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Time-harmonic PDEs

Helmholtz and (time-harmonic) Maxwell equations:

−∆u − ω2u = 0 ∇× (∇× E)− ω2E = 0 (ω > 0)

Why are they interesting?

1 Very general, related to any linear wave phenomena:

wave equation:
∂2U

∂t2
−∆U = 0

time-harmonic regime: U (x, t) = ℜ
{
u(x)e−iωt

}



→

Helmholtz

equation;

2 plenty of applications;

3 easy to write. . . but difficult to solve numerically (ω ≫ 1):

oscillating solutions → expensive to approximate;

numerical dispersion / pollution effect.
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Difficulty #1: oscillations

Time-harmonic solutions are inherently oscillatory: a lot of DOFs
needed for any polynomial discretisation!

[Helmholtz BVP, picture by T. Betcke]

Wavenumber ω = 2π/λ is the crucial parameter.



Difficulty #2: pollution effect

Big issue in FEM solution for high wavenumbers: pollution effect
∣∣∣
∣∣∣Galerkin error

∣∣∣
∣∣∣

∣∣∣
∣∣∣best approximation error

∣∣∣
∣∣∣
≥ C ωa a > 0, ω →∞.

It affects every (low order) method in h: [BABUŠKA, SAUTER 2000].

⇓

Oscillating solutions + pollution effect
= standard FEM are too expensive at high frequencies!

Special schemes required, p-version preferred (hp even better).

Z IENKIEWICZ, 2000: “Clearly, we can consider that this problem remains

unsolved and a completely new method of approximation is needed

to deal with the very short-wave solution.”
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Trefftz methods

How to deal with these phenomena?
Trefftz methods are finite element schemes such that test and
trial functions are solutions of Helmholtz/Maxwell equations in
each element K of the mesh Th , e.g.:

Vh ⊂ T (Th) =
{
v ∈ L2(Ω) : −∆v − ω2v = 0 in each K ∈ Th

}
.

Main idea: more accuracy for less DOFs.



Typical Trefftz basis functions for Helmholtz

1 plane waves, x 7→ eiωx·d d ∈ SN−1

2 circular / spherical waves,
3 corner waves, 4 fundamental solutions/multipoles,
5 wavebands, 6 evanescent waves, . . .

1 2 3

4 5 6

(Plots
of real
parts.)



Wave-based methods

How to “match” traces across interelement boundaries?

Plenty of Trefftz schemes for Helmholtz/Maxwell available:

Least squares: method of fundamental solutions (MFS),
wave-based method (WBM);

Lagrange multipliers: discontinuous enrichment (DEM);

Partition of unity method (PUM/PUFEM), non-Trefftz;

Variational theory of complex rays (VTCR);

(Local) Discontinuous Galerkin (DG/LDG):
Ultraweak variational formulation (UWVF).

We are interested in a family of Trefftz-discontinuous Galerkin
(TDG) methods that includes the UWVF of Cessenat–Després.

Focus: p-version.



Outline

TDG method for Helmholtz

TDG method for Maxwell

Approximation theory for plane and spherical waves

Exponential convergence of the hp-TDG
—Work in progress—



Part I

TDG method for the Helmholtz equation



TDG: derivation — I

1 Consider Helmholtz equation with impedance (Robin) b.c.:

−∆u − ω2u = 0 in Ω ⊂ R
N bdd., Lip., N = 2,3

∇u · n+ iωu = g ∈ L2(∂Ω);

2 introduce a mesh Th on Ω;

3 multiply the Helmholtz equation with a test function v and
integrate by parts on a single element K ∈ Th :

∫

K

∇u∇v − ω2uv dV −
∫

∂K

(n · ∇u)v dS = 0;

4 integrate by parts again: ultraweak step

∫

K

−u∆v − ω2uv dV +

∫

∂K

−(n · ∇u)v + u(n · ∇v)dS = 0;
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TDG: derivation — II

5 choose a discrete Trefftz space Vp(K) and replace traces

on ∂K with numerical fluxes ûp and σ̂p:

u → up (discrete solution) in K ,

u → ûp ,
∇u
iω
→ σ̂p on ∂K ;

6 use the Trefftz property: ∀ vp ∈ Vp(K)

∫

K

up(−∆vp − ω2vp)︸ ︷︷ ︸
=0

dV+

∫

∂K

ûp∇vp · ndS −
∫

∂K

iωσ̂p · n vp dS = 0

︸ ︷︷ ︸
TDG eq. on 1 element

.

Two things to set:
discrete space Vp and numerical fluxes ûp, σ̂p.
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TDG: the space Vp

The abstract error analysis works for every discrete Trefftz space!

Possible choice: plane wave space ({dℓ}pℓ=1 ⊂ SN−1)

Vp(Th) =
{
v ∈ L2(Ω) : v|K(x) =

p∑

ℓ=1

αℓe
iω x·dℓ , αℓ ∈ C, ∀ K ∈ Th

}
.

p := number of basis plane waves (DOFs) in each element.



Numerical fluxes

Choose the numerical fluxes as:




σ̂p = 1
iω{{∇hup}} − α [[up]]N

ûp = {{up}} − β 1
iω [[∇hup]]N

on interior faces,





σ̂p =
∇hup

iω − (1 − δ) 1
iω (∇hup + iωup n− gn)

ûp = up − δ 1
iω (∇hup · n+ iωup − g)

on ∂Ω.

{{·}} = averages, [[·]]N = normal jumps on the interfaces.

α, β > 0, δ ∈ (0, 1
2
] parameters at our disposal (in L∞(Fh)).

• Here, p-version: α, β, δ independent of ω,h,p.
• UWVF: α = β = δ = 1

2
.

• hp-version, locally refined mesh: α, β, δ depend on local h,p.



Variational formulation of the TDG

With this fluxes, summing over the elements K ∈ Th , the TDG
method reads: find up ∈ Vp(Th) s.t.

Ah(up, vp) = iω−1

∫

∂Ω

δ g∇hvp · ndS +

∫

∂Ω

(1− δ)g vp dS,

∀ vp ∈ Vp(Th), where (F I
h = interior skeleton)

Ah(u, v) :=

∫

F I
h

{{u}}[[∇hv]]N dS + i ω
−1

∫

F I
h

β [[∇hu]]N [[∇hv]]N dS

−
∫

F I
h

{{∇hu}} · [[v]]N dS + i ω

∫

F I
h

α [[u]]N · [[v]]N dS

+

∫

∂Ω

(1− δ)u∇hv · ndS + i ω
−1

∫

∂Ω

δ∇hu · n∇hv · ndS

−
∫

∂Ω

δ∇hu · n v dS + i ω

∫

∂Ω

(1− δ)u v dS .

up 7→ (Im Ah(up,up))
1
2 is a norm on the Trefftz space ⇒ ∃ !up.
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Unconditional quasi-optimality
On the Trefftz space

T (Th) :=
{
v ∈ L2(Ω): v|K ∈ H2(K), −∆v−ω2v = 0 in each K ∈ Th

}
,

∀ v,w ∈ T (Th) :
Im Ah(v, v) = |||v|||2Fh

|Ah(w, v)| ≤ 2 |||w|||F+

h
|||v|||Fh




⇒

quasi-optimality:

|||u − up|||Fh
≤ 3|||u − vp|||F+

h

∀vp ∈ T (Th).

Using norms |||v|||2Fh
:=ω

−1
∥
∥
∥β

1/2[[∇hv]]N

∥
∥
∥

2

0,F I
h

+ ω
∥
∥
∥α

1/2[[v]]N

∥
∥
∥

2

0,F I
h

+ ω
−1

∥
∥
∥δ

1/2∇hv · n
∥
∥
∥

2

0,∂Ω
+ ω

∥
∥
∥(1− δ)1/2v

∥
∥
∥

2

0,∂Ω
,

|||v|||2
F

+

h

:= |||v|||2Fh
+ ω

∥
∥
∥β

−1/2{{v}}
∥
∥
∥

2

0,F I
h

+ ω
−1

∥
∥
∥α

−1/2{{∇hv}}
∥
∥
∥

2

0,F I
h

+ ω
∥
∥
∥δ

−1/2
v
∥
∥
∥

2

0,∂Ω
.



TDG p-convergence

Monk–Wang duality technique
→ quasi-optimality in L2(Ω)-norm.

Assume for now: best approximation estimates for plane or
circular waves (shown later in this talk).

We obtain (h- and) p-estimates for plane/circular waves (2D):

|||u − up|||Fh
≤C(ωh)ω− 1

2 hk− 1
2

(
log(p)

p

)k− 1
2

‖u‖k+1,ω,Ω ,

ω ‖u − up‖L2(Ω) ≤C(ωh) diam(Ω)hk−1

(
log(p)

p

)k− 1
2

‖u‖k+1,ω,Ω .

Slightly different orders of convergence in p in 3D.
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Numerical tests

Plane wave spaces, ω = 10, h = 1/
√
2, L2-norm of errors:
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Disclaimer: ill-conditioning

TDG has:

unconditional quasi-optimality,

good approximation properties, Great!

but with high frequency problems no free lunch is expected!

Where is the cheat?
All wave-based methods (including TDG / UWVF) are
strongly ill-conditioned.
(And no great preconditioner is available yet.)

Consequence of Trefftz basis; intuitively, think at (equispaced)
plane waves:

Vh(K) = span
{
eiωx·d1 , . . . , eiωx·dp

}
“

ωhK→0−−−−−→ ” span{1},
∥∥eiωx·dℓ+1 − eiωx·dℓ

∥∥ p→∞−−−→ 0.

Ideas: precise balance h vs p, adaptivity on dℓ’s, new basis. . .
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The road map

Helmholtz Maxwell

Formulation of TDG X

TDG ||| · |||Fh
-quasi optimality X

TDG duality argument L2(Ω)

Approximation by GHPs

Approximation by PWs



Part II

TDG method for Maxwell’s equations



The TDG for time-harmonic Maxwell’s equations

Homogeneous Maxwell equations with impedance b.c.:
{

∇× (µ−1∇× E)− ω2ǫE = 0 in Ω,

µ−1(∇× E)× n− iωϑ (n× E)× n = g ∈ L2
T (∂Ω).

(ǫ, µ > 0 (piecewise) constant, assume ≡ 1 in this presentation.)

Derivation of the TDG method similar to the Helmholtz case:

∃ ! Ep discrete solution,

quasi optimality in mesh- and flux-dependent norm,
containing only tangential jumps and traces:

→ no direct control on the divergence.

We obtain error estimates in ||| · |||Fh
, we want them in a

mesh-independent norm (e.g., L2(Ω)).
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The duality argument for Maxwell

Monk–Wang duality does not apply directly, we need:

Helmholtz decomposition;

new wavenumber-explicit stability bounds for the dual BVP:
{
∇× (∇×Φ)− ω2

Φ = w0 ∈ H(div0; Ω) in Ω,

(∇×Φ)× n+ iωϑ(n×Φ)× n = 0 on ∂Ω,

⇒ S ‖∇ ×Φ‖0,Ω + ω ‖Φ‖0,Ω ≤ C ‖w0‖0,Ω , C 6= C(ω),

(using novel Rellich identities for Maxwell, star-shaped Ω);

new regularity result for polyhedral domains (0 < s < 1/2):

R ‖∇ ×Φ‖1/2+s,Ω + ω ‖Φ‖1/2+s,Ω ≤ C (1+ ω) ‖w0‖0,Ω .

We control the error in a mesh-independent norm slightly
weaker than L2(Ω).
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TDG error bounds for Maxwell

Conclusion: quasi-optimality of TDG in two norms

|||E− Ep|||Fh
≤ 3 inf

ξp∈VE
p (Th)

|||E− ξp|||F+

h
,

‖E− Ep‖H(div,Ω)′ := sup
v∈H(div;Ω)

∫
Ω(E− Ep) · vdV

‖v‖H(div;Ω)

≤ C

(
ω− 1

2 + ω− 3
2

h
1
2

+ hs(ω
1
2 + ω− 3

2 )

)
|||E− Ep|||Fh

.

(First one from coercivity, second one from duality.)

Assumptions: constant ǫ and µ, polyhedral star-shaped Ω,
Assumptions: shape-regular and quasi-uniform Th ,
Assumptions: E ∈ H1/2+s(curl; Ω) only (→ no spurious solutions).



The road map

Helmholtz Maxwell

Formulation of TDG X ∼ Helm.

TDG ||| · |||Fh
-quasi optimality X ∼ Helm.

TDG duality argument L2(Ω) H(div,Ω)′

Approximation by GHPs

Approximation by PWs



Part III

Approximation in Trefftz spaces



The best approximation estimates
The analysis of any plane wave Trefftz method requires
best approximation estimates:

−∆u − ω2u = 0 in D ∈ Th , u ∈ Hk+1(D),

diam(D) = h, p ∈ N, d1, . . . ,dp ∈ S
N−1,

inf
~α∈Cp

∥∥∥∥∥u −
p∑

ℓ=1

αℓe
iω dℓ·x

∥∥∥∥∥
H j(D)

≤ C ǫ(h,p) ‖u‖Hk+1(D) ,

with explicit ǫ(h,p)
h→0−−−→
p→∞

0.

Goal: precise estimates on ǫ(h,p)

for plane and circular/spherical waves;

both in h and p (simultaneously);

in 2 and 3 dimensions;

with explicit bounds in the wavenumber ω.
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both in h and p (simultaneously);

in 2 and 3 dimensions;

with explicit bounds in the wavenumber ω.



The Vekua theory in N dimensions

We need an old (1940s) tool from PDE analysis: Vekua theory.

D ⊂ RN star-shaped wrt. 0, ω > 0.
Define two continuous functions:

M1,M2 : D × [0,1] → R

M1(x, t) = −ω|x|
2

√
t
N−2

√
1− t

J1

(
ω|x|

√
1− t

)
,

M2(x, t) = − iω|x|
2

√
t
N−3

√
1− t

J1

(
iω|x|

√

t(1− t)
)
.

The Vekua operators

V1,V2 : C(D)→ C(D),

Vj[φ](x) := φ(x) +

∫ 1

0

Mj(x, t)φ(tx)dt, ∀ x ∈ D, j = 1,2.



4 properties of Vekua operators

1 V2 = (V1)
−1

2 ∆φ = 0 ⇐⇒ (−∆− ω2) V1[φ] = 0

Main idea of Vekua theory:

Harmonic functions
V2←−−−−−−−−−−−−→
V1

Helmholtz solutions

3 Continuity in (ω-weighted) Sobolev norms, explicit in ω

[H j(D),W j,∞(D), j ∈ N]

4 P =
Harmonic
polynomial

⇐⇒ V1[P ] = circular/spherical wave
[
eilψ Jl(ωr)︸ ︷︷ ︸

2D

, Ym
l ( x

|x|
) jl(ω|x|)

︸ ︷︷ ︸
3D

]



Vekua operators & approximation by GHPs

−∆u − ω2u = 0, u ∈ Hk+1(D),

↓ V2

V2[u] is harmonic =⇒ can be approximated
by harmonic polynomials

(harmonic Bramble–Hilbert in h,
Complex analysis in p-2D [Melenk], new result in p-3D),

↓ V1

u can be approximated by GHPs:

generalized
harmonic

polynomials
:= V1

[
harmonic
polynomials

]
= circular/spherical waves.

(Obtained bound applicable to GHP-based Trefftz schemes!)



The approximation of GHPs by plane waves

Link between plane waves and circular/spherical waves:
Jacobi–Anger expansion

2D e
iz cos θ =

∑

l∈Z

i
l
Jl(z) e

ilθ
z ∈ C, θ ∈ R,

3D e
irξ·η

︸ ︷︷ ︸

plane wave

= 4π
∑

l≥0

l∑

m=−l

i
l
jl(r) Yl,m(ξ)
︸ ︷︷ ︸

GHP

Yl,m(η) ξ, η ∈ S
2
, r ≥ 0.

We need the other way round:

GHP ≈ linear combination of plane waves

truncation of J–A expansion,

careful choice of directions (in 3D),

solution of a linear system,

residual estimates,

→ explicit error bound.



The final approximation by plane waves

−∆u − ω2u = 0 Vekua theory,
↓ harmonic appr.: algebraic in h & p,

GHPs
↓ (Jacobi–Anger)−1: algebraic in h,

Plane waves > exponential in p.

Final estimate

inf
α∈Cp

∥∥∥∥∥u −
p∑

ℓ=1

αℓe
iω x·dℓ

∥∥∥∥∥
j,ω,D

≤ C(ωh) hk+1−jq−λ(k+1−j) ‖u‖k+1,ω,D

In 2D: p = 2q + 1, λ(D) explicit, ∀ dℓ.
In 3D: p = (q + 1)2, λ(D) unknown, special dℓ.

If u extends outside D: exponential order in q. (Same for GHPs.)



Approximation by Maxwell plane waves

Basis of Maxwell plane waves:
{
aℓe

iωx·dℓ , aℓ × dℓe
iωx·dℓ

}
ℓ=1,...,(q+1)2

|aℓ| = |dℓ| = 1, dℓ · aℓ = 0.

Spherical waves defined via
vector spherical harmonics.

Ak

dk

A dk kx

Easy proof of approximation bounds by applying Helmholtz
results to potentials.
Suboptimal orders, can be partially improved using Vekua.

Same technique (+ special potential representation) used for
elastic wave equation and Kirchhoff–Love plates (CHARDON).



The road map

Helmholtz Maxwell

Formulation of TDG X ∼ Helm.

TDG ||| · |||Fh
-quasi optimality X ∼ Helm.

TDG duality argument L2(Ω) H(div,Ω)′

Approximation by GHPs X X (p non sharp)

Approximation by PWs X X (non sharp)



Part IV

What about hp-TDG?



What else is needed?

So far we have proved:

unconditional well-posedness and quasi-optimality,

approximation bounds in h and p simultaneously.

What else do we need to obtain exponential convergence of
hp-version of TDG?

(Mental picture: 2D, piecewise analytic domain/data,
geometrically graded mesh, expected error ∼ e−b

√
#DOFs.)

Two annoying subtleties:

(i) one related to approximation → solved!

(ii) one related to TDG flux parameters (α, β, δ) and Fh-norm
→ still causing headache. . .

Moreover: what about analytic extension of Helmholtz solutions
across impedance boundaries?

[This is joint work with Ch. Schwab (ETH Zürich), RH, IP.]
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Fully-explicit approximation — issue (i)

Polynomial FEM: best approximation bounds on K ∈ Th
obtained by scaling to reference element K̂.

Consider Trefftz methods for Laplace eq.: local basis made of
harmonic polynomials is not preserved by affine scaling.

Pq(K̂) −→ Pq(K)
Hq(K̂) −→???

Every element K has “its own” approximation bound.
The bounding constants depend on the shape of K : in
unstructured graded meshes they are not uniformly bounded.

We want “universal bounds” independent of the geometry,
but. . .we get more: fully explicit bounds for curvilinear
non-convex elements.
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Assumption and tools

Assumption: (Very weak!)

D ⊂ R2 s.t. diam(D) = 1, star-shaped wrt Bρ, 0 < ρ < 1/2.

Define:

Dδ := {z ∈ R2,d(z,D) < δ}, ξ :=

{
1 D convex,
2
π arcsin ρ

1−ρ < 1.
Use:

M. Melenk’s ideas;

complex variable,
identification R2 ↔ C,
harmonic↔ holomorphic;

conformal map level sets,
Schwarz–Christoffel;

Hermite interpolant qn ;

lot of “basic” geometry
and trigonometry, nested
polygons, plenty of
pictures. . .

0
ρ

∂PE

D



Explicit approximation estimate

Approximation result
Let n ∈ N, f holomorphic in Dδ, 0 < δ ≤ 1/2,
h := min

{
(ξδ/27)1/ξ/3, ρ/4

}
, ⇒ ∃qn of degree ≤ n s.t.

‖f − qn‖L∞(D) ≤ 7ρ−2 h
− 72

ρ4 (1+ h)−n ‖f ‖L∞(Dδ)
.

Fully explicit bound;

exponential in degree n;

h ≥“conformal distance”(D, ∂Dδ), related to physical dist. δ;

in convex case h = min{δ/27, ρ/4};
extends to harmonic f /qn and derivatives (W j,∞-norm);

easily extended to GHPs and Helmholtz solutions;

⇒ ‖u − uh‖H1(Ω) . e−b
√

#DOFs for Trefftz hp IP-DG (Laplace),
by analytic extension of Laplace solutions (Babuška–Guo).



Summary and open problems

What we have done:

TDG formulation, well-posedness,

h- and p-convergence, duality in L2(Ω)/H(div; Ω)′ norms,

h&p approximation estimates for spherical/plane waves,

new Rellich-type identity and stability estimate for Maxwell,

ideas towards exponential convergence of hp-TDG.

A lot of possible research directions:

non-constant coefficients ω(x), ǫ(x), µ(x),

adaptivity on PW directions,

reaction-diffusion type equations (ω 7→ iω),
time-harmonic elasticity and other PDEs,

more general domains and Rellich-type identities,

improved approximation bounds, new bases,

defeat ill-conditioning, . . .
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Trick: Rellich-type identity for Maxwell
∀ E,H ∈ C1(Br(x)→ C3):

2Re
{(

∇× E− iωH
)
· (E× x) +

(
∇×H+ iωE

)
· (H× x)

}

= 2Re
{

∇·
[

(E · x)E+ (H · x)H
]

− (E · x)(∇ · E)− (H · x)(∇ ·H)
}

−∇·
[

|E|2x+ |H|2x
]

+ |E|2 + |H|2 .

Ω bounded polyhedron, star-shaped wrt. Bγ(0) (i.e., x · n ≥ γ),
E,H ∈ H(curl; Ω) ∩H(div; Ω), E× n, H× n ∈ L2

T (∂Ω):

‖E‖20,Ω + ‖H‖20,Ω ≤
(
diam(Ω)

)2

γ

(

‖ET‖20,∂Ω + ‖HT‖20,∂Ω
)

+ 2

∣
∣
∣
∣
∣
∣

∫

Ω

(E · x)(∇ · E
︸ ︷︷ ︸

=0

) + (H · x)(∇ ·H
︸ ︷︷ ︸

=0

)dV

∣
∣
∣
∣
∣
∣

+ 2

∣
∣
∣
∣
∣
∣

∫

Ω

(
∇× E− iωH
︸ ︷︷ ︸

=0

)
· (E× x) +

(
∇×H+ iωE
︸ ︷︷ ︸

=Maxw. source term

)
· (H× x)dV

∣
∣
∣
∣
∣
∣

.
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Maxwell plane wave approximation

1 E Maxwell ⇒ ∇×E Maxwell ⇒ (∇×E)1,2,3 Helmholtz
∥
∥
∥
∥
∇× E− Helmholtz

vector p.w.

∥
∥
∥
∥
j,ω,D

≤ C(hq−λ)k+1−j ‖∇ × E‖k+1,ω,D .

2 With j ≥ 1, apply ∇× and reduce j (bad!):

∥
∥
∥
∥
∇×∇× E−∇×

[
Helmholtz
vector p.w.

]∥
∥
∥
∥
j−1,ω,D

≤ C(hq−λ)k+1−j ‖∇ × E‖k+1,ω,D .

⇓

3

∥∥∥∥ω2E−Maxwell p.w.
∥∥∥∥
j−1,ω,D

≤ C(hq−λ)k+1−j ‖∇× E‖k+1,ω,D .

Mismatch between Sobolev indices and convergence order:
not sharp!
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