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Complex Fluids Models

•Landau Equilibrium models: order parameter (Director = Oseen, Zöcher,
Frank, Ericksen, Leslie. Tensor = de Gennes.)

•Onsager Equilibrium models: (pdf of state), free energy derived from
physics

•Passive Kinetic models: Doi, FENE and variants (pdf of state) effects of
shear on dilute suspensions of rigid or extensible corpora => linear Fokker-
Planck

•Tensorial models: (conformation tensors): closure of certain kinetic mod-
els, e.g. Oldroyd B

•Active Kinetic Models: (pdf) Onsager-Smoluchowski: Nonlinear Fokker-
Planck, stochastic models



Applications

•Nanoscale self-assembly

•Microfluidics

•Biomaterials

•Gels and Foams

•Soft Lattices, Jamming



Major Problems

•Derivation of Micro-Macro Effect

•Dissipation of Energy: Complex Fluids “Onsager” conjecture

•Transitions: from isotropic to order ( nematic, smectic)

•Modeling of interactions in the correct moduli space.

•Existence Theory

Nonlinear Stochastic System (in the sense of McKean): drift deterministic,
but computed via functionals of the SDE driven by it.



Equilibrium

•M configuration space of corpora = metric space.
•dµ(p): “volume element” = Borel probability.
•f(p)dµ(p) probability density of corpora p.
•K(p, q) interaction kernel: real symmetric, bounded below, Lipschitz.

•Mean field interaction potential U = −Kf

(Kf)(p) =
∫
M

K(p, q)f(q)dµ(q)

•Free energy:

E =
∫
M

(f log f −
1

2
fKf)dµ



δE
δf

= 0

Onsager equation

log f(m) =
∫
M
K(m, p)f(p)dµ(p)− logZ

Z a normalizing constant.

f = Z−1eKf

•Nonlinear, nonlocal.



Example: Maier-Saupe potential

M = Sn, dµ = area.

Kf(p) = b
∫
Sn

(
(p · q)2 −

1

n

)
f(q)dµ

•b: inverse temperature, or concentration. b→∞: transition to nematics.



Dimension Reduction, Maier-Saupe

For any real, n× n symmetric, traceless matrix S and positive b:

S 7→ Z(S)

Z(S) =
∫

Sn−1

eb(S
ijmimj)dµ.

ψS(m) = (Z(S))−1eb(S
ijmimj)

σ(S)ij =
∫

Sn−1

(
mimj −

δij

n

)
ψS(m)dµ.



Theorem 1 Onsager’s equation with Maier-Saupe potential is equivalent
to

σ(S) = S.

•O(n) Rotation invariance.

Theorem 2 Let n = 2. Maier-Saupe potential. Let N(b) denote the num-
ber of distinct steady solutions modulo the O(2) conjugacy. Then, if b ≤ 4

then N(b) = 1. If b > 4 then N(b) = 2. The non-trivial steady state
converges, as b→∞, to a delta function concentrated on the unit circle.



Onsager Equation, Maier-Saupe n = 3.

Sij = λiδij

λi ∈ [−1
3,

2
3],

λ1 + λ2 + λ3 = 0.

Let

v1 =
1

2
(λ1 + λ2), v2 =

1

2
(λ1 − λ2).

{
y1(p) = 1− 3p2

y2(p, t) = (1− p2) cos t

for (p, t) ∈ K = [−1,1]× [0,2π].

y = y(p, t) = (y1(p), y2(p, t)), v = (v1, v2).



Theorem 3 Let

Z2(v) =
∫
K

ebv·y(p,t)dpdt

F(v) = log(Z2(v))− b
(
3v21 + v22

)
.

Onsager’s equation: critical points of F , v ∈ [−1
3,

2
3]× [0, 12], i.e.:{

6v1 = [y1](v)
2v2 = [y2](v)

where, for any φ : K → R,

[φ](v) = (Z2(v))
−1

∫
K
φ(p, t)ebv·y(p,t)dpdt



•If 0 < b < 1/2 the function F is strictly concave and has a unique critical
point at v = 0. The corresponding unique steady state is the uniform
distribution.

•If b ≥ 8 then v = 0 is an isolated critical point. Consequently, no bifurca-
tions from the uniform distribution occur for b ≥ 8.



Limit b→∞

[φ] =
∫
S2

φ(m)ψS,b(m)dm.

•Isotropic: λ1 = λ2 = λ3 = 0.

lim
b→∞

[φ] =
1

4π

∫
S2

φ(p)dp

•Oblate: λ1 = 1
6, λ2 = 1

6, λ3 = −1
3.

lim
b→∞

[φ] =
1

2π

∫ 2π

0
φ(cosϕ, sinϕ,0)dϕ



•Prolate: λ1 = 2
3, λ2 = −1

3, λ3 = −1
3.

lim
b→∞

[φ] = φ(e1).

•axisymmetry, two lambdas are equal. Finitely many solutions at finite
b. (Fatkulin-Slastikov, Luo-Zhang-Zhang, Zhou-Wang-Forest-Wang, Liu-
Zhang-Zhang).



Freely Articulated N-corpora

M̃ = M1 × · · · ×MN , dµ = Πdµj

K̃(p1, q1, p2, q2, . . . ) = K1(p1, q1) + . . .KN(pN , qN)

K̃f =
N∑
j=1

Kjf, with Kjf(pj) =
∫
M̃
Kj(pj, qj)f(q1, . . . qN)dµ

Onsager Equation f̃ = Z̃−1eK̃f̃

Z̃ = ΠNj=1Zj, with Zj =
∫
Mj

eKjfjdµj, fj = (Zj)
−1eKjfj

f̃(p1, . . . pN) = f1(p1)f(p2) . . . fN(pN) product measure



Example of Interacting Corpora

M = S1, M̃ = S1 × S1.

Kf(p1, p2) = −b
∫
T2
‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f(q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0,2π].

‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))
2

Dimension reduction: Onsager’s equation f = Z−1eKf reduces to

z = [sin θ](z)

with 
[φ](z, γ) =

∫ 2π
0 φ(θ)g(θ)dθ

g(θ) = Z−1e−b sin
2(θ)+2bz sin θ

Z =
∫ 2π
0 e−b sin

2(θ)+2bz sin θdθ



The solution is f(θ1, θ2) = g(θ1 − θ2). Let

u(θ, z) = sin θ − z,

and let

[u](b, z) =

∫ 2π
0 u(θ, z)e−bu

2(θ,z)dθ∫ 2π
0 e−bu2(θ,z)dθ

.

The Onsager equation is equivalent to

[u](b, z) = 0.

This determines z, which in turn determines g, f .

z = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin
2(p1−p2).

As b→∞ this tends to δ((p1 − p2)modπ).



Consider

λ(z, τ) = b
1
2

∫ 2π

0
e−b(sin θ−z)

2
dθ

with τ = b−1. Note

[u] =
1

2b

∂zλ

λ

and

∂τλ =
1

4
∂2
z λ

lim
τ→0

λ(z, τ) = 2
√
π

1√
1− z2

Increasing. But things are subtle, clearly ∂λ
∂z(1, τ) < 0! In fact, phase

transition at positive τ

∂zλ(zb, τ) = 0



and limit limτ→0 zb = 1, and consequently

lim
b→∞

f(p1 − p2) = δ

((
p1 − p2 −

π

2

)
modπ

)

Packing, Jamming. V (r) nonnegative, nonincreasing, compactly supported.
p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =
∑
i<j

V (|xi − xj|).

M̃ = Ω× · · · ×Ω ∩ {F ≤ F0}.

(Kf)(p) = −
∫
M̃
|F (p)− F (q)|2f(q)dq



General Onsager Equation

•Conjecture: General configuration space M , generic potential. The zero
temperature limit is concentrated on a single corpus

Partition function

Z(f, b) =
∫
M
ebKfdµ

Define, for φ : M → R,

[φ](f, b) = (Z(f, b))−1
∫
M
φ(m)ebKfdµ.



K(m, p) =
∞∑
j=1

µjφj(m)φj(p)

φj real, complete, orthonormal in L2(M),

Kφj = µjφj

Expand f :

vj(f) =
∫
M
f(p)φj(p)dµ.

Onsager’s equation

f = Z−1ebKf

is equivalent to the system

vj(f) = [φj](f, b).



Onsager solution is a critical point of the free energy

F(v, b) = logZ(v, b)− b
∞∑
j=1

µj
v2j

2

Differentiation: For any function φ(p)

∂[φ]

∂vi
= bµi {[φφi]− [φ][φi]}

Therefore the Hessian ∂2F
∂vi∂vj

is

Hij = b2µiµj[ξiξj]− bµiδij

with ξj = φj − [φj]. For b small the isotropic state v = 0 is stable.

lim
b→∞

[φ](v, b) = φ(p(v))



Onsager equation on metric spaces

M compact metric space, d distance, µ Borel probability measure on M ,
uniform in the sense that there exist 0 < k < 1, c > 0

(A) µ(B(p, r)) ≥ ce−r
−k

for all p ∈M , and all r sufficiently small. (e.g.: Riemannian).

U(p) = − (Kf) (p) = −
∫
M
u(d(p, q))f(q)dµ(q)

Assume

(B)

{
0 ≤ u(d)

|u(d)− u(t)| ≤ L|d− t|



Theorem 4 Let M be a compact metric space with distance d. Let µ be a
Borel probability measure on M that satisfies (A). Let u satisfy (B). Then:

(I) For any b > 0 there exists a solution g that minimizes the energy:

E[g] = min
f>0,

∫
M fdµ=1

E[f ]

The function g solves the Onsager equation

g(x) = (Z(b))−1e−bU(x)

with

Z(b) =
∫
M
e−bU(x)dµ(x)

and

U(x) =
∫
M
u(d(x, y))g(y)dµ(y)



The function g is normalized
∫
gdµ = 1, strictly positive and Lipschitz

continuous.

(II) Let bn → ∞ and let dνn = gndµ be a sequence of solutions of On-
sager equations corresponding to bn. By passing to a subsequence we
may assume that the sequence converges weakly to a probability measure
ν = limn νn. There exists a non-negative Lipschitz continuous function
U∞(x) on M such that ν is concentrated on the set

Σ = {x ∈M | U∞(x) = miny∈MU∞(y)}

Thus, for any φ continuous, supported in the open set M \Σ,

lim
n→∞

∫
M
φ(x)gn(x)dµ = 0

Moduli spaces of corpora: n-gons, model interactions, e.g. Gromov-Hausdorff
distance.



Kinetics

M compact connected Riemannian manifold with metric g.

∂tf = divg

(
f∇g

(
δE
δf

))

δE
δf

= log f −Kf

dE
dt

= −
∫
M
f |∇g(log f −Kf)|2 dp

Gradient system, steady solutions = Onsager equation.

∂tf = ∆gf − divg(f∇g(Kf))



Lyapunov functional:

d

dt
E = −

∫
M

f |∇g(log f − bKf)|2 dp

Example n = 2, Maier-Saupe, Fourier representation.

dvj

dt
= −4j2vj + bjv1(vj−1 − vj+1)

The potential is determining. n = 2,3: Inertial Manifolds (Vukadinovic).



Transport: Smoluchowski (Nonlinear Fokker-Planck) Equation

∂tf + u · ∇xf + divg(Gf) =
1

τ
∆gf

G =
1

τ
∇gKf +W,

The (0,1) tensor field W is:

W (x,m, t) =

=
(∑3

i,j=1 c
ij
α (m)∂ui∂xj

(x, t)
)
α=1,...,d.

Example, rod-like particles:

W (x,m, t) = (∇xu(x, t))m− ((∇xu(x, t))m ·m)m.

Macro-Micro Effect: from first principles, in principle...



Dynamics: Navier Stokes Equation

∂tu+ u · ∇u+∇p = ν∆u+∇ · σ
∇ · u = 0

The tensor σij(x, t) : added stress.

Sufficient for regularity, if σ smooth∫ T
0
‖u‖2L∞(dx)dt <∞

Amplification factor of tracers∫ T
0
‖∇u‖L∞(dx)dt <∞



2D, Bounded stress

Theorem 5 Let σ ∈ L∞(dtdx). Let u0 ∈ L2(dx). There exists a unique
weak solution of the forced 2D NS eqns, with

u ∈ L∞(dt)(L2(dx)) ∩ L2(dt)(W1,2(dx))

Moreover,

∫ T
0
‖∇u‖

q
q−1
Lq(dx)dt <∞, ∀ q ≥ 2

∫ T
0
‖u‖p

L∞(dx)dt <∞, ∀ p < 2.



Open questions

∫ T
0
‖u‖2L∞(dx)dt <∞⇒

∫ T
0
‖∇u‖L∞(dx) <∞ No ?

∫ T
0
‖u‖2L∞(dx)dt <∞ No ?

∫ T
0
‖∇u‖L∞(dx)dt <∞ No ?

Partial regularity?



Navier-Stokes with nearly singular forces

∂tu+ u · ∇xu− ν∆xu+∇xp = divxσ, ∇x · u = 0

Theorem 6 Let u be a solution of the 2D Navier-Stokes system with
divergence-free initial data u0 ∈ W1,2(R2) ∩W1,r(R2). Let T > 0 and
let the forces ∇ · σ obey

σ ∈ L1(0, T ;L∞(R2)) ∩ L2(0, T ;L2(R2))
∇ · σ ∈ L1(0, T ;Lr(R2)) ∩ L2(0, T ;L2(R2))

with r > 2.

‖σ‖L∞ ∼ K, ‖∇ · σ‖Lr ∼ B



Then ∫ T
0
‖∇u(t)‖L∞dt ≤ K log∗(B)

and also

1

M

M∑
q=1

∫ T
0
‖∆q∇u(t)‖L∞dt ≤ K

with K depending on T , norms of σ and the initial velocity, but not on
gradients of σ nor M , and B depending on norms of the spatial gradients
of σ.

u =
∞∑

q=−1

∆q(u)



Micro-Macro Effect

σij(x) = −ε
∫
M

(
divgcij + cij · ∇gKf(x,m)

)
f(x,m)dm ∗

Micro-Macro Effect: derived from Energetics

•f = Z−1eKf ⇒ σ = 0

•K = 0, W = (∇xu)m−m((∇xu)m ·m) ⇒ σ = ε
∫
(3n⊗ n− 1)dm



Theorem 7 For the coupled 3DNS + Nonlinear Fokker-Planck system, with
macro-micro effect given in *,

E(t) = 1
2

∫
|u|2dx+

+ε
∫ {
f log f − 1

2(Kf)f
}
dxdm.

is nondecreasing on solutions: If (u, f) is a smooth solution then

dE
dt = −ν

∫
|∇xu|2dx−

− ε
τ

∫ ∫
M
f |∇g (log f −Kf)|2 dmdx.

If the smooth solution is time independent, then u = 0 and f solves the
Onsager equation

f = Z−1eKf .



Time dependent Stokes and Nonlinear Fokker-Planck in 3D

∂tf + u · ∇xf + divg(Wf) + 1
τ divg(f∇g(Kf)) = ε∆gf

∂tu− ν∆xu+∇xp = divxσ+ F, ∇x · u = 0.

Theorem 8 Assume u0 is divergence-free and belongs to W2,r(T3), r >
3, assume that f0 is positive, normalized, and f0 ∈ L∞(dx; C(M)) ∩
∇xf0 ∈ Lr(dx;H−s(M)), s ≤ d

2 +1. Then the solution exists for all time
and

‖u‖Lp[(0,T );W2,r(dx)] <∞,

‖∇xf‖L∞[(0,T );Lr(dx;H−s(M))] <∞

for any p > 2r
r−3, T > 0 τ ≤ ∞, ε ≥ 0.



Global existence, NSE and Nonlinear Fokker-Planck 2D

Theorem 9 (C-Masmoudi) Let u0 ∈
(
Wα,r ∩ L2

)
(R2) be divergence-

free, and f0 ∈W1,r(H−s(M)), with r > 2, α > 1, s ≤ d
2+1 and f0 ≥ 0,∫

M f0dm ∈ (L1 ∩ L∞)(R2). Then the coupled NS and nonlinear Fokker-
Planck system in 2D has a global solution u ∈ L∞loc(W

1,r) ∩ L2
loc(W

2,r)
and f ∈ L∞loc(W

1,r(H−s)). Moreover, for T > T0 > 0, we have u ∈
L∞((T0, T );W2−0,r).

No a priori bound.

sup
k
λ
α−1

k

∫ t
0 ‖∇xSk−1(u(s))‖L∞ds

k ‖∆k(u)(t)‖Lp

C-Fefferman-Titi-Zarnescu: a priori bounds if f is driven by a time
average of u



Stochastic Lagrangian Representation: Navier-Stokes

Theorem 10 (Iyer) LetW be an n-dimensional Wiener process. Let k ≥ 1
and assume u0 ∈ Ck+1,α is a deterministic divergence-free vector field.
Let (u,X) solve the stochastic system

dX = udt+
√

2νdW,
A = X−1,

u = EP
{(
∇TA

)
(u0 ◦A)

}
Then u solves the deterministic incompressible NSE:

∂tu+ u · ∇u− ν∆u+∇p = 0,

∇ · u = 0

•When ν = 0, all is deterministic, and we recover the Eulerian-Lagrangian
deterministic representation based on the Weber formula.



Remarks

•A = X−1 is the spatial inverse (“back-to-labels”). It exists, and it is as
smooth as X. Both are stochastic.

•Forced NSE
dX = udt+

√
2νdW,

A = X−1

u = EP
{
(∇TA)

[
u0 +

∫ t
0(∇tX)f(Xs, s)ds

]
◦A(t)

}
represents

∂tu+ u · ∇u− ν∆u+∇p = f, ∇ · u = 0.

•Representations for Lans-alpha, Burgers. No direct representation for
Leray regularization.



Local Existence for the Stochastic System, Remarkable Formulae

Theorem 11 Let u0 ∈ Ck+1,α be divergence-free. There exists a T >

0 depending on the norm of u0, but independent of viscosity, so that
a solution (u,X) of the stochastic system exists on [0, T ]. Moreover,
‖u‖Ck+1,α ≤ U for t ∈ [0, T ] with U dependent on the norm of the ini-
tial data and T .

Theorem 12 Let ω = ∇× u, ω0 = ∇× u0. Then

ω = E {((∇X)ω0) ◦A} .

In two dimensions,

ω = E [ω0 ◦A] .



For forced systems in n = 2,3, replace in the formulae above ω0 by

ξt = ω0 +
∫ t
0
(∇Xs)−1g(Xs, s)ds

with g = ∇× f .

•Circulation is conserved.

Let

ũ = P
{
(∇tA)(u0 ◦A)

}
This is a stochastic incompressible velocity, with initial data u0 and

u = Eũ∮
X(γ)

ũ · dr =
∮
γ
u0 · dr.



Stochastic Lagrangian Transport

•The “back-to-labels” process obeys

dAt + [u · ∇A− ν∆A] dt+
√

2ν∇AdW = 0

For any smooth function φ(a, t), v(x, t) = φ(A(x, t), t) obeys

dvt + [u · ∇v − ν∆v] dt+
√

2ν∇vdW = ∂tφ ◦A

•Cancellation, chain rule as if it were a first order PDE, due to the joint
quadratic variation.

•Valid if u is smooth, not necessarily divergence-free.



Stochastically Passive Scalars

dθt + [u · ∇θ − ν∆θ] dt+
√

2ν∇θdW = 0

•θ1, θ2, sps ⇒ θ1θ2sps

•with viscosity, inviscid invariants become stochastically passive



Stochastic Representation for Linear Fokker-Planck coupled with
Navier-Stokes

Let

m = M(a, α, t)

solve

dM = (u(X, t) +G(X,M, t))dt+
√

2κdW

with

M(a, α,0) = α.

Let

(A(x, t), R(x,m, t)) = (X(a, t),M(a, α, t))−1



It exists and a.s. for all t

A(X(a, t), t) = a, R(X(a, t),M(a, α, t)) = α.

Then

f(x,m, t) = f0(A(x, t), R(x,m, t))det (∇mR) (x,m, t)

solves

df + (u · ∇xf + divg(Gf)− κ∆gf − ν∆xf)dt =
−
√

2κ∇gf · dW −
√

2ν∇xf · dW = 0

and so

f = Ef



solves

∂tf + u · ∇xf + divg(Gf) = κ∆gf + ν∆xf.

•ν ≥ 0, κ ≥ 0.

•Modifications needed for manifolds.

Nonlinear Fokker-Planck and hybrid stochastic-deterministic (not closed)
models: open.



Future work

•Traveling and standing waves in physical space, connecting solutions of
Onsager’s equation.

•Onsager equation on moduli spaces of n-gons.

•Hybrid stochastic-deterministic models for interacting corpora coupled to
fluids and their relationship to deterministic models.

•Invariant measures for hybrid stochastic-deterministic models of interact-
ing corpora.

•Partial regularity theory for NLFP-NS systems.


