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Outline:
1. Equilibrium
2. Kinetics
3. Non-Equilibrium Dynamics

4. Stochastics



Complex Fluids Models

eLandau Equilibrium models: order parameter (Director = Oseen, Zdcher,
Frank, Ericksen, Leslie. Tensor = de Gennes.)

eOnsager Equilibrium models: (pdf of state), free energy derived from
physics

ePassive Kinetic models: Doi, FENE and variants (pdf of state) effects of
shear on dilute suspensions of rigid or extensible corpora => linear Fokker-
Planck

eTensorial models: (conformation tensors): closure of certain kinetic mod-
els, e.g. Oldroyd B

eActive Kinetic Models: (pdf) Onsager-Smoluchowski: Nonlinear Fokker-
Planck, stochastic models



eNanoscale self-assembly

eMicrofluidics

eBiomaterials

eGels and Foams

eSoft Lattices, Jamming

Applications



Major Problems

eDerivation of Micro-Macro Effect

eDissipation of Energy: Complex Fluids “Onsager” conjecture

eTransitions: from isotropic to order ( nematic, smectic)

eModeling of interactions in the correct moduli space.

eEXxistence Theory

Nonlinear Stochastic System (in the sense of McKean): drift deterministic,
but computed via functionals of the SDE driven by it.



Equilibrium

e )M/ configuration space of corpora = metric space.

edu(p): “volume element” = Borel probability.

e f(p)du(p) probability density of corpora p.

e K (p, q) interaction kernel: real symmetric, bounded below, Lipschitz.

eMean field interaction potential U = —Kf

(KN@ = [ K@) f(@du(a)
M

efFree energy:

e= [(fl09f — 5 FK Py
M



o0&

=0
of

Onsager equation

0g f(m) = | K(m.p)f(®)du(p) — 109 Z

Z a normalizing constant.

F =7 1KS

eNonlinear, nonlocal.




Example: Maier-Saupe potential

M =_8", du = area.

K@) =b [ (-0 - ) fa)du
&

o). inverse temperature, or concentration. b — oo: transition to nematics.



Dimension Reduction, Maier-Saupe

For any real, n x n symmetric, traceless matrix .S and positive b:

S— Z(S)

Z(S) — / €b(Sijmimj)d,u.
Sn—1

¢S(m) — (Z(S))_leb(sijmimj)

o(S)i; = / (mimj - %) Ys(m)dp.

Sn—l



Theorem 1 Onsager’s equation with Maier-Saupe potential is equivalent
to

o(S) =S.

e¢O(n) Rotation invariance.

Theorem 2 Let n = 2. Maier-Saupe potential. Let N (b) denote the num-
ber of distinct steady solutions modulo the O(2) conjugacy. Then, if b < 4
then N(b) = 1. If b > 4 then N(b) = 2. The non-trivial steady state
converges, as b — oo, to a delta function concentrated on the unit circle.



Onsager Equation, Maier-Saupe n = 3.
S = N8y

A+ A2+ A3 =0.
Let

1 1
V] = §(>\1 + X2), v = §(>\1 — A2).

y2(p,t) = (1 — p?) cost
for (p,t) € K =[-1,1] x [0, 27].

{ y1(p) =1 — 3p?

y = y(p,t) = (y1(p),y2(p,t)), v = (v1,v2).



Theorem 3 Let
Zo(v) = / b0 gy
K
F(v) = log(Zo(v)) — b (:-w% + vg) .

Onsager’s equation: critical points of F, v € [—%, %] x [0, %], le.:

{ 6v1 = [y1](v)
2upy = [y2](v)

where, for any ¢ : K — R,

[61(v) = (Z2(0)) 7 [ _6(p, ) VP Dapat



olf 0 < b < 1/2 the function F is strictly concave and has a unique critical
point at v = 0. The corresponding unique steady state is the uniform

distribution.

olf b > 8 then v = 0 is an isolated critical point. Consequently, no bifurca-
tions from the uniform distribution occur for b > 8.



Limit b — oo

(9] = [ ¢lmypsy(m)dm.
S2

elsotropic: A1 = Ao = A3 = 0.

b— 00

lim [¢] = %/cb(p)dp
SQ

— 1
7>\3— — -

eOblate: \; = £, Ao = 1

o\

1 21
im [¢] = —/ $(Cos p, sin v, 0)dy
b— oo 2w JO




— 1 — 1
7>‘2_ 3y >‘3_ 3

WIN

eProlate: \{ =

lim [¢] = ¢(e1).

b— 00

eaxisymmetry, two lambdas are equal. Finitely many solutions at finite
b. (Fatkulin-Slastikov, Luo-Zhang-Zhang, Zhou-Wang-Forest-Wang, Liu-
Zhang-Zhang).



Freely Articulated N-corpora

——

M = Mq X -+ X My, d,u:nd/,bj

K(p1,q1,02,92,---) = K1(p1,q1) + ... Kn(pn, aN)

N N
Kf = 3 Kif, with K;f(py) = [ K;(pj4)f(av, - - an)dn
=1

Onsager Equation f = Z—LeXf

~

_ AN o
Z=nX,2; with Zj_/

M

Milidpj,  f; = (Z;)"teili

f(p1,...pn) = f1(p1)f(P2) ... fy(pN) product measure



Example of Interacting Corpora
M =S, M =s! xS
Kf(p1,p2) = —b [ﬂ,z le(p1) A e(p2) — e(q1) A e(a2)l|? f(q1, 92)dg1dgo
with e(p) = (cosp,sinp) if p € [0, 27].
le(p1) A e(pa) — e(q1) Ae(ga)]|? = (sin(p1 — p2) — sin(q1 — ¢2))°
Dimension reduction: Onsager’s equation f = Z 1/ reduces to
z = [sin0](z)
with

[ [61(2,7) = [T ¢(0)g(6)do
g(6) = 7—1,—bsin?(6)+2bzsin 6

Z = [T e=bsin®(0)+2bzsinb g

N\

\



The solutionis f(61,60>) = g(01 — 6>). Let
u(f,z) =sinf — z,

and let

foz7T u (0, z)e_buz(e’z)dH
[T e bu20.)dp

[u](b,2) =
The Onsager equation is equivalent to

[u](b,z) = 0.

This determines z, which in turn determines g, f.

z = 0 always a solution. It yields
fo(p1,p2) = Z~ e bsin*(p1—p2),

As b — oo this tends to §((p1 — po>)mod).



Consider

A(z,7) = b2 /QW e~b(sIN0-2)% 4g
0
with 7 = b~ 1. Note

1 0\

[u]:2_b \

and
1.5
67'>\ — Zﬁz)\

1

\/1—,22

Increasing. But things are subtle, clearly %(1,7) < 0! In fact, phase
transition at positive

lim Az, 7) = 27
7—0

82)\(2’5, '7_) =0



and limit lim.._, g z; = 1, and consequently

lim f(p1—p2) =9 ((m —po — g) modﬂ>

b— 00

Packing, Jamming. V (r) nonnegative, nonincreasing, compactly supported.
p=(x1,...2N), z; € 2 C R™ Packing energy:

F(p) =) V(|z; — ).
1<J

M=Qx.---xQn{F < Fp}.

(KH®) == [_IF®) — F(@)2f(a)dg



General Onsager Equation

eConjecture: General configuration space M, generic potential. The zero
temperature limit is concentrated on a single corpus

Partition function

7Z(f.b _/ bKf 4
(f,0) M ‘
Define, for ¢ : M — R,

[6](f,b) = (Z(f,b)) /M $(m)e™ dy.



K(m,p) = pidi(m)eé;(p)
—1

J
¢; real, complete, orthonormal in L2(M),

Koj = p;jo;
Expand f:
0 (1) = [ F©)6;(p)dn.
Onsager’s equation
F= gz 1KS
IS equivalent to the system

v;(f) = l¢;1(f,b).



Onsager solution is a critical point of the free energy

o 2
F(v,b) =109 Z(v,b) —b Y _ uj??

1=1
Differentiation: For any function ¢(p)

0[]
8?)2'

. 2r
Therefore the Hessian -2°7 s
dv;0v;

= bu; {[o¢:] — [¢]lil}

Hij = b2 i [€i€5] — bpidi;
with £; = ¢; — [¢;]. For b small the isotropic state v = O is stable.

Jim [9](v,b) = ¢(p(v))



Onsager equation on metric spaces

M compact metric space, d distance, n Borel probability measure on M,

uniform in the sense that thereexist0 < k< 1,¢> 0

(A)  wW(B(p,r) >ce™

for all p € M, and all » sufficiently small. (e.g.: Riemannian).

Up) == (K (p) = — | u(d(p.0))(a)dp(a)

Assume

0 < u(d)
(B) { u(d) — u(t)| < Lid— ¢



Theorem 4 Let M be a compact metric space with distance d. Let i be a
Borel probability measure on M that satisfies (A). Let u satisfy (B). Then:

() For any b > O there exists a solution g that minimizes the energy:

Elgl = min Elf]
f>0, fod,uzl

The function g solves the Onsager equation
g(z) = (Z(b)) e VW)
with
Z() = [ @
() = | e du(z)
and

U@) = [ uld(5)g(u)du()



The function g is normalized [ gdp = 1, strictly positive and Lipschitz
continuous.

(Il) Let b, — oo and let dv,, = gndu be a sequence of solutions of On-
sager equations corresponding to b,,. By passing to a subsequence we
may assume that the sequence converges weakly to a probability measure
v = limy vy, There exists a non-negative Lipschitz continuous function
Uso () on M such that v is concentrated on the set

Y ={z e M |Us(zx) =min,epUsx(y)}

Thus, for any ¢ continuous, supported in the open set M \ X,

M /s ¢(z)gn(z)dp =0

n—aoeo

Moduli spaces of corpora: n-gons, model interactions, e.g. Gromov-Hausdorff
distance.



Kinetics

M compact connected Riemannian manifold with metric g.

. Y
Orf = divg (fvg <§>>

o0&

5F log f — Kf
e >
—=— | FIVgliogf -k dp

Gradient system, steady solutions = Onsager equation.

Orf = Agf —divg(fVg4(Kf))



Lyapunov functional:

d

e = _]\4 f1Vg(log f — bKf)|? dp

Example n = 2, Maier-Saupe, Fourier representation.

dv; . .
d—tj = —45%v; + bjv1 (vj_1 — vj41)

The potential is determining. n = 2, 3: Inertial Manifolds (Vukadinovic).



Transport: Smoluchowski (Nonlinear Fokker-Planck) Equation

Ouf + - Vaf + AV (G) = By

G = %VQICf + W,
The (0, 1) tensor field W is:
W(x,m,t) =
= (231l (m)Gia,0))
Example, rod-like particles:

Wi(x,m,t) = (Vzu(x,t))m — (Vzulz,t))m - m)m.

a=1,....d.

Macro-Micro Effect: from first principles, in principle...



Dynamics: Navier Stokes Equation

ou+u-Vu+Vp=vAu+V-o
V.-u=20

The tensor o;;(x,t) : added stress.

Sufficient for regularity, if © smooth

I 2
/O l| o0 gyt < 00

Amplification factor of tracers

T
/O IV oo gyt < 00




2D, Bounded stress

Theorem 5 Let o € L®(dtdz). Let ug € L?(dx). There exists a unique
weak solution of the forced 2D NS eqgns, with

u € L®(>dt)(L?(dz)) N L2(dt) (W12(dz))

Moreover,

/ HVuHLq(d )dt <oo, Vg>2

T
/O [ull? o gyt < 00, ¥ p<2.




Open questions

T 5 T
/O [l o0 g2y dt < 00 = /O IVull poo(amy < oo No?

I 2
/O [ul| 700 (ggydt < 00 NoO?

T
| IVl (aaydt < 0o No?

Partial regularity?




Navier-Stokes with nearly singular forces

ou+u-Veu—vQAzu—+ Vep =divego, Vz-u=20

Theorem 6 Let u be a solution of the 2D Navier-Stokes system with
divergence-free initial data ug € W12(R2) n Wl (R?2). Let T > 0 and
let the forces V - o obey

o € L*(0,T; L>®(R?)) N L?(0,T; L?(R?))
V.o € LY(0,T; L"(R2)) N L2(0, T; L2(R2))
with » > 2.

loflpee ~ K, [[V-0ol|lpr~ B




Then
T
| I19u(@® |l edt < K l0g.(B)

and also

LS [T et < K
M = o

with K depending on 7', norms of o and the initial velocity, but not on
gradients of o nor M, and B depending on norms of the spatial gradients
of o.

U = i Ag(u)

qg=-1




Micro-Macro Effect

oij(xz) = —e/M (divgcij + Vgle(ac,m)) f(x,m)dm x

Micro-Macro Effect: derived from Energetics
of =71 = 6 =0

o =0, W= (Veguym —m((Vzgu)ym -m) =0 =€ [(3n®@®n —1)dm



Theorem 7 For the coupled 3DNS + Nonlinear Fokker-Planck system, with
macro-micro effect given in *,

E(t) =3 [ |u]?dz+
+e[{flog f — 3(Kf)f} dedm.
is nondecreasing on solutions: If (u, f) is a smooth solution then

Cé—? = —v [ |Vyu|?de—
—%fﬂg F1Vgy (log f — Kf)|? dmdz.

If the smooth solution is time independent, then v = 0 and f solves the
Onsager equation

f= 7 1eKT



Time dependent Stokes and Nonlinear Fokker-Planck in 3D

Ouf 4w+ Vaf +divg(W ) + Ldivg(fVg(Kf)) = eAgf
oiu — vQAzu + Vep =divego + F, Vgi-u=0.

Theorem 8 Assume ug is divergence-free and belongs to W27 (T3), r >
3, assume that fy is positive, normalized, and fo € L*°(dz;C(M)) N
Vafo € L™(da; H=5(M)), s < %+ 1. Then the solution exists for all time
and

||u||Lp[(o,T);W2ﬂ“(da:)] < 00,
IV fll Lo, 1); Lr (da; H=s(ar))] <

foranyp > 22, T > 01 < 00, € > 0.
r—3




Global existence, NSE and Nonlinear Fokker-Planck 2D

Theorem 9 (C-Masmoudi) Let ug € (Wo‘ e LQ) (R2) be divergence-

free,and fo € WL (H~ S(M)) withr > 2,a > 1,s < Z+1and fo > 0,
Iag fodm € (LY N L>®)(R?). Then the coupled NS and nonlmear Fokker-
Planck system in 2D has a global solution w € LY (WLr) N L2 (W2T)
and f € Lloc(Wl "(H—%)). Moreover, for T > Ty > 0, we have u €
Lo ((Tp, T); W2=0m).

No a priori bound.

a— kfoHvxSk; 1(u(s))|| poods

sup>\ | A (uw) ()| p

C-Fefferman-Titi-Zarnescu: a priori bounds if f is driven by a time
average of u



Stochastic Lagrangian Representation: Navier-Stokes

Theorem 10 (lyer) Let W be an n-dimensional Wiener process. Letk > 1
and assume ug € CFT1.2 js a deterministic divergence-free vector field.
Let (u, X) solve the stochastic system

([ dX = udt + V2vdW,
< A=Xx"1
L u= EP{(VTA) (ugo A)}

Then u solves the deterministic incompressible NSE:

ou+ u-Vu—vAQAu—+ Vp =0,

V-u=20

eWhen v = 0, all is deterministic, and we recover the Eulerian-Lagrangian
deterministic representation based on the Weber formula.



Remarks

eA = X1 s the spatial inverse (“back-to-labels™). It exists, and it is as
smooth as X. Both are stochastic.

eForced NSE

(

dX = udt + /2vdW,
4 A=x"1
u = EP {(VTA) [uo + JE(VEX) f( X, s)ds} o A(t)}

\

represents

ou—+u-Vu—vAu+Vp=f, V-u=0.

eRepresentations for Lans-alpha, Burgers. No direct representation for
Leray regularization.



Local Existence for the Stochastic System, Remarkable Formulae

Theorem 11 Let ug € C*T1.2 pe divergence-free. There exists a T' >
O depending on the norm of ug, but independent of viscosity, so that
a solution (u, X) of the stochastic system exists on [0,7]. Moreover,

|u]| k1,0 < U fort € [0, T] with U dependent on the norm of the ini-
tial data and T'.

Theorem 12 Letw =V X u, wg =V X ug. Then

w=E{((VX)wg)o A}.
In two dimensions,

w =K [wgo A].



For forced systems in n = 2, 3, replace in the formulae above wg by

t 1
£ = wo + /O(VXS) 9(Xs, 8)ds
with g =V x f.

eCirculation is conserved.

Let
U= IP’{(VtA)(uO 0 A)}
This is a stochastic incompressible velocity, with initial data ug and

u = KEu

]{X(v)?’l dr = ﬁuo - dr.



Stochastic Lagrangian Transport

e The “back-to-labels” process obeys

dA; + [u- VA — vAAldt + V2uVAIW = 0

For any smooth function ¢(a,t), v(x,t) = ¢(A(x,t),t) obeys

dvi + [u - Vv — vAv] dt + vV2vVudW = Orpo A

eCancellation, chain rule as if it were a first order PDE, due to the joint
guadratic variation.

eValid if u is smooth, not necessarily divergence-free.



Stochastically Passive Scalars

d0; + [u - VO — vA0] dt + V2uVOdW = 0

01, 0>, Sps = 0160-Sps

eWith viscosity, inviscid invariants become stochastically passive




Stochastic Representation for Linear Fokker-Planck coupled with
Navier-Stokes

Let
m = M(a,«a,t)
solve
dM = (u(X,t) + G(X, M, t))dt + V2kdW
with
M(a,a,0) = «a.
Let

(A(z,t), R(z,m,t)) = (X(a,t), M(a,a,t)) "1



It exists and a.s. for all ¢
A(X(a,t),t) =a, R(X(a,t),M(a,a,t))=a.
Then

f(x,m,t) = fo(A(x,t), R(x,m,t))det (Vi R) (x,m,t)

solves
df + (u- Vaf +divg(Gf) — kAgf — v f)dt =
—V26Vgf - dW —/2uVaf - dW = 0
and so

F=Ef



solves

O + u-Vaf 4+ divg(GT) = kAgf + vAsT.

o > 0, > 0.

eModifications needed for manifolds.

Nonlinear Fokker-Planck and hybrid stochastic-deterministic (not closed)
models: open.



Future work

eTraveling and standing waves in physical space, connecting solutions of
Onsager’s equation.

eOnsager equation on moduli spaces of n-gons.

eHybrid stochastic-deterministic models for interacting corpora coupled to
fluids and their relationship to deterministic models.

elnvariant measures for hybrid stochastic-deterministic models of interact-
ing corpora.

ePartial regularity theory for NLFP-NS systems.



