .

In [12], the last bound is derived under a uniform ellipticity condition on σ and cannot be ex-

ploited in our setting, recall that we only assume (C). Up to the ε term, it can not be improved.

Indeed, in the special case of a uniformly elliptic diffusion in a smooth bounded domain, it has

been shown in [16] that E [τ − τ̄ ] = Ch
1
2 + o(h

1
2 ) for some C > 0, see Theorem 2.3 of this

reference.

Our next result concerns the regularity of (Y, Z) and is an extension to our framework of similar

results obtained in [23], [4], [3] and [2] in different contexts.

Theorem 3.2. Let the conditions (HL), (D1), (D2), (C) and (Hg) hold. Then,

R(Y )π
S2 + R(Z)π

H2 ≤ CL h . (3.3)

Moreover, for all stopping times θ, ϑ satisfying θ ≤ ϑ ≤ T P − a.s., one has

E

[

sup
θ≤s≤ϑ

|Ys − Yθ|2p

]

≤ E [ξp
L |ϑ− θ|p] , p ≥ 1 , (3.4)

and

E

[

∫ ϑ

θ

‖Zs‖pds | Fθ

]

≤ E [ξp
L|ϑ− θ| | Fθ] , p = 1, 2 , (3.5)

where ξp
L is a positive random variable which satisfies E [|ξp

L|q] <∞ , for all q ≥ 1.

In addition, the unique continuous viscosity solution u of (1.3), in the class of continuous solu-

tions with polynomial growth, is uniformly 1/2-Hölder continuous in time and Lipschitz contin-

uous in space, i.e.

|u(t, x) − u(t′, x′)| ≤ CL

(

|t− t′| 12 + ‖x− x′‖
)

for all (t, x) and (t′, x′) ∈ D̄ . (3.6)
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The proof is provided in Section 6 below. The bound (3.5) can be interpreted as a weak bound

on the gradient, whenever it is well defined, of the viscosity solution of (1.3). It implies that Y is

1/2-Hölder continuous in L2 norm. This result is rather standard under our Lipschitz continuity

assumption in the case where O = Rd, i.e. τ = T , but seems to be new in our context and under

our assumptions. The bound R(Z)π
H2 ≤ CL h can be seen as a weak regularity result on this

gradient. It would be straightforward if one could show that Duσ is uniformly 1/2-Hölder in

time and Lipschitz in space, which is not true in general.

Combining the above estimates, we finally obtain our main result which provides an upper

bound for the convergence rate of Err(h)2τ+∧τ̄ (and thus for Err(h)2τ∧τ̄ ) and Err(h)2T .

Theorem 3.3. Let the conditions (HL), (D1), (D2), (C) and (Hg) hold. Then, for each

ε ∈ (0, 1
2 ), there is Cε

L > 0 such that

Err(h)2τ+∧τ̄ ≤ Cε
L h1−ε and Err(h)2T ≤ Cε

L h
1
2−ε .

This extends the results of [2, 3, 29] who obtained similar bounds in different contexts.

Remark 3.1. When τ can be exactly simulated, we can replace τ̄ by τ in the scheme (2.2)-

(2.3). In this case, the two last terms in the right hand-sides of (3.1) and (3.2) cancel and we

retrieve the convergence rate of the case O = Rd, see e.g. [4].

4. Euler scheme approximation error: Proof of

Proposition 3.1

In this section, we provide the proof of Proposition 3.1. We first recall some standard controls

on X , (Y, Z) and X̄ which holds under (HL).

From now on, Cη
L denotes a generic constant whose value may change from line to line but which

depends only onX0, L and some extra parameter η (we simply write CL if it depends only on X0

and L). Similarly, ξη
L denotes a generic non-negative random variable such that E [|ξη

L|p] ≤ Cη,p
L

for all p ≥ 1 (we simply write ξL if it does not depend on the extra parameter η).

Proposition 4.1. Let (HL) hold. Fix p ≥ 2. Let ϑ be a stopping time with values in [0, T ].

Then

E



 sup
t∈[ϑ,T ]

‖Yt‖p +

(

∫ T

ϑ

‖Zt‖2dt

)

p

2

| Fϑ



 ≤ Cp
L(1 + ‖Xϑ‖p)

and

E

[

sup
t∈[ϑ,T ]

(

‖Xt‖p + ‖X̄t‖p
)

| Fϑ

]

≤ ξp
L .
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Moreover,

max
i<n

E

[

sup
t∈[ti,ti+1]

(

‖Xt −Xti
‖p + ‖X̄t − X̄ti

‖p
)

]

+ E

[

sup
t∈[0,T ]

‖Xt − X̄t‖p

]

≤ Cp
Lh

p
2 ,

P

[

sup
t≤T

‖X̄t − X̄φ(t)‖ > r

]

≤ CL r−4 h , r > 0 ,

and, if θ is a stopping time with values in [0, T ] such that ϑ ≤ θ ≤ ϑ+ h P − a.s., then

E
[

‖X̄θ − X̄ϑ‖p + ‖Xθ −Xϑ‖p | Fϑ

]

≤ ξp
Lh

p
2 .

Remark 4.1. For later use, observe that the Lipschitz continuity assumptions (HL) ensure

that

E



 sup
t∈[ϑ,T ]

‖Ȳt‖p +

(

∫ T

ϑ

‖Z̃t‖2dt

)

p

2

| Fϑ



 < ∞ for all p ≥ 2 .

In order to avoid the repetition of similar arguments depending whether we consider Err(h)2θ
with θ = T or θ = τ+ ∧ τ̄ , we first state an abstract version of Proposition 3.1 for some stopping

time θ with values in π.

Proposition 4.2. Let (HL) hold. Then, for all stopping time θ with values in π, we have

Err(h)2θ ≤ CL

(

h+ E
[

|Yθ − Ȳθ|2
]

+ R(Y )π
S2 + R(Z)π

H2 + E

[

∫ (τ̄∨τ)∧θ

τ̄∧τ∧θ

(

ξL + 1τ̄<τ‖Zs‖2
)

ds

])

.

Let us first make the following Remark which will be of important use below.

Remark 4.2. Let ϑ ≤ θ P − a.s. be two stopping times with values in π and H be some

adapted process in S2. Then, recalling that ti+1 − ti = h, it follows from (2.7) and Jensen’s

inequality that

E

[

∫ θ

ϑ

Hφ(s)‖Z̄φ(s)‖2ds

]

=
∑

i<n

E

[

∫ ti+1

ti

1ϑ≤ti<θ Hti

∥

∥

∥

∥

E

[

h−1

∫ ti+1

ti

Z̃udu | Fti

]∥

∥

∥

∥

2

ds

]

≤
∑

i<n

E

[
∫ ti+1

ti

1ϑ≤ti<θ Hti
h−1

∫ ti+1

ti

‖Z̃u‖2duds

]

≤ E

[

∫ θ

ϑ

Hφ(s)‖Z̃s‖2ds

]

.

By definition of Ẑ, see (1.5), the same inequality holds with (Ẑ, Z) or (Ẑ − Z̄, Z − Z̃) in place

of (Z̄, Z̃). This remark will allow us to control ‖Z − Z̄φ‖ through ‖Z − Z̃‖ and ‖Z − Ẑφ‖, see
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(4.3) below, which is a key argument in the proof of Proposition 4.2. Observe that the above

inequality does not apply if ϑ and θ do not take values in π. This explains why it is easier to

work with τ+ instead of τ , i.e. work on Err(h)2τ+∧τ̄ instead of Err(h)2τ∧τ̄ .

Proof of Proposition 4.2. We adapt the arguments used in the proof of Theorem 3.1 in [4] to

our setting. By applying Itô’s Lemma to (Y − Ȳ )2 on [t ∧ θ, ti+1 ∧ θ] for t ∈ [ti, ti+1] and i < n,

we first deduce from (1.2) and (2.6) that

∆θ
t,ti+1

:= E

[

|Yt∧θ − Ȳt∧θ|2 +

∫ ti+1∧θ

t∧θ

‖Zs − Z̃s‖2ds

]

= E
[

|Yti+1∧θ − Ȳti+1∧θ|2
]

+ E

[

2

∫ ti+1∧θ

t∧θ

(Ys − Ȳs)
(

1s<τf(Θs) − 1s<τ̄f(Θ̄φ(s))
)

ds

]

,

where the martingale terms cancel thanks to Proposition 4.1 and Remark 4.1, and where Θ :=

(X,Y, Z) and Θ̄ := (X̄, Ȳ , Z̄). Using the inequality 2ab ≤ a2 + b2, we then deduce that, for

α > 0 to be chosen later on,

∆θ
t,ti+1

≤ E
[

|Yti+1∧θ − Ȳti+1∧θ|2
]

+ E

[

∫ ti+1∧θ

t∧θ

α |Ys − Ȳs|2ds
]

+ E

[

∫ ti+1∧θ

t∧θ

α−1(1s<τf(Θs) − 1s<τ̄f(Θ̄φ(s)))
2ds

]

.

≤ E
[

|Yti+1∧θ − Ȳti+1∧θ|2
]

+ α E

[

∫ ti+1∧θ

t∧θ

|Ys − Ȳs|2ds
]

+ 2α−1E

[

∫ ti+1∧θ

t∧θ

1s<τ̄

(

f(Θs) − f(Θ̄φ(s))
)2
ds+

∫ ti+1∧θ

t∧θ

1τ̄≤s<τ (f(Θs))
2 ds

]

+ 2α−1E

[

∫ ti+1∧θ

t∧θ

1τ≤s<τ̄ (f(Θs))
2
ds

]

.

Recall from Remark 2.2 that Z = 0 on ]τ, T ]. Since Yt = g(τ,Xτ ) on {t ≥ τ}, we then deduce

from (HL) and Proposition 4.1 that

∆θ
t,ti+1

≤ E
[

|Yti+1∧θ − Ȳti+1∧θ|2
]

+ α E

[

∫ ti+1∧θ

t∧θ

|Ys − Ȳs|2ds
]

+ CL α−1E

[

h |Yti∧θ − Ȳti∧θ|2 +

∫ ti+1∧θ

t∧θ

|Ys − Yφ(s)|2ds
]

+ CL α−1E

[

∫ ti+1∧θ

t∧θ

(

h+ ‖Zs − Ẑφ(s)‖2 + ‖Ẑφ(s) − Z̄φ(s)‖2
)

ds

]

+ CL α−1E

[

∫ ti+1∧θ

t∧θ

(ξL1τ∧τ̄≤s≤τ∨τ̄ + 1τ̄≤s<τ‖Zs‖2)ds

]

. (4.1)
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It then follows from Gronwall’s Lemma that

E
[

|Yt∧θ − Ȳt∧θ|2
]

≤ (1 + Cα
L h)E

[

|Yti+1∧θ − Ȳti+1∧θ|2
]

+ (CL α−1 + Cα
L h)E

[

h |Yti∧θ − Ȳti∧θ|2 +

∫ ti+1∧θ

t∧θ

|Ys − Yφ(s)|2ds
]

+ (CL α−1 + Cα
L h)E

[

∫ ti+1∧θ

t∧θ

(

h+ ‖Zs − Ẑφ(s)‖2 + ‖Ẑφ(s) − Z̄φ(s)‖2
)

ds

]

+ (CL α−1 + Cα
L h)E

[

∫ ti+1∧θ

t∧θ

(ξL1τ∧τ̄≤s≤τ∨τ̄ + 1τ̄≤s<τ‖Zs‖2)ds

]

.

(4.2)

Plugging (4.2) in (4.1) applied with t = ti, using Remark 4.2, taking α > 0 large enough,

depending on the constants CL, and h small leads to

∆θ
ti,ti+1

≤ (1 + CL h)E
[

|Yti+1∧θ − Ȳti+1∧θ|2
]

+ CL E

[

∫ ti+1∧θ

ti∧θ

(

h+ |Ys − Yφ(s)|2 + ‖Zs − Ẑφ(s)‖2
)

ds

]

+ CL E

[

∫ ti+1∧θ

ti∧θ

(ξL1τ∧τ̄≤s≤τ∨τ̄ + 1τ̄≤s<τ‖Zs‖2)ds

]

.

This implies that

∆θ := max
i<n

E
[

|Yti∧θ − Ȳti∧θ|2
]

+ E

[

∫ θ

0

‖Zs − Z̃s‖2ds

]

≤ CL

(

E
[

|Yθ − Ȳθ|2
]

+ h+ R(Y )π
S2 + R(Z)π

H2

)

+ CL E

[

ξL |τ̄ ∧ θ − τ ∧ θ| +
∫ θ

0

1τ̄≤s<τ‖Zs‖2ds

]

.

We conclude the proof by using Remark 4.2 again to obtain

E

[

∫ θ

0

‖Zs − Z̄φ(s)‖2

]

≤ CL

(

E

[

∫ θ

0

‖Ẑφ(s) − Z̄φ(s)‖2ds

]

+ E

[

∫ T

0

‖Zs − Ẑφ(s)‖2ds

])

≤ CL

(

E

[

∫ θ

0

‖Zs − Z̃s‖2ds

]

+ E

[

∫ T

0

‖Zs − Ẑφ(s)‖2ds

])

(4.3)

which implies, by the definition of Err(h)2θ in (1.4),

Err(h)2θ ≤ CL

(

∆θ + max
i<n

E

[

sup
t∈[ti,ti+1]

|Yt − Yti
|2
]

+ E

[

∫ T

0

‖Zs − Ẑφ(s)‖2ds

])

= CL

(

∆θ + R(Y )π
S2 + R(Z)π

H2

)

.
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2

The above result implies the first estimate of Proposition 3.1.

Proof of (3.1) of Proposition 3.1. It suffices to apply Proposition 4.2 for θ = T and observe

that the Lipschitz continuity of g implies that

E
[

|g(τ,Xτ ) − g(τ̄ , X̄τ̄ )|2
]

≤ CL E

[

|τ − τ̄ |2 + ‖Xτ̄ − X̄τ̄‖2 + ‖
∫ τ∨τ̄

τ∧τ̄

b(Xs)ds+

∫ τ∨τ̄

τ∧τ̄

σ(Xs)dWs‖2

]

where |τ − τ̄ |2 ≤ T |τ − τ̄ |, E
[

‖Xτ̄ − X̄τ̄‖2
]

≤ CLh by Proposition 4.1, and

E

[

‖
∫ τ∨τ̄

τ∧τ̄

b(Xs)ds+

∫ τ∨τ̄

τ∧τ̄

σ(Xs)dWs‖2

]

≤ E [ξL|τ − τ̄ |]

by Doob’s inequality, (HL) and Proposition 4.1 again. 2

In order to prove (3.2) of Proposition 3.1, we need the following easy Lemma.

Lemma 4.1. Let (HL) hold. Then,

max
i<n

(

‖Ȳti
‖ +

√
h‖Z̄ti

‖
)

≤ ξL and ‖Ȳ ‖S2 + ‖Z̄φ‖H2 + ‖Z̃‖H2 ≤ CL . (4.4)

Proof. The first bound follows from the same arguments as in the proof of Lemma 3.3 in [4],

after noticing that the boundedness assumption on b and σ can be relaxed for our result. Since,

by (2.6),

Ȳt = E
[

Ȳti+1 | Ft

]

+ 1ti<τ̄ (ti+1 − t)f(X̄ti
, Ȳti

, Z̄ti
)

on [ti, ti+1], combining Jensen’s inequality with (HL), the first inequality of (4.4) and Proposi-

tion 4.1 imply that

sup
t≤T

E
[

|Ȳt|2
]

≤ 2 max
i<n

E
[

|Ȳti+1 |2
]

+ 2h2 max
i≤n

E
[

f(X̄ti
, Ȳti

, Z̄ti
)2
]

≤ CL . (4.5)

Applying Itô’s Lemma to Ȳ 2, using the inequality ab ≤ a2 + b2 for a, b ∈ R, (HL), (4.5) and

Proposition 4.1 then leads to

E
[

Ȳ 2
t∧τ̄

]

+ E

[
∫ τ̄

t∧τ̄

‖Z̃s‖2ds

]

= E

[

g(τ̄ , X̄τ̄ )2 +

∫ τ̄

t∧τ̄

2Ȳsf(X̄φ(s), Ȳφ(s), Z̄φ(s))ds

]

≤ CL

(

1 + α+ α−1 + α−1E

[
∫ τ̄

t∧τ̄

‖Z̄φ(s)‖2ds

])

,

for all α > 0. By Remark 4.2, this shows that

E

[
∫ τ̄

0

‖Z̄φ(s)‖2ds

]

≤ E

[
∫ τ̄

0

‖Z̃s‖2ds

]

≤ CL

(

1 + α+ α−1 + α−1E

[
∫ τ̄

0

‖Z̃s‖2ds

])

.
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Thus, taking α large enough, but depending only on L, and recalling Remark 2.2 leads to the

required bound for ‖Z̃‖H2 and ‖Z̄φ‖H2 . The bound on ‖Ȳ ‖S2 is then easily deduced from its

dynamics, Burkholder-Davis-Gundy’s inequality, (HL), (4.5) and Proposition 4.1. 2

Proof of (3.2) of Proposition 3.1. Applying Proposition 4.2 to θ := τ+ ∧ τ̄ and recalling

Remark 2.2 leads to

Err(h)2τ+∧τ̄ ≤ CL

(

h+ E
[

|Yτ+∧τ̄ − Ȳτ+∧τ̄ |2
]

+ R(Y )π
S2 + R(Z)π

H2

)

.

It remains to show that

E
[

|Ȳτ+∧τ̄ − Yτ+∧τ̄ |2
]

≤ CL

(

h+ E

[

E
[

ξL|τ − τ̄ | | Fτ+∧τ̄

]2
]

+ E

[

1τ̄<τ E

[
∫ τ

τ̄

‖Zs‖ds | Fτ̄

]2
])

.

(4.6)

Since f is L-Lipschitz continuous under (HL), we can find an Rd-valued adapted process χ

which is bounded by L and satisfies

f(X̄φ(s), Ȳφ(s), Z̄φ(s)) = f(X̄φ(s), Ȳφ(s), 0) + 〈χφ(s), Z̄φ(s)〉 (4.7)

on [0, T ]. Set

Ht := E
(
∫ t

0

1τ+≤s<τ̄χφ(s)dWs

)

, t ≤ T ,

where E stands for the usual Doléans-Dade exponential martingale, and define Q ∼ P by

dQ/dP = HT . It follows from Girsanov’s theorem that

WQ = W −
∫ ·

0

1τ+≤s<τ̄χφ(s)ds

is a Q-Brownian motion. Now, observe that, by (4.7) and (2.6),

Yt = g(τ,Xτ ) +

∫ τ

t∧τ

f(Xs, Ys, Zs)ds−
∫ τ

t∧τ

ZsdW
Q
s (4.8)

Ȳt = g(τ̄ , X̄τ̄ ) +

∫ τ̄

t∧τ̄

(

f(X̄φ(s), Ȳφ(s), Z̄φ(s)) − 1τ+≤s〈χφ(s), Z̃s〉
)

ds−
∫ τ̄

t∧τ̄

Z̃sdW
Q
s .(4.9)
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In view of (4.7), (4.8), (4.9), it then suffices to show that

E

[

EQ
[

g(τ̄ , X̄τ̄ ) − g(τ,Xτ ) | Fτ+∧τ̄

]2
]

≤ CL

(

h+ E

[

E
[

ξL|τ − τ̄ | | Fτ+∧τ̄

]2
])

, (4.10)

E



1τ+<τ̄EQ

[

∫ τ̄

τ+

f(X̄φ(s), Ȳφ(s), 0)ds | Fτ+

]2


 ≤ E

[

E
[

ξL (|τ − τ̄ | + h) | Fτ+∧τ̄

]2
]

, (4.11)

E



1τ+<τ̄EQ

[

∫ τ̄

τ+

〈χφ(s), Z̄φ(s) − Z̃s〉ds | Fτ+

]2


 ≤ CLh , (4.12)

E

[

1τ̄<τ+EQ

[
∫ τ

τ̄

f(Xs, Ys, Zs)ds | Fτ̄

]2
]

≤ CL

(

h+ E

[

E
[

ξL|τ − τ̄ | | Fτ+∧τ̄

]2
])

,

+ CLE

[

1τ̄<τ E

[
∫ τ

τ̄

‖Zs‖ds | Fτ̄

]2
]

. (4.13)

We start with the first term. By using (HL), applying Itô’s Lemma to (g(t,Xt))t≥0 between τ̄

and τ , using Proposition 4.1, the bound on χ as well as standard estimates (recall (Hg) and

Proposition 4.1), we easily check that on {τ+ > τ̄} ⊂ {τ > τ̄}

∣

∣EQ
[

g(τ,Xτ ) − g(τ̄ , X̄τ̄ ) | Fτ̄

]∣

∣ ≤ CL

∥

∥Xτ̄ − X̄τ̄

∥

∥+

∣

∣

∣

∣

EQ

[
∫ τ

τ̄

Lg(s,Xs)ds | Fτ̄

]∣

∣

∣

∣

≤ CL

∥

∥Xτ̄ − X̄τ̄

∥

∥+ E [ξL |τ+ − τ̄ | | Fτ̄ ] .

Similarly, on {τ+ < τ̄},
∣

∣EQ
[

g(τ+, Xτ+) − g(τ̄ , X̄τ̄ ) | Fτ+

]
∣

∣ ≤ CL

∥

∥Xτ+ − X̄τ+

∥

∥+ E
[

ξL |τ+ − τ̄ | | Fτ+

]

.

We then conclude the proof of (4.10) by appealing to (HL) and Proposition 4.1 to obtain

E

[

∥

∥Xτ+ − X̄τ+

∥

∥

2
+
∥

∥Xτ̄ − X̄τ̄

∥

∥

2
]

+ E

[

∣

∣g(τ+, Xτ+) − g(τ,Xτ )
∣

∣

2
]

≤ CL h ,

recall that 0 ≤ τ+ − τ ≤ h.

The second term (4.11) is controlled by appealing to (HL), Lemma 4.1 and Proposition 4.1,

recall that τ+ − τ ≤ h.

Concerning the third term (4.12), we observe that {τ+ ≤ s} ⊂ {τ ≤ φ(s)} ∈ Fφ(s) and that
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{τ̄ > s} = {τ̄ > φ(s)} ∈ Fφ(s). It then follows from (2.7) that, on {τ+ < τ̄},

EQ

[

∫ τ̄

τ+

〈χφ(s), Z̄φ(s) − Z̃s〉ds | Fτ+∧τ̄

]

= E

[

∫ τ̄

τ+

Hs〈χφ(s), Z̄φ(s) − Z̃s〉ds | Fτ+∧τ̄

]

= E

[

∫ τ̄

τ+

Hφ(s)

〈

χφ(s) , h
−1

∫ φ(s)+h

φ(s)

Z̃udu− Z̃s

〉

ds | Fτ+∧τ̄

]

+E

[

∫ τ̄

τ+

(Hs −Hφ(s))
〈

χφ(s) , Z̄φ(s) − Z̃s

〉

ds | Fτ+∧τ̄

]

and, since τ̄ and τ+ take values in π,

∫ τ̄

τ+

Hφ(s)

〈

χφ(s) , h
−1

∫ φ(s)+h

φ(s)

Z̃udu− Z̃s

〉

ds = 0 .

On the other hand, the Cauchy-Schwartz inequality and the boundedness of χ imply that

∣

∣

∣

∣

∣

E

[

∫ τ̄

τ+

(Hs −Hφ(s))
〈

χφ(s) , Z̄φ(s) − Z̃s

〉

ds | Fτ+∧τ̄

]∣

∣

∣

∣

∣

≤ CL

∣

∣

∣

∣

∣

E

[

∫ τ̄

τ+

(Hs −Hφ(s))
2ds | Fτ+∧τ̄

]
∣

∣

∣

∣

∣

1
2
∣

∣

∣

∣

∣

E

[

∫ τ̄

τ+

‖Z̄φ(s) − Z̃s‖2ds | Fτ+∧τ̄

]
∣

∣

∣

∣

∣

1
2

≤ ξLh
1
2

∣

∣

∣

∣

∣

E

[

∫ τ̄

τ+

‖Z̄φ(s) − Z̃s‖2ds | Fτ+∧τ̄

]
∣

∣

∣

∣

∣

1
2

.

Recalling Lemma 4.1 and combining the above inequalities leads to (4.12).

The last term (4.13) is easily controlled by using (HL), Remark 2.2, and Proposition 4.1. 2

5. Exit time approximation error: Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1. We start with a partial argument which

essentially allows to reduce to the case wherem = 1, i.e. O has no corners, by working separately

on the exit times of the different domains Oℓ:

τ ℓ
+ := inf{t ∈ π : ∃ s ≤ t s.t. Xs /∈ Oℓ} ∧ T and τ̄ ℓ := inf{t ∈ π : X̄t /∈ Oℓ} ∧ T .

We shall prove below the following Proposition.
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Proposition 5.1. Assume that (HL), (D1) and (C) hold. Then, for each ε > 0,

E

[

E

[

|τ ℓ
+ − τ̄ ℓ| | Fτℓ

+
∧τ̄ℓ

]2
]

≤ Cε
Lh

1−ε, ∀ 1 ≤ ℓ ≤ m . (5.1)

It implies the statements of Theorem 3.1.

Proof of Theorem 3.1. Since τ+ = minℓ≤m τ ℓ
+ and τ̄ = minℓ≤m τ̄ ℓ, we have

E
[

|τ+ − τ̄ | | Fτ+∧τ̄

]

≤
m
∑

ℓ=1

E

[

|τ ℓ
+ − τ̄ ℓ| | Fτℓ

+∧τ̄ℓ

] (

1τ+=τℓ
+<τ̄ + 1τ̄=τ̄ℓ≤τ+

)

which combined with (5.1) leads to

E

[

E
[

|τ − τ̄ | | Fτ+∧τ̄

]2
]

≤ Cε
Lh

1−ε , (5.2)

since |τ+ − τ | ≤ h. This leads to the second assertion of Theorem 3.1. On the other hand, given

a positive random variable ξ satisfying E [ξp] ≤ Cp
L for all p ≥ 1, we deduce from Hölder’s

inequality that

E
[

ξ |τ − τ̄ | | Fτ+∧τ̄

]2 ≤ ξε
L E

[

|τ − τ̄ | 1
1−ε | Fτ+∧τ̄

]2(1−ε)

≤ ξε
L T 2ε E

[

|τ − τ̄ | | Fτ+∧τ̄

]2(1−ε)

and

E

[

ξ E
[

ξ |τ − τ̄ | | Fτ+∧τ̄

]2
]

≤ Cε
L E

[

E
[

|τ − τ̄ | | Fτ+∧τ̄

]2
]1−ε

.

In view of (5.2), this leads to the first assertion of Theorem 3.1, after possibly changing ε. 2

The rest of this section is devoted to the proof of (5.1) for some fixed ℓ. We first provide an

a-priori control on the difference between τ ℓ
+ and τ̄ ℓ. We use the standard idea that consists in

introducing a test function on which we can apply Itô’s Lemma between τ ℓ
+ and τ̄ ℓ so that the

Lebesgue integral term provides an upper bound for the difference between these two times, see

e.g. Lemma 3.1 Chapter 3 in [9] for an application to the construction of upper bounds for the

moments of the first exit time of a uniformly elliptic diffusion from a bounded domain.

To this end, we introduce the family of test functions

Fℓ := d2
ℓ/γ , 1 ≤ ℓ ≤ m ,

for some γ > 0 to be fixed below. Here, dℓ is a C2(Rd) function which coincides with the

algebraic distance to ∂Oℓ on a neighborhood of ∂Oℓ and such that

Oℓ := {x ∈ Rd : dℓ(x) > 0} and ∂Oℓ := {x ∈ Rd : dℓ(x) = 0} .
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The existence of such a map is guaranteed by the smoothness assumption (D1), see e.g. [11].

Observe that, after possibly changing L and considering a suitable extension of dℓ outside of a

neighbourhood of the compact boundary ∂Oℓ, we can assume that

‖dℓ‖ + ‖Ddℓ‖ + ‖D2dℓ‖ ≤ L on Rd . (5.3)

Observe that

LFℓ =
1

γ

[(

2〈b, nℓ〉 + Tr
[

aD2dℓ

])

dℓ + Tr [a(nℓ)
∗nℓ]

]

(5.4)

where nℓ := Ddℓ coincides with the unit inward normal for x ∈ ∂Oℓ, recall (D1).

In view of (HL), (D1), (5.3) and (C), there is some CL > 0 such that, for each 1 ≤ ℓ ≤ m,

LFℓ ≥
1

γ
(−CLdℓ + nℓ a(nℓ)

∗) ≥ 1 and nℓ a(nℓ)
∗ ≥ L−1/2 on B(∂Oℓ, r) (5.5)

if we choose r > 0 and γ > 0 small enough, but depending only on L. For later use, also observe

that, after possibly changing r, one can actually choose it such that

nℓ(x) a(y)nℓ(x)
∗ ≥ L−1/2 for all x, y ∈ B(∂Oℓ, r) s.t. ‖x− y‖ ≤ r . (5.6)

We now fix r, γ > 0 such that (5.5) and (5.6) hold and define the sets

Aℓ := {Xs ∈ B(∂Oℓ, r) , ∀ s ∈ [τ̄ ℓ, τ ℓ
+]} , Bℓ := {|dℓ(Xτℓ

+
)| ≤ h

1
2−η}

Āℓ := {X̄s ∈ B(∂Oℓ, r) , ∀ s ∈ [τ ℓ
+, τ̄

ℓ]} , B̄ℓ := {|dℓ(X̄τ̄ℓ)| ≤ h
1
2−η} ,

for some η ∈ (0, 1/4) to be chosen later on. Observe that Aℓ (resp. Āℓ) is well defined on

{τ̄ ℓ ≤ τ ℓ
+} (resp. {τ ℓ

+ ≤ τ̄ ℓ}).

We can now provide our first control on |τ ℓ
+ − τ̄ ℓ|. Recall that ξε

L (ξL if it does not depend on

some extra parameter ε) denotes a positive random variable whose value may change from line

to line but satisfies E [|ξε
L|p] ≤ Cε,p

L for all p ≥ 1.

Lemma 5.1. Assume that (HL) and (D1) hold. Then, for each ε ∈ (0, 1),

E

[

|τ ℓ
+ − τ̄ ℓ| | Fτℓ

+
∧τ̄ℓ

]

≤ ξε
L

{

h
1
2 + (T − τ̄ ℓ)

1
2 P [(Aℓ ∩Bℓ)

c | Fτ̄ℓ ]
1−ε

1{τℓ
+

>τ̄ℓ}

+ (T − τ ℓ
+)

1
2 P

[

(Āℓ ∩ B̄ℓ)
c | Fτℓ

+

]1−ε

1{τℓ
+<τ̄ℓ}

}

for each 1 ≤ ℓ ≤ m.
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Proof. 1. We first work on the event {τ ℓ
+ > τ̄ ℓ}. It follows from (5.5) and Itô’s Lemma that

E
[

τ ℓ
+ − τ̄ ℓ | Fτ̄ℓ

]

≤ E

[

1Aℓ∩Bℓ

∫ τℓ
+

τ̄ℓ

LFℓ(Xs)ds | Fτ̄ℓ

]

+ (T − τ̄ ℓ) P [(Aℓ ∩Bℓ)
c | Fτ̄ℓ ]

≤ E

[

1Aℓ∩Bℓ

(

∫ τℓ
+

τ̄ℓ

LFℓ(Xs)ds+

∫ τℓ
+

τ̄ℓ

DFℓ(Xs)σ(Xs)dWs

)

| Fτ̄ℓ

]

− E

[

1Aℓ∩Bℓ

∫ τℓ
+

τ̄ℓ

DFℓ(Xs)σ(Xs)dWs | Fτ̄ℓ

]

+ (T − τ̄ ℓ) P [(Aℓ ∩Bℓ)
c | Fτ̄ℓ ]

≤ γ−1 E

[

(d2(Xτℓ
+
) − d2(Xτ̄ℓ))1Aℓ∩Bℓ

| Fτ̄ℓ

]

+ E

[

1(Aℓ∩Bℓ)c

∫ τℓ
+

τ̄ℓ

DFℓ(Xs)σ(Xs)dWs | Fτ̄ℓ

]

+ (T − τ̄ ℓ) P [(Aℓ ∩Bℓ)
c | Fτ̄ℓ ]

where, by Hölder’s and Burkholder-Davis-Gundy’s inequality, the Lipschitz continuity of σ and

DFℓ (see (HL) and (5.3)) and Proposition 4.1,

E

[

1(Aℓ∩Bℓ)c

∫ τℓ
+

τ̄ℓ

DFℓ(Xs)σ(Xs)dWs | Fτ̄ℓ

]

≤ ξε
L (T − τ̄ ℓ)

1
2 P [(Aℓ ∩Bℓ)

c | Fτ̄ℓ ]
1−ε

for all ε ∈ (0, 1). We now recall that |dℓ(Xτℓ
+
)| ≤ h

1
2−η on Bℓ, which implies

E

[

(d2(Xτℓ
+
) − d2(Xτ̄ℓ))1Aℓ∩Bℓ

| Fτ̄ℓ

]

≤ E

[

d2(Xτℓ
+
)1Aℓ∩Bℓ

| Fτ̄ℓ

]

≤ h1−2η .

In view of the above inequalities, this provides the required estimate on the event set {τ ℓ
+ > τ̄ ℓ}

since η < 1/4.

2. We now work on the event {τ ℓ
+ < τ̄ ℓ}. By Proposition 4.1,

E

[

1Āℓ∩B̄ℓ

∫ τ̄ℓ

τℓ
+

∣

∣

∣
LX̄φ(s)Fℓ(X̄s) − LX̄sFℓ(X̄s)

∣

∣

∣
ds | Fτℓ

+

]

≤ ξL h
1
2 ,

with the notation LyFℓ := ∂tFℓ +〈b(y), DFℓ〉+ 1
2Tr

[

a(y)D2Fℓ

]

, so that LX̄sFℓ(X̄s) = LFℓ(X̄s).

Arguing as above, it follows that, on {τ̄ ℓ > τ ℓ
+},

E

[

τ̄ ℓ − τ ℓ
+ | Fτℓ

+

]

≤ ξL h
1
2 + γ−1 E

[

(d2
ℓ (X̄τ̄ℓ) − d2

ℓ(X̄τℓ
+
))1Āℓ∩B̄ℓ

| Fτℓ
+

]

+ E

[

1(Āℓ∩B̄ℓ)c

∫ τ̄ℓ

τℓ
+

DFℓ(X̄s)σ(X̄φ(s))dWs | Fτℓ
+

]

+ (T − τ ℓ
+) P

[

(Āℓ ∩ B̄ℓ)
c | Fτℓ

+

]

≤ ξL h
1
2 + γ−1 h

1
2 + ξε

L (T − τ ℓ
+)

1
2 P

[

(Āℓ ∩ B̄ℓ)
c | Fτℓ

+

]1−ε

.
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2

It remains to control the different terms that appear in the upper bound of Lemma 5.1.

For notational convenience, we now introduce the sets (recall that 0 < η < 1/4)

Eℓ := {dℓ(Xτ̄ℓ) ≤ h
1
2−η} and Ēℓ := {dℓ(X̄τℓ

+
) ≤ h

1
2−η} , 1 ≤ ℓ ≤ m .

Remark 5.1. Observe that

P
[

Ec
ℓ ∩ {τ̄ ℓ < τ ℓ

+}
]

≤ P
[

Ec
ℓ ∩ {τ̄ ℓ < T }

]

≤ P

[

{dℓ(Xτ̄ℓ) − dℓ(X̄τ̄ℓ) ≥ h
1
2−η} ∩ {τ̄ ℓ < T }

]

,

since dℓ(X̄τ̄ℓ) ≤ 0 on {τ̄ ℓ < T }. Using (5.3), Tchebychev’s inequality and Proposition 4.1, we

then deduce that, for each ε ∈ (0, 1), there is Cε
L > 0 such that

P
[

Ec
ℓ ∩ {τ̄ ℓ < τ ℓ

+}
]

≤ Cε
L h1−ε .

Similarly, if τ ℓ denotes the first exit time of (t,Xt)t≥0 from [0, T )×Oℓ, we have

P
[

Ēc
ℓ ∩ {τ̄ ℓ > τ ℓ

+}
]

≤ P

[

{dℓ(X̄τℓ
+
) − dℓ(Xτℓ

+
) ≥ 1

2
h

1
2−η} ∩ {dℓ(Xτℓ

+
) ≤ 1

2
h

1
2−η} ∩ {τ ℓ

+ < T }
]

+ P

[

{dℓ(Xτℓ
+
) − dℓ(Xτℓ) >

1

2
h

1
2−η} ∩ {τ ℓ

+ < T }
]

≤ Cε
L h1−ε ,

where the last inequality follows from Tchebychev’s inequality, Proposition 4.1 and the fact

that τ ℓ
+ − τ ℓ ≤ h. Note that the term dℓ(Xτℓ

+
) − dℓ(Xτℓ) could be controlled by Bernstein

type inequalities in order to avoid the explosion of the constant with ε. However, to the best

of our knowledge, such inequalities are not available in the existing literature for the term

dℓ(X̄τℓ
+
) − dℓ(Xτℓ

+
) and Tchebychev’s inequality remains the most natural tool to apply here.

Combining the above Remark with the next two technical Lemmas allows to control the right

hand-side terms in the upper bound of Lemma 5.1. Thus, the statement of Proposition 5.1 is a

direct consequence of Lemma 5.1 combined with Remark 5.1, Lemma 5.2 and Lemma 5.3 below,

applied for η small enough.

Lemma 5.2. Assume that (HL), (D1) and (C) hold. Then, for each ε ∈ (0, 1),

P [Ac
ℓ | Fτ̄ℓ ]1Eℓ∩{τℓ

+
>τ̄ℓ} + P

[

Āc
ℓ | Fτℓ

+

]

1Ēℓ∩{τℓ
+

<τ̄ℓ} ≤ ξε
L h( 1

2−η)(1−ε) , ∀ ℓ ≤ m . (5.7)

Lemma 5.3. Assume that (HL), (D1) and (C) hold. Then, for each ε ∈ (0, 1),

P [Aℓ ∩Bc
ℓ | Fτ̄ℓ ]1Eℓ∩{τℓ

+
>τ̄ℓ} + P

[

Āℓ ∩ B̄c
ℓ | Fτℓ

+

]

1Ēℓ∩{τℓ
+

<τ̄ℓ} ≤ ξε
L

h( 1
2−η)(1−ε)

√

T − τ̄ ℓ ∧ τ ℓ
+

, ∀ ℓ ≤ m .

(5.8)
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Proof of Lemma 5.2. 1. We first prove the bound for the first term. Let V be defined by

Vt := dℓ(Xτ̄ℓ+t) for t ≥ 0 and let ϑy be the first time when V reaches y ∈ R. Using Ac
ℓ =

Ac
ℓ ∩ ({ϑ0 ≥ ϑr} ∪ {ϑ0 < ϑr}), we deduce that on {τ ℓ

+ > τ̄ ℓ}

P [Ac
ℓ | Fτ̄ℓ ] ≤ P

[

ϑ0 ≥ ϑr | Fτ̄ℓ

]

+ P

[

{ sup
s∈[τℓ,τℓ

+
]

|dℓ(Xs)| ≥ r} ∩ {τ ℓ < T } | Fτ̄ℓ

]

,

where, by (5.3), Tchebychev’s inequality and Proposition 4.1, on {τ ℓ
+ > τ̄ ℓ} ⊂ {τ ℓ > τ̄ ℓ},

P

[

{ sup
s∈[τℓ,τℓ

+
]

|dℓ(Xs)| ≥ r} ∩ {τ ℓ < T } | Fτ̄ℓ

]

≤ r−2E

[

sup
s∈[τℓ,τℓ

+
]

|dℓ(Xs) − dℓ(Xτℓ)|2 | Fτ̄ℓ

]

≤ ξL h ,

recall that τ ℓ
+ − τ ℓ ≤ h. It remains to provide a suitable bound for P

[

ϑ0 ≥ ϑr | Fτ̄ℓ

]

. From now

on, we assume, without loss of generality, that

2h
1
2−η ≤ r . (5.9)

Set ϑ := ϑ0 ∧ ϑr. Thanks to (C) and (HL), we can define Q ∼ P by the density

H = E
(

−1Eℓ

∫ τ̄ℓ+ϑ

τ̄ℓ

(nℓσ)(Xs)((nℓan
∗
ℓ )(Xs))

−1Ldℓ(Xs)dWs

)

.

Let

WQ := W + 1[τ̄ℓ,∞)1Eℓ

∫ (τ̄ℓ+ϑ)∧·

τ̄ℓ

(nℓσ)∗(Xs)((nℓan
∗
ℓ )(Xs))

−1Ldℓ(Xs)ds

be the Brownian motion associated to Q by Girsanov’s Theorem. We have

Vt∧ϑ = V0 +

∫ τ̄ℓ+t∧ϑ

τ̄ℓ

nℓ(Xs)σ(Xs)dW
Q
s on Eℓ .

Set

Λt :=

∫ τ̄ℓ+t

τ̄ℓ

‖nℓ(Xs∧(τ̄ℓ+ϑ))σ(Xs∧(τ̄ℓ+ϑ))‖2ds .

By the Dambis-Dubins-Schwartz theorem, see Theorem 4.6 Chapter 3 in [18], there exists a one

dimensional Q-Brownian motion Z such that

Vt∧ϑ = V0 + ZΛt∧ϑ
on Eℓ ∩ {τ ℓ

+ > τ̄ ℓ} = {V0 ≤ h
1
2−η , τ ℓ

+ > τ̄ ℓ} .

This implies that

Q
[

ϑ0 ≥ ϑr | Fτ̄ℓ

]

≤ h
1
2−η/r on Eℓ ∩ {τ ℓ

+ > τ̄ ℓ} ,
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see e.g. Exercise 8.13 Chapter 2.8 in [18]. We conclude by using Hölder’s inequality and (5.3).

2. The bound for the second term in (5.7) is derived similarly. We now write

Vt := dℓ(X̄τℓ
+

+t) , t ≥ 0 .

As above, we denote by ϑy the first time when V reaches y ∈ R and observe that, by (5.9),

P

[

Āc
ℓ | Fτℓ

+

]

≤ P

[

ϑ−h
1
2
−η

> ϑr | Fτℓ
+

]

+ P

[

sup
s∈[τ̃ℓ,τ̃ℓ+h]

|dℓ(X̄s) − dℓ(X̄τ̃ℓ)| > h
1
2−η | Fτℓ

+

]

where τ̃ ℓ := τ ℓ
+ + ϑ−h

1
2
−η

, and, by (5.3), Tchebychev’s inequality and Proposition 4.1,

P

[

sup
s∈[τ̃ℓ,τ̃ℓ+h]

|dℓ(X̄s) − dℓ(X̄τ̃ℓ)| > h
1
2−η | Fτℓ

+

]

≤ ξη
L h .

In order to bound the term P

[

ϑ−h
1
2
−η

> ϑr | Fτℓ
+

]

, we observe that (5.6) imply that, for h small

enough,

‖nℓ(X̄s)σ(X̄φ(s))‖ ≥ L− 1
2 /

√
2 on Ēℓ ∩ {s ∈ [τ ℓ

+, θ
ℓ]} ∩ {‖X̄s − X̄φ(s)‖ ≤ r} ,

where θℓ := inf{t ≥ τ ℓ
+ : X̄t /∈ B(∂Oℓ, r)} ∧ T . Moreover, it follows from Proposition 4.1 that

P

[

sup
s≤T

‖X̄s − X̄φ(s)‖ > r

]

≤ CL r−4 h .

Up to obvious modifications, this allows us to reproduce the arguments of Step 1 on the event

set Ēℓ. 2

Proof of Lemma 5.3. We only prove the bound for the first term. The second one can be

derived from similar arguments (see step 2 in the proof of Lemma 5.2). We use the notations of

the proof of Lemma 5.2. We first observe that, on El ∩ {τ ℓ > τ̄ ℓ},

P [Aℓ ∩Bc
ℓ | Fτ̄ℓ ] ≤ P

[

Aℓ ∩ {ϑ0 > (T − τ̄ ℓ)} | Fτ̄ℓ

]

+ P

[

{τ ℓ < T } ∩ sup
s∈[τℓ,τℓ

+
]

|dℓ(Xs) − dℓ(Xτℓ)| ≥ h
1
2−η| | Fτ̄ℓ

]

≤ P

[

Aℓ ∩ { min
t∈[0,T−τ̄ℓ]

ZΛt
> −h 1

2−η} | Fτ̄ℓ

]

+ ξη
L h ,

where the second inequality follows from Tchebychev’s inequality, (HL) and Proposition 4.1,

recall that τ ℓ
+ − τ ℓ ≤ h. Using Hölder’s inequality, we then observe that

P

[

Aℓ ∩ { min
t∈[0,T−τ̄ℓ]

ZΛt
> −h 1

2−η} | Fτ̄ℓ

]

≤ ξε
L Q

[

Aℓ ∩ { min
t∈[0,T−τ̄ℓ]

ZΛt
> −h 1

2−η} | Fτ̄ℓ

]1−ε

.
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Since, by (5.6),

ΛT−τ̄ℓ ≥ (T − τ̄ ℓ)(2L)−1 on Aℓ ∩ {ϑ0 > (T − τ̄ ℓ)} ∩ {τ̄ ℓ < τ ℓ
+} ⊂ Aℓ ∩ {τ̄ ℓ < τ ℓ

+ = T } ,

we deduce from Chapter 2 of [18] that, on Eℓ ∩ {τ̄ ℓ < τ ℓ
+},

Q

[

Aℓ ∩ { min
t∈[0,T−τ̄ℓ]

ZΛt
> −h 1

2−η} | Fτ̄ℓ

]

≤ Q

[

min
t∈[0,(T−τ̄ℓ)(2L)−1]

Zt > −h 1
2−η | Fτ̄ℓ

]

≤ CL (T − τ̄ ℓ)−
1
2h

1
2−η .

We conclude by combining the above estimates. 2

6. Regularity of the BSDE and the related PDE

6.1. Interpretation in terms of parabolic semilinear PDEs with

Dirichlet boundary conditions

In this section, we denote by Xt,x the solution of (1.1) with initial condition x ∈ Ō at time

t ≤ T . We also denote by τ t,x the first exit time of (s,Xt,x
s )s≥t from O × [0, T ) and write

(Y t,x, Zt,x) for the solution of (1.2) with (Xt,x, τ t,x) in place of (X, τ).

As usual the deterministic function (t, x) ∈ D̄ 7→ u(t, x) := Y t,x
t can be related to the semilinear

parabolic equation
{

0 = −Lu(t, x) − f(x, u(t, x), Du(t, x)σ(x)) , (t, x) ∈ O × [0, T )

u|∂pD = g .
(6.1)

where we recall that L denotes the Dynkin operator associated to the diffusion X , Lψ :=

∂tψ + 〈b,Dψ〉 + 1
2Tr

[

aD2ψ
]

with a := σσ∗, and ∂pD := ([0, T ) × ∂O) ∪ ({T } × Ō) is the

parabolic boundary of D.

Proposition 6.1. Let (HL), (D1), (D2), (C) and (Hg) hold. Then the function u has

linear growth and is the unique continuous viscosity solution of (6.1) in the class of continuous

solutions with polynomial growth.

A similar result is proved in [6] but in the elliptic case. For the sake of completeness, we provide

a slightly different complete proof in the Appendix.

6.2. Boundary modulus of continuity

Adapting some barrier techniques for PDEs, we first prove the following bound for the modulus

of continuity on the boundary.
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Proposition 6.2. Let (HL), (D1), (D2), (C) and (Hg) hold. Then, there is CL > 0 such

that for all (t0, x0) ∈ [0, T )× ∂O,

lim
y∈O, y→x0

|u(t0, y) − u(t0, x0)|
‖y − x0‖

≤ CL. (6.2)

In particular, if the gradient of u exists at (t0, x0), (D2) implies that it is uniformly bounded.

Proof. Let (t0, x0) ∈ [0, T )×∂O and A := [t0, T )×N , where N ⊂ O is an open set and x0 ∈ ∂N .

We only show that, for all y ∈ N ,

u(t0, y) − u(t0, x0)

‖y − x0‖
≤ CL . (6.3)

The lower bound is obtained similarly. By (D2), there is ε > 0 and a family (ei)i∈[[1,d]] such that

x0 + εei ∈ N for all i ∈ [[1, d]] and span(ei, i ∈ [[1, d]]) = Rd. Thus, (6.2) implies the statement

concerning the gradient, whenever it is well defined. We now prove (6.3).

1. Assume that there exists a smooth function ψ : Ā → R with first derivative bounded by CL

such that

(a) ψ ≥ u on ∂pA := ([t0, T )× ∂N ) ∪ ({T } × N̄ ).

(b) Lψ(t, x) + f(x, ψ(t, x), Dψ(t, x)σ(x)) ≤ 0 for (t, x) ∈ A.

(c) ψ(t0, x0) = u(t0, x0) = g(t0, x0).

Using Proposition 6.1 and a standard maximum principle, see Lemma A.2 in the Appendix, we

then derive that u ≤ ψ on Ā. In view of (c) this yields

u(t0, y) − u(t0, x0)

‖y − x0‖
≤ ψ(t0, y) − ψ(t0, x0)

‖y − x0‖
≤ CL , ∀y ∈ N̄ \ {x0} .

2. It remains to construct a smooth function satisfying (a), (b) and (c). Recall that the spatial

boundary ∂O is compact. Since u is continuous on D̄, see Proposition 6.1, the compactness

assumption (D1) ensures the uniform boundedness of u in a neighborhood of [0, T ]× ∂O.

We specify the construction of the barrier function only for x0 ∈ ∂O\B(C, L−1). Indeed, for

x0 ∈ B(C, L−1), assumption (C) ensures that the diffusion coefficient is uniformly elliptic in a

neighborhood of x0. The expression of the barriers below can then be simplified. Namely, we do

not need the additional localization with the cone, i.e. we can take κ = 0 in (6.6) below.

2.a. Let y := y(x0) be the point of Ōc associated to x0 by the exterior sphere property, see (D2).

Set r := r(x0) = ‖y(x0)−x0‖. Recall that, by assumption, B := B(y, r) satisfies B̄∩Ō = {x0} .
It follows from (HL) and (C) that

〈a(x)n(x0), n(x0)〉 ≥ L−1/2 on the set D1 := {x ∈ O : ‖x− x0‖ ≤ ηL} (6.4)

for some ηL > 0 small enough, but depending only on L.
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For x ∈ O, we now set

dB(x) := d(x, ∂B) = ‖x− y‖ − r

so that dB ∈ C2(Ō) with

DdB(x) =
x− y

‖x− y‖ , D
2dB(x) =

Id
‖x− y‖ − (x − y)∗(x− y)

‖x− y‖3
(6.5)

where Id denotes the identity matrix of Md. We now introduce a cone

K := {x ∈ Rd : 〈x− y, n(x0)〉 ≥ cos(θ)‖x − y‖}, θ ∈ [0, π/2]

and

D2 := {x ∈ O : dB(x) ≤ δ} , δ > 0 .

The angle θ of the cone and δ will be specified later on. Anyhow, we assume δ ≤ δL small enough

to ensure D2 ⊂ D1. We finally set N := O ∩K ∩ D2 and define the barrier function by

ψ(t, x) := g(t, x) + 4α(ϕ(x)1/2 − δ1/2) + κ〈x− y, n(x0)〉
(

1 − 〈x− y, n(x0)〉
‖x− y‖

)

(6.6)

for (t, x) ∈ [t0, T ]×N̄ , where ϕ(x) := δ+ dB(x) for some (α, κ) ∈ (0,∞)2 to be chosen later on.

∂O

∂D1

∂D2

K

y

x

n(x)

θ

Figure 1. Domain for the barrier

2.b. Since x0 − y ∈ span(n(x0)), ψ(t0, x0) = u(t0, x0) = g(t0, x0), so that (c) is satisfied.

2.c. Recall from the beginning of Step 2. that

M := sup
(t,x)∈[t0,T ]×D̄1

|u(t, x)| ∨ sup
(t,x)∈[t0,T ]×D̄1

|g(t, x)| <∞ . (6.7)
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On ∂O ∩ ∂N , ψ(t, x) ≥ g(t, x). On ∂D2 ∩ ∂N , ψ(t, x) ≥ −M + 4α(21/2 − 1)δ1/2 . Thus, for

α ≥ M

2(21/2 − 1)δ1/2
, (6.8)

one has ψ(t, x) ≥ u(t, x) for (t, x) ∈ [t0, T ] × ∂D2 ∩ ∂N .

On ∂K ∩ ∂N , we have

ψ(t, x) ≥ −M + κ cos(θ)‖x− y‖(1 − cos(θ)) ≥ −M + κr cos(θ)(1 − cos(θ)) .

Hence, for

κ ≥ 2M

r cos(θ)(1 − cos(θ))
, (6.9)

we obtain that ψ(t, x) ≥ u(t, x) ∀(t, x) ∈ [t0, T ]× ∂K ∩ ∂N . This concludes the proof of (a).

2.d. It remains to show that ψ satisfies (b). Set

Γ(x) := 〈x − y, n(x0)〉
(

1 − 〈x− y, n(x0)〉
‖x− y‖

)

,

and observe that, for some C ≤ CL,

‖DΓ(x)‖ ≤ C , ‖D2Γ(x)‖ ≤ C/r (6.10)

uniformly in x ∈ N̄ . Define,

Θ(t, x) := Lψ(t, x) + f(x, ψ(t, x), Dψ(t, x)σ(x))

≤ C(1 +M + αϕ(x)−1/2 + κ(1 + r−1)) − α

2

〈

a(x)
x− y

‖x − y‖ ,
x− y

‖x− y‖

〉

ϕ(x)−3/2

+
C α

r
ϕ(x)−1/2

≤ C (1 +M + κ(1 + r−1)) − α

2
ϕ(x)−3/2

(〈

a(x)
x− y

‖x− y‖ ,
x− y

‖x− y‖

〉

− C(1 + r−1)ϕ(x)

)

,

recall (Hg), (6.5), (6.7) and (6.10). For a suitable angle of the cone θ, we shall show below that

we can find C̃ > 0 such that C̃−1 ≤ CL and
〈

a(x)
x− y

‖x− y‖ ,
x− y

‖x− y‖

〉

≥ C̃ , ∀x ∈ N̄ . (6.11)

Recalling that ϕ(x) ≤ 2δ for x ∈ N̄ ⊂ D2, we get

Θ(t, x) ≤ C(M + κ(1 + r−1)) − α

2
ϕ(x)−3/2

(

C̃ − 2C(1 + r−1)δ
)

.

For δ := (1/4)C̃(C(1+r−1))−1∧δL > 0, we then have Θ(t, x) ≤ C(M+κ(1+r−1))−C̃α2−
7
2 δ−

3
2 .

It is then clear that (α, κ) can be chosen in order to satisfy (6.8), (6.9) and so that Θ(t, x) ≤ 0.

This shows (b).
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It remains to prove (6.11). This is done by suitably choosing the angle of the cone K. Let

Z ∈ ∂B(0, 1) be such that Z + y ∈ K. Introduce the basis (n(x0), (n
⊥
i (x0))i∈[[1,d−1]]) where

(n⊥
i (x0))i∈[[1,d−1]] is an orthonormal basis of {n(x0)}⊥ for the euclidean scalar product. Let

(βi)i∈[[0,d−1]] denote the coefficients of Z in this basis, i.e. Z = β0n(x0) +
∑d−1

i=1 βin
⊥
i (x0) . One

has, for all x ∈ N̄ ,

〈a(x)Z,Z〉 = β2
0〈a(x)n(x0), n(x0)〉 + 2

d−1
∑

i=1

β0βi〈a(x)n(x0), n
⊥
i (x0)〉

+ 〈a(x)
d−1
∑

i=1

βin
⊥
i (x0),

d−1
∑

i=1

βin
⊥
i (x0)〉

≥ β2
0〈a(x)n(x0), n(x0)〉 + 2

d−1
∑

i=1

β0βi〈a(x)n(x0), n
⊥
i (x0)〉 .

Since Z + y ∈ K and ‖Z‖ = 1, we must have β0 ≥ cos θ, by definition of K, and therefore

|βi| ≤ sin(θ) for all i ∈ [[1, d− 1]]. Hence, (6.4) and the above equation leads to

〈a(x)Z,Z〉 ≥ cos2(θ)
L−1

2
− 2(d− 1) sin(θ) sup

x∈N̄

‖a(x)‖ , ∀x ∈ N̄ .

This yields (6.11) with C̃ = L−1 cos2(θ)
4 for θ small enough. 2

6.3. Representation and weak regularity of the gradient in the regular

uniformly elliptic case

In the section, we strengthen the initial assumptions and work under:

(D’): O is a C2 bounded domain satisfying (D1) and (D2) for the constant L.

(C’): a is uniformly elliptic with ellipticity constant L−1.

(H’): the coefficients b, σ, f and g satisfy (Hg)-(HL) and are uniformly C2(D̄).

From now on, given a matrix M , we denote by M ·j its j-th column, viewed as a column vector.

Proposition 6.3 (Representation of the gradient). Let the conditions (D’), (C’) and

(H’) hold. Then, u ∈ C0(D̄) ∩C1,2(D), Du ∈ C0(D̄) and for all (t, x) ∈ D̄

Du(t, x) = E

[

Du(τ t,x, Xt,x
τ t,x)∇Xt,x

τ t,xV
t,x
τ t,x +

∫ τ t,x

t

∂xf(Θt,x
s )∇Xt,x

s V t,x
s ds

]

(6.12)

where ∇Xt,x is the first variation process of Xt,x:

∇Xt,x
s = Id +

d
∑

j=1

∫ s

t

Dσ·j(Xt,x
v )∇Xt,x

v dW j
v +

∫ s

t

Db(Xt,x
v )∇Xt,x

v dv , s ≥ t ,
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and V t,x is defined by

V t,x
s := exp

(
∫ s

t

∂yf(Θt,x
v )dv +

∫ s

t

∂zf(Θt,x
v )dWv − 1

2

∫ s

t

‖∂zf(Θt,x
v )‖2dv

)

, s ≥ t ,

with Θt,x = (Xt,x, Y t,x, Zt,x).

Proof. The result is obvious for (t, x) ∈ ∂D. We then assume from now on that (t, x) ∈ D. We

derive from Theorems 12.16 and 12.10 in [21] and the definition of Hölder spaces at p. 46 of this

reference that Du ∈ C0(D̄). Let us consider the systems of differential equations obtained by

formally differentiating the PDE (6.1) w.r.t. (xi)i∈[[1,d]]. For i = 1, . . . , d, we have

0 = ∂tv
i + 〈b+ σ∗Dzf(Θ) +

1

2
Dxia·i, Dvi〉 +

1

2
Tr
[

aD2vi
]

(6.13)

+
(

Dxibi +Dyf(Θ) + 〈Dzf(Θ), Dxiσ·i〉
)

vi +Dxif(Θ) +
∑

k 6=i

hi,k ,

where hi,k =
(

Dxibk + 〈Dzf(Θ), Dxiσ·k〉
)

Dxku+
d
∑

l=1

DxiaklDxkxlu

and Θ(t, x) = (x, u(t, x), Duσ(t, x)).

Given n large enough, set On := {x + B̄(0, n−1), x ∈ Oc}c ⊂ O, Tn := T − n−1 > 0 and

Dn := [0, Tn) ×On. Note that by construction On satisfies a uniform exterior sphere property

(with radius 1/2n). Then, the PDE (6.13) on Dn with the boundary condition Dxiu on ∂pDn =

([0, Tn)×∂On)∪({Tn}×Ōn) admits a unique C0(D̄n)∩C1,2(Dn) solution vi
n, see Theorem 12.22

in [21]. Using the maximum principle, we can then identify Dxiu and vi
n on D̄n by considering

the PDE satisfied by ε−1(u(·, x+εei)−u(·, x))−vi
n(·, x) on D̄n. Here, ei is the i-th canonical basis

vector of Rd, see e.g. Theorem 10 Chapter 3 in [10]. In particular,Du ∈ C0(D̄n)∩C1,2(Dn). By a

usual localization argument, we then deduce from Itô’s Lemma applied toDu(·, Xt,x)∇Xt,xV t,x,

with (t, x) ∈ Dn, that

Du(t, x) = E

[

Du(τn, X
t,x
τn

)∇Xt,x
τn
V t,x

τn
+

∫ τn

t

∂xf
(

Θt,x
s

)

∇Xt,x
s V t,x

s ds

]

where τn := inf{s ∈ [t, Tn] : (s,Xt,x
s ) /∈ Dn}. Observe that limn τn = τ P − a.s. by continuity

of X . We then derive the statement of the Proposition by sending n → ∞, using the a-priori

smoothness of u, Du ∈ C0(D̄), and the dominated convergence theorem. 2

Remark 6.1. Note that the various localizations in the previous proof are needed because we

do not assume any compatibility condition on the parabolic boundary, i.e. Lg+ f(·, g, σDg) = 0

on ∂pD. Otherwise, Theorem 12.14 in [21] would give u ∈ C1,2(D̄) which would allow to avoid

the introduction of the subdomains On.
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Observe that, by Proposition 6.2 and the continuity ofDu stated in Proposition 6.3, ‖Du(τ t,x, Xt,x
τ t,x)‖ ≤

CL. The representation (6.12) and standard estimates then give ‖Du‖∞,D̄ ≤ CL.

Corollary 6.1. Let (D’), (C’) and (H’) hold. Then, ‖Du‖∞,D̄ ≤ CL.

We can now prove Theorem 3.2 under the conditions (D’), (C’) and (H’).

Corollary 6.2. Theorem 3.2 holds under the conditions (D’), (C’) and (H’).

Proof. 1. Proof of (3.4) and (3.5). Recalling that u ∈ C1,2(D) ∩ C1(D̄), see Proposition

6.3, we deduce from a standard verification argument that Z = Du(·, X)σ(X). Set (∇X,V ) :=

(∇X0,X0 , V 0,X0) and observe that (∇Xt,Xt
s , V t,Xt

s ) = (∇Xs∇X−1
t , VsV

−1
t ) for s ≥ t, by the flow

property. Thus, by Proposition 6.3,

Zt = E

[

Du(τ,Xτ )∇XτVτ +

∫ τ

t

∂xf (Θs)∇XsVsds | Ft

]

σ(Xt)(∇XtVt)
−1 , t ≤ τ . (6.14)

It then follows from Proposition 6.2 (boundedness of the gradient of u), (HL) and stan-

dard estimates that supt≤τ ‖Zt‖ ≤ ξL. This readily implies (3.5), i.e. E

[

∫ ϑ

θ ‖Zs‖pds | Fθ

]

≤
E [ξp

L|ϑ− θ| | Fθ], p = 1, 2. By Burkholder-Davis-Gundy’s inequality, (HL) and Proposition

4.1, this also yields E

[

supt∈[θ,ϑ] |Yt − Yθ|2p
]

≤ E [ξp
L |ϑ− θ|p], p ≥ 1

2. Proof of (3.6). By the same arguments as above, we first obtain that |u(t, x) − u(t, x′)| ≤
CL|x− x′|. Moreover, for t ≤ t′ ≤ T ,

u(t, x) − u(t′, x) = Y t,x
t − u(t′, x) = Y t,x

t − Y t,x
t′ + u(t′, Xt,x

t′ ) − u(t′, x) .

The Lipschitz continuity of u in space (Corollary 6.1) and standard estimates on SDEs imply

that |E[u(t′, Xt,x
t′ )− u(t′, x)]| ≤ CL|t− t′| 12 . On the other hand, E

[

|Y t,x
t − Y t,x

t′ |2
]

≤ CL(t′ − t),

by the above estimate.

3. Proof of (3.3). The bound on R(Y )π
S2 follows from (3.4). Using (6.14) and exactly the same

arguments as in the proof of Proposition 4.5 in [3], see also [23], we deduce that

n−1
∑

i=0

E

[
∫ ti+1

ti

‖Zt − Zti
‖2dt

]

≤ CL h ,

which implies

n−1
∑

i=0

E

[
∫ ti+1

ti

‖Zt − Ẑti
‖2dt

]

≤ CL h

since Ẑ is the best approximation of Z in L2(Ω× [0, T ]) by an element of H2 which is constant

on each time interval [ti, ti+1). 2
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6.4. Regularization procedure: proof of Theorem 3.2 in the general

case

Step 1. Truncation of the domain: We first prove that Theorem 3.2 holds under the condi-

tions (D1), (D2), (C’) and (H’).

Let φ be a C∞ density function with compact support on Rd. Given ε > 0, we define ∆ε :=

ε−dφ(ε−1·)⋆(d∧dε−1)+ where dε−1 denotes the algebraic distance to ∂B(X0, ε
−1) and ⋆ denotes

the convolution. Set Oε := {x ∈ Rd : ∆ε(x) > 0} and Dε := [0, T ) × Oε. It follows from the

compact boundary assumption that ∂O ⊂ Ōε, for ε small enough. Note that Oε is bounded,

even if O is not. Let (Y ε, Zε) be defined as in (1.2) with Oε in place of O and τε be the first

exit time of (·, X) from Dε. Observe that, by continuity of X , τε → τ P − a.s. Since, by (Hg),

(HL) and Theorem 1.5 in [26],

‖Y − Y ε‖2
S2 + ‖Z − Zε‖2

H2 ≤ CLE

[

|g(τ,Xτ ) − g(τε, Xτε)|2 +

∫ τ∨τε

τ∧τε

f(Xs, Ys, Zs)
2ds

]

≤ CLE

[

∫ τ∨τε

τ∧τε

(1 + ‖Xs‖2 + |Ys|2 + ‖Zs‖2)ds

]

,

we deduce from Proposition 4.1 and a dominated convergence argument that ‖Y −Y ε‖2
S2 +‖Z−

Zε‖2
H2 → 0. Since the domain Oε satisfies (D’), we can apply Corollary 6.2 to (Y ε, Zε). Recalling

that the associated constants depend only on L and are uniform in ε, we thus obtain the required

controls on (Y, Z). Let uε be the solution of (6.1) associated to Dε. The above stability result,

applied to general initial conditions, implies that uε → u pointwise on D̄. Corollary 6.2 thus

implies that u satisfies (3.6).

Step 2. Regularization of the coefficients: We now prove that Theorem 3.2 holds under

the conditions (D1), (D2), (C), (HL) and (Hg).

For ε > 0, define bε, σε and fε by

(bε, σε, fε)(x, y, z) := (b, σ, f) ⋆ ε−2d+1φ(ε−1(x, y, z))

where φ is a C∞ density function with compact support on Rd × R × Rd. Let us consider the

FBSDE






Xε
t = x+

∫ t

0
bε(X

ε
s )ds+

∫ t

0
σε(X

ε
s )dWs +

√
εW̃t ,

Y ε
t = g(τε, Xε

τε) +
∫ τε

t∧τε fε(X
ε
s , Y

ε
s , Z

ε
s)ds−

∫ τε

t∧τε Z
ε
sdWs −

∫ τε

t∧τε Z̃
ε
sdW̃s ,

(6.15)

where (W̃t)t≥0 is an additional d-dimensional Brownian motion independent of W and

τε := inf{s ≥ 0 : (s,Xε
s ) 6∈ D} .
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This system satisfies the conditions of Step 1. Therefore, the estimates of Theorem 3.2 can be

applied to (Y ε, Zε). Note that the associated constant depends only on L and are uniform in ε.

Moreover, it follows from (HL) and Theorem 1.5 in [26] that

‖Y − Y ε‖2
S2 + ‖Z − Zε‖2

H2 ≤ CLE

[

|g(τ,Xτ ) − g(τε, Xε
τε)|2 +

∫ T

0

‖Xs −Xε
s‖2ds

]

+ E

[

∫ τ∨τε

τ∧τε

(|f(Xs, Ys, Zs)| + |fε(X
ε
s , Ys, Zs)|)2ds

]

+ L ε .

Clearly, Xε → X in S2. Since f and g are Lipschitz continuous, f and fε have linear growth and

(X,Xε, Y, Z) is bounded in S2 × S2 × S2 ×H2, it suffices to check that τε → τ in probability

to obtain the required controls on (Y, Z). This is implied by the non-characteristic boundary

condition of (C), see e.g. the proof of Proposition 3 in [17]. The control (3.6) is obtained by

arguing as above. 2

Appendix: Proof of Proposition 6.1

In the following, we use the notations

u∗(t, x) = lim sup
(s,y)∈D→(t,x)

u(s, y) , u∗(t, x) = lim inf
(s,y)∈D→(t,x)

u(s, y) , (t, x) ∈ D̄

The statement of Proposition 6.1 is a direct consequence of Lemmas A.1 and A.2 below.

Lemma A.1. Let the conditions of Proposition 6.1 hold. Then, the function u has linear

growth and u∗ (resp. u∗) is a viscosity subsolution (resp. supersolution) of (6.1) with the terminal

conditions u∗ ≤ g (resp. u∗ ≥ g) on ∂pD.

Proof. 1. The linear growth property property is an immediate consequence of Proposition 4.1.

2. It remains to prove that u∗ and u∗ are respectively sub- and supersolution of (6.1) with the

boundary conditions u∗ ≤ g and u∗ ≥ g on ∂pD. We concentrate on the supersolution property,

the subsolution property would be derived similarly. The proof is standard, as usual we argue by

contradiction. Let (t0, x0) ∈ [0, T ]× Ō and ϕ ∈ C2
b be such that 0 = min(t,x)∈D̄(u∗ − ϕ)(t, x) =

(u∗ − ϕ)(t0, x0) where the minimum is assumed, w.l.o.g., to be strict on D̄. Assume that

(−Lϕ(t0, x0) − f(x0, ϕ(t0, x0), Dϕσ(t0, x0))) 1(t0,x0)∈D + (ϕ− g)(t0, x0)1(t0,x0)∈∂pD =: −2ζ < 0 .

Recall from (D2) that if x0 ∈ ∂O then we can find an open ball B0 ⊂ Oc such that B̄0 ∩ Ō =

{x0}. If x0 ∈ ∂O, we denote by dB0 the algebraic distance to B0. On D̄, we set

ϕ̃(t, x) = ϕ(t, x) − (
√
T − t)1t0=T − d(x)

(

1 − d(x)

η

)

1x0∈∂O\B(C,L−1)

−dB0(x)

(

1 − dB0(x)

η

)

1x0∈∂O∩B(C,L−1) ,
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for some η > 0. Observe that (t0, x0) is still a strict minimum of (u∗−ϕ̃) on Vη∩D̄ for some open

neighborhood Vη of (t0, x0) on which (dB0 ∨ d) ≤ η/2 if x0 ∈ ∂O. Without loss of generality, we

can then assume that

u ≥ u∗ ≥ ϕ̃+ ζ on ∂Vη \ D̄c , (A.16)

while

ϕ̃ ≤ ϕ ≤ g − ζ on V̄η ∩ ∂pD , if (t0, x0) ∈ ∂pD . (A.17)

Moreover, observe that for F equal to d or dB0 , D(F (1−F/η)) = DF (1−2η−1F ) and D2(F (1−
F/η)) = (1 − 2η−1F )D2F − 2η−1DF ∗DF where ‖DF‖ = 1. Thus, (C) implies that, for η and

Vη small enough,

− Lϕ̃− f(·, ϕ̃, Dϕ̃σ) ≤ −ζ < 0 on Vη ∩ D̄ . (A.18)

Let (tn, xn)n be a sequence in D ∩ Vη such that (tn, xn, u(tn, xn)) → (t0, x0, u∗(t0, x0)). Let

(Xn, Y n, Zn) be the solution of (1.1)-(1.2) associated to the initial conditions (tn, xn) and define

θn as the first exit time of D ∩ Vη by (·, Xn). By applying Itô’s Lemma on ϕ̃ and using (A.17),

(A.18), (A.16) and the identity u = g on ∂pD, we get

ϕ̃(tn, xn) = −χ+ u(θn, X
n
θn

) +

∫ θn

tn

(f(Xn
s , ϕ̃(s,Xn

s ), Dϕ̃σ(s,Xn
s )) − ηs)ds

−
∫ θn

tn

Dϕ̃σ(s,Xn
s )dWs ,

where χ is a bounded random variable satisfying χ ≥ ζ P−a.s. and η is an adapted process in L2

such that η ≥ ζ dt×dP-a.e. Following the standard argument of the proof of Theorem 1.6 in [26],

we deduce that ϕ̃(tn, xn) ≤ Y tn,xn

tn
−ζe−LT = u(tn, xn)−ζe−LT . Since ϕ̃(tn, xn)−u(tn, xn) → 0,

this leads to a contradiction. 2

Lemma A.2. Let the conditions of Proposition 6.1 hold. Fix t0 ∈ [0, T ) and N ⊂ O an

open set. Let U (resp. V ) be an upper-semicontinuous subsolution (resp. lower-semicontinuous

supersolution) with polynomial growth of (6.1) on A := [t0, T )×N such that V ≥ U on ∂pA :=

([t0, T ) × ∂N ) ∪ ({T } × N̄ ). Then, V ≥ U on Ā.

Proof. The proof is standard. Fix ρ > 0 and observe Ũ and Ṽ defined by Ũ(t, x) = U(t, x)eρt

and Ṽ (t, x) = V (t, x)eρt are sub- and supersolution of

0 = ρψ(t, x) − Lψ(t, x) − eρtf(x, e−ρtψ(t, x), e−ρtDψ(t, x)σ(x)) , (t, x) ∈ [t0, T ) ×N .(A.19)

As usual we argue by contradiction and assume that sup(t,x)∈A(Ũ(t, x) − Ṽ (t, x)) > 0. Define

β(t, x) := e−κt(1 + ‖x‖2p) , (t, x) ∈ Ā
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for p ∈ N∗ such that (|U(t, x)| + |V (t, x)|)/(1 + ‖x‖p) is bounded on Ā, and κ > 0 to be chosen

later on. For all ε > 0 small enough, we can then find (tε, xε) ∈ Ā such that

sup
(t,x)∈A

(Ũ(t, x) − Ṽ (t, x) − 2εβ(t, x)) =: (Ũ(tε, xε) − Ṽ (tε, xε) − 2εβ(tε, xε)) > 0 . (A.20)

Clearly, (tε, xε) /∈ ∂pA since Ũ ≤ Ṽ on ∂pA. For n ∈ N∗, let (tn, xn, yn) ∈ [t0, T ] × N̄ 2 be a

maximum point of

(Ũ(t, x) − Ṽ (t, y) − ε(β(t, x) + β(t, y)) −
(

|t− tε|2 + ‖x− xε‖4 + n‖x− y‖2
)

.

It is easy to check, see e.g. Proposition 3.7 in [5], that

Ũ(tn, xn)− Ṽ (tn, yn) → (Ũ− Ṽ )(tε, xε) and |tn−tε|2+‖xn−xε‖4+n‖xn−yn‖2 → 0 . (A.21)

Since (tε, xε) ∈ A, we can assume that (tn, xn) ∈ A for all n ∈ N∗, after possibly passing to

a subsequence. It then follows from Ishii’s Lemma, Theorem 8.3 in [5], that we can find real

coefficients an, bn and symmetric matrices Xn and Yn such that

(an, pn,Xn) ∈ P̄+
N̄
Ũ(tn, xn) and (bn, qn,Yn) ∈ P̄−

N̄
Ṽ (tn, yn) ,

see [5] for the standard notations P̄+
N̄

and P̄−
N̄

, where

pn := 2n(xn − yn) + 4(xn − xε)‖xn − xε‖2 + εDβ(tn, xn) , qn := 2n(xn − yn) − εDβ(tn, yn)

and

an−bn = 2(tn−tε)+ε (∂tβ(tn, xn) + ∂tβ(tn, yn)) ,

(

Xn 0

0 −Yn

)

≤ An+n−3(An)2 (A.22)

with

An := 2n

(

Id −Id
−Id Id

)

+ ε

(

D2β(tn, xn) 0

0 D2β(tn, yn)

)

+

(

4Id‖xn − xε‖2 + 8(xn − xε)
∗(xn − xε) 0

0 0

)

,

where Id is the identity matrix of Md. Since Ũ and Ṽ are sub- and supersolution of (A.19), it

follows that

ρ
(

Ũ(tn, xn) − Ṽ (tn, yn)
)

≤ an − bn + 〈b(xn), pn〉 − 〈b(yn), qn〉 +
1

2
Tr [a(xn)Xn − a(yn)Yn]

+
(

f(xn, U(tn, xn), e−ρtnpnσ(xn)) − f(yn, V (tn, yn), e−ρtnqnσ(yn))
)

eρt .

We then deduce from (HL), (A.22), (A.21), and standard computations that

ρ
(

Ũ(tn, xn) − Ṽ (tn, yn)
)

≤ L
(

Ũ(tn, xn) − Ṽ (tn, yn)
)

+ 2ε (Lβ(tε, xε) + L‖σ(xε)Dβ‖) + on(1) .
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Taking ρ > 2L and κ large enough so that Lβ + L‖σDβ‖ ≤ −κ
2 exp(−κT ) on Ā, which is

possible thanks to (HL), we finally obtain

1

2
ρ
(

Ũ(tn, xn) − Ṽ (tn, yn)
)

≤ −κ exp(−κT )ε+ on(1) ,

which contradicts (A.20) for n large enough, recall (A.21).

2
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