Trefftz-DG methods for the Helmholtz and the Maxwell equations

Andrea Moiola

Department of Mathematics and Statistics, University of Reading

Joint work with R. Hiptmair (ETH Zürich) \& I. Perugia (Università di Pavia)

Time-harmonic PDEs

Helmholtz and (time-harmonic) Maxwell equations:

$$
-\Delta u-\omega^{2} u=0 \quad \nabla \times(\nabla \times \mathbf{E})-\omega^{2} \mathbf{E}=\mathbf{0} \quad(\omega>0)
$$

Time-harmonic PDEs

Helmholtz and (time-harmonic) Maxwell equations:

$$
-\Delta u-\omega^{2} u=0
$$

$$
\nabla \times(\nabla \times \mathbf{E})-\omega^{2} \mathbf{E}=\mathbf{0}
$$

$$
(\omega>0)
$$

Why are they interesting?

1) Very general, related to any linear wave phenomena:
$\left.\begin{array}{ll}\text { wave equation: } & \frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0 \\ \text { time-harmonic regime: } & U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) e^{-i \omega t}\right\}\end{array}\right\} \rightarrow \begin{aligned} & \text { Helmholtz } \\ & \text { equation; }\end{aligned}$
2 plenty of applications;
3 easy to write...

Time-harmonic PDEs

Helmholtz and (time-harmonic) Maxwell equations:

$$
-\Delta u-\omega^{2} u=0
$$

$$
\nabla \times(\nabla \times \mathbf{E})-\omega^{2} \mathbf{E}=\mathbf{0} \quad(\omega>0)
$$

Why are they interesting?
1 Very general, related to any linear wave phenomena:
wave equation:

$$
\left.\begin{array}{l}
\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0 \\
U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) e^{-i \omega t}\right\}
\end{array}\right\} \rightarrow \begin{aligned}
& \text { Helmholtz } \\
& \text { equation; }
\end{aligned}
$$

2 plenty of applications;
(3) easy to write. . . but difficult to solve numerically ($\omega \gg 1$):

- oscillating solutions \rightarrow expensive to approximate;
- numerical dispersion / pollution effect.

Difficulty \#1: oscillations

Time-harmonic solutions are inherently oscillatory: a lot of DOFs needed for any polynomial discretisation!

Wavenumber $\omega=2 \pi / \lambda$ is the crucial parameter.

Difficulty \#2: pollution effect

Big issue in FEM solution for high wavenumbers: pollution effec \dagger

It affects every (low order) method in h : (BABuškA, SAUTER 2000).

Difficulty \#2: pollution effect

Big issue in FEM solution for high wavenumbers: pollution effec \dagger

It affects every (low order) method in h : (BABuškA, SAuter 2000).
\Downarrow
Oscillating solutions + pollution effect $=$ standard FEM are too expensive at high frequencies!

Special schemes required, p-version preferred ($h p$ even better).
ZIenkiewicz, 2000: "Clearly, we can consider that this problem remains unsolved and a completely new method of approximation is needed to deal with the very short-wave solution."

Trefftz methods

How to deal with these phenomena?

Trefftz methods are finite element schemes such that test and trial functions are solutions of Helmholtz/Maxwell equations in each element K of the mesh \mathcal{T}_{h}, e.g.:

$$
V_{h} \subset T\left(\mathcal{T}_{h}\right)=\left\{v \in L^{2}(\Omega):-\Delta v-\omega^{2} v=0 \text { in each } K \in \mathcal{T}_{h}\right\}
$$

Main idea: more accuracy for less DOFs.

Typical Trefftz basis functions for Helmholtz

1 plane waves,

$$
\mathbf{x} \mapsto e^{i \omega \mathbf{x} \cdot \mathbf{d}}
$$

$$
\mathbf{d} \in \mathbb{S}^{N-1}
$$

2 circular / spherical waves,

3 corner waves,
5 wavebands,

(Plots of real parts.)

Wave-based methods

How to "match" traces across interelement boundaries?
Plenty of Trefftz schemes for Helmholtz/Maxwell available:

- Least squares: method of fundamental solutions (MFS), wave-based method (WBM);
- Lagrange multipliers: discontinuous enrichment (DEM);
- Partition of unity method (PUM/PUFEM), non-Trefftz;
- Variational theory of complex rays (VTCR);
- (Local) Discontinuous Galerkin (DG/LDG): Ultraweak variational formulation (UWVF).

We are interested in a family of Trefftz-discontinuous Galerkin (TDG) methods that includes the UWVF of Cessenat-Després.

Focus: p-version.

Outline

- TDG method for Helmholtz
- TDG method for Maxwell
- Approximation theory for plane and spherical waves
- Exponential convergence of the $h p$-TDG
-Work in progress-

Part ${ }^{1}$

TDG method for the Helmholtz equation

TDG: derivation - I

(1) Consider Helmholtz equation with impedance (Robin) b.c.:

$$
\begin{aligned}
-\Delta u-\omega^{2} u=0 & \text { in } \Omega \subset \mathbb{R}^{N} \text { bdd., Lip., } N=2,3 \\
\nabla u \cdot \mathbf{n}+i \omega u=g & \in L^{2}(\partial \Omega) ;
\end{aligned}
$$

TDG: derivation - I

1) Consider Helmholtz equation with impedance (Robin) b.c.:

$$
\begin{aligned}
-\Delta u-\omega^{2} u=0 & \text { in } \Omega \subset \mathbb{R}^{N} \text { bdd., Lip., } N=2,3 \\
\nabla u \cdot \mathbf{n}+i \omega u=g & \in L^{2}(\partial \Omega) ;
\end{aligned}
$$

2 introduce a mesh \mathcal{T}_{h} on Ω;

TDG: derivation — I

1 Consider Helmholtz equation with impedance (Robin) b.c.:

$$
\begin{aligned}
-\Delta u-\omega^{2} u=0 & \text { in } \Omega \subset \mathbb{R}^{N} \text { bdd., Lip., } N=2,3 \\
\nabla u \cdot \mathbf{n}+i \omega u=g & \in L^{2}(\partial \Omega) ;
\end{aligned}
$$

(2) introduce a mesh \mathcal{T}_{h} on Ω;

3 multiply the Helmholtz equation with a test function v and integrate by parts on a single element $K \in \mathcal{T}_{h}$:

$$
\int_{K} \nabla u \nabla \bar{v}-\omega^{2} u \bar{v} \mathrm{~d} V-\int_{\partial K}(\mathbf{n} \cdot \nabla u) \bar{v} \mathrm{~d} S=0
$$

TDG: derivation - I

1 Consider Helmholtz equation with impedance (Robin) b.c.:

$$
\begin{aligned}
-\Delta u-\omega^{2} u=0 & \text { in } \Omega \subset \mathbb{R}^{N} \text { bdd., Lip., } N=2,3 \\
\nabla u \cdot \mathbf{n}+i \omega u=g & \in L^{2}(\partial \Omega) ;
\end{aligned}
$$

(2) introduce a mesh \mathcal{T}_{h} on Ω;

3 multiply the Helmholtz equation with a test function v and integrate by parts on a single element $K \in \mathcal{T}_{h}$:

$$
\int_{K} \nabla u \nabla \bar{v}-\omega^{2} u \bar{v} \mathrm{~d} V-\int_{\partial K}(\mathbf{n} \cdot \nabla u) \bar{v} \mathrm{~d} S=0
$$

4 integrate by parts again: ultraweak step

$$
\int_{K}-u \Delta \bar{v}-\omega^{2} u \bar{v} \mathrm{~d} V+\int_{\partial K}-(\mathbf{n} \cdot \nabla u) \bar{v}+u(\mathbf{n} \cdot \nabla \bar{v}) \mathrm{d} S=0
$$

TDG: derivation — II

5 choose a discrete Trefftz space $V_{p}(K)$ and replace traces on ∂K with numerical fluxes \widehat{u}_{p} and $\widehat{\sigma}_{p}$:

$$
\begin{array}{lll}
u \rightarrow u_{p} & \text { (discrete solution) } & \text { in } K \\
u \rightarrow \widehat{u}_{p}, & \frac{\nabla u}{i \omega} \rightarrow \widehat{\sigma}_{p} & \text { on } \partial K
\end{array}
$$

TDG: derivation - II

5 choose a discrete Trefftz space $V_{p}(K)$ and replace traces on ∂K with numerical fluxes \widehat{u}_{p} and $\widehat{\sigma}_{p}$:

$$
\begin{array}{lll}
u \rightarrow u_{p} & \text { (discrete solution) } & \text { in } K, \\
u \rightarrow \widehat{u}_{p}, \quad \frac{\nabla u}{i \omega} \rightarrow \widehat{\sigma}_{p} & \text { on } \partial K ;
\end{array}
$$

6 use the Trefffz property: $\forall v_{p} \in V_{p}(K)$
$\int_{K} u_{p} \underbrace{\overline{\left(-\Delta v_{p}-\omega^{2} v_{p}\right)}}_{=0} \mathrm{~d} V+\underbrace{\int_{\partial K} \widehat{u}_{p} \overline{\nabla v_{p} \cdot \mathbf{n}} \mathrm{~d} S-\int_{\partial K} i \omega \widehat{\sigma}_{p} \cdot \mathbf{n} \bar{v}_{p} \mathrm{~d} S=0}_{\text {TDG eq. on } 1 \text { element }}$.
Two things to set:
discrete space V_{p} and numerical fluxes $\widehat{u}_{p}, \widehat{\sigma}_{p}$.

TDG: the space V_{p}

The abstract error analysis works for every discrete Trefftz space!

Possible choice: plane wave space

$$
\left(\left\{\mathbf{d}_{\ell}\right\}_{\ell=1}^{p} \subset \mathbb{S}^{N-1}\right)
$$

$$
V_{p}\left(\mathcal{T}_{h}\right)=\left\{v \in L^{2}(\Omega):\left.v\right|_{K}(\mathbf{x})=\sum_{\ell=1}^{p} \alpha_{\ell} e^{i \omega \mathbf{x} \cdot \mathbf{d}_{\ell}}, \alpha_{\ell} \in \mathbb{C}, \forall K \in \mathcal{T}_{h}\right\}
$$

$p:=$ number of basis plane waves (DOFs) in each element.

Numerical fluxes

Choose the numerical fluxes as:

$$
\begin{gather*}
\left\{\begin{array}{c}
\widehat{\boldsymbol{\sigma}}_{p}=\frac{1}{i \omega}\left\{\left\{\nabla_{h} u_{p}\right\}-\alpha \llbracket u_{p} \rrbracket_{N}\right. \\
\widehat{u}_{p}=\left\{\left\{u_{p}\right\}-\beta \frac{1}{i \omega} \llbracket \nabla_{h} u_{p} \rrbracket_{N}\right.
\end{array} \text { on interior faces, },\right. \\
\left\{\begin{array}{l}
\widehat{\sigma}_{p}=\frac{\nabla_{h} u_{p}}{i \omega}-(1-\delta) \frac{1}{i \omega}\left(\nabla_{h} u_{p}+i \omega u_{p} \mathbf{n}-g \mathbf{n}\right) \\
\widehat{u}_{p}=u_{p}-\delta \frac{1}{i \omega}\left(\nabla_{h} u_{p} \cdot \mathbf{n}+i \omega u_{p}-g\right)
\end{array}\right. \text { on }
\end{gather*}
$$

$\{\cdot\}\}=$ averages,$\quad \llbracket \cdot \rrbracket_{N}=$ normal jumps on the interfaces.
$\alpha, \beta>0, \delta \in\left(0, \frac{1}{2}\right]$ parameters at our disposal (in $L^{\infty}\left(\mathcal{F}_{h}\right)$).

- Here, p-version: α, β, δ independent of ω, h, p.
- UWVF: $\alpha=\beta=\delta=\frac{1}{2}$.
- $h p$-version, locally refined mesh: α, β, δ depend on local h, p.

Variational formulation of the TDG

With this fluxes, summing over the elements $K \in \mathcal{T}_{h}$, the TDG method reads: find $u_{p} \in V_{p}\left(\mathcal{T}_{h}\right)$ s.t.

$$
\mathcal{A}_{h}\left(u_{p}, v_{p}\right)=i \omega^{-1} \int_{\partial \Omega} \delta g \overline{\nabla_{h} v_{p} \cdot \mathbf{n}} \mathrm{~d} S+\int_{\partial \Omega}(1-\delta) g \overline{v_{p}} \mathrm{~d} S
$$

$\forall v_{p} \in V_{p}\left(\mathcal{T}_{h}\right)$, where ($\mathcal{F}_{h}^{I}=$ interior skeleton)

$$
\begin{array}{rlrl}
\mathcal{A}_{h}(u, v): & \int_{\mathcal{F}_{h}^{I}}\{u\} \llbracket \overline{\bar{\nabla}_{h} v} \rrbracket_{N} \mathrm{~d} S & & +i \omega^{-1} \int_{\mathcal{F}_{h}^{I}} \beta \llbracket \nabla_{h} u \rrbracket_{N} \llbracket \overline{\nabla_{h} v} \rrbracket_{N} \mathrm{~d} S \\
& -\int_{\mathcal{F}_{h}^{I}}\left\{\nabla_{h} u\right\} \cdot \llbracket \bar{v} \rrbracket_{N} \mathrm{~d} S & & +i \omega \int_{\mathcal{F}_{h}^{I}} \alpha \llbracket u \rrbracket_{N} \cdot \llbracket \bar{v} \rrbracket_{N} \mathrm{~d} S \\
& +\int_{\partial \Omega}(1-\delta) u \overline{\nabla_{h} v \cdot \mathbf{n}} \mathrm{~d} S & +i \omega^{-1} \int_{\partial \Omega} \delta \nabla_{h} u \cdot \mathbf{n} \overline{\nabla_{h} v \cdot \mathbf{n}} \mathrm{~d} S \\
& -\int_{\partial \Omega} \delta \nabla_{h} u \cdot \mathbf{n} \bar{v} \mathrm{~d} S & & +i \omega \int_{\partial \Omega}(1-\delta) u \bar{v} \mathrm{~d} S .
\end{array}
$$

Variational formulation of the TDG

With this fluxes, summing over the elements $K \in \mathcal{T}_{h}$, the TDG method reads: find $u_{p} \in V_{p}\left(\mathcal{T}_{h}\right)$ s.t.

$$
\mathcal{A}_{h}\left(u_{p}, v_{p}\right)=i \omega^{-1} \int_{\partial \Omega} \delta g \overline{\nabla_{h} v_{p} \cdot \mathbf{n}} \mathrm{~d} S+\int_{\partial \Omega}(1-\delta) g \overline{v_{p}} \mathrm{~d} S
$$

$\forall v_{p} \in V_{p}\left(\mathcal{T}_{h}\right)$, where ($\mathcal{F}_{h}^{I}=$ interior skeleton)

$$
\begin{array}{rlrl}
\mathcal{A}_{h}(u, v): & \int_{\mathcal{F}_{h}^{I}}\{u\} \llbracket \overline{\nabla_{h} v} \rrbracket_{N} \mathrm{~d} S & & +\boldsymbol{i} \omega^{-1} \int_{\mathcal{F}_{h}^{I}} \beta \llbracket \nabla_{h} u \rrbracket_{N} \llbracket \overline{\nabla_{h} v} \rrbracket_{N} \mathrm{~d} S \\
& \left.-\int_{\mathcal{F}_{h}^{I}}\left\{\nabla_{h} u\right\}\right\} \cdot \llbracket \bar{v} \rrbracket_{N} \mathrm{~d} S & +i \omega \int_{\mathcal{F}_{h}^{I}} \alpha \llbracket u \rrbracket_{N} \cdot \llbracket \bar{v} \rrbracket_{N} \mathrm{~d} S \\
& +\int_{\partial \Omega}(1-\delta) u \overline{\nabla_{h} v \cdot \mathbf{n}} \mathrm{~d} S & +\boldsymbol{i} \omega^{-1} \int_{\partial \Omega} \delta \nabla_{h} u \cdot \mathbf{n} \overline{\nabla_{h} v \cdot \mathbf{n}} \mathrm{~d} S \\
& -\int_{\partial \Omega} \delta \nabla_{h} u \cdot \mathbf{n} \bar{v} \mathrm{~d} S & +\boldsymbol{i} \omega \int_{\partial \Omega}(1-\delta) u \bar{v} \mathrm{~d} S .
\end{array}
$$

$u_{p} \mapsto\left(\operatorname{Im} \mathcal{A}_{h}\left(u_{p}, u_{p}\right)\right)^{\frac{1}{2}}$ is a norm on the Trefftz space $\Rightarrow \exists!u_{p}$.

Unconditional quasi-optimality

On the Trefftz space

$$
T\left(\mathcal{T}_{h}\right):=\left\{v \in L^{2}(\Omega): v_{\mid K} \in H^{2}(K),-\Delta v-\omega^{2} v=0 \text { in each } K \in \mathcal{T}_{h}\right\}
$$

$$
\left.\begin{array}{c}
\forall v, w \in T\left(\mathcal{T}_{h}\right): \\
\operatorname{Im} \mathcal{A}_{h}(v, v)=\mid\|v\|_{\mathcal{F}_{h}}^{2} \\
\left|\mathcal{A}_{h}(w, v)\right| \leq 2\|w\|_{\mathcal{F}_{h}^{+}}\| \| v \|_{\mathcal{F}_{h}}
\end{array}\right\} \Rightarrow \begin{gathered}
\text { quasi-optimality: } \\
\left\|u-u_{p}\right\|\left\|_{\mathcal{F}_{h}} \leq 3\right\| \mid\left\|u-v_{p}\right\| \|_{\mathcal{F}_{h}^{+}} \\
\forall v_{p} \in T\left(\mathcal{T}_{h}\right) .
\end{gathered}
$$

Using norms $\quad\|v\|_{\mathcal{F}_{h}}^{2}:=\omega^{-1}\left\|\beta^{1 / 2} \llbracket \nabla_{h} v \rrbracket_{N}\right\|_{0, \mathcal{F}_{h}^{I}}^{2}+\omega\left\|\alpha^{1 / 2} \llbracket v \rrbracket_{N}\right\|_{0, \mathcal{F}_{h}^{I}}^{2}$

$$
+\omega^{-1}\left\|\delta^{1 / 2} \nabla_{h} v \cdot \mathbf{n}\right\|_{0, \partial \Omega}^{2}+\omega\left\|(1-\delta)^{1 / 2} v\right\|_{0, \partial \Omega}^{2},
$$

$$
\begin{aligned}
\left\|\|v\|_{\mathcal{F}_{h}^{+}}^{2}:=\right. & \|v\|_{\mathcal{F}_{h}}^{2}+\omega\left\|\beta^{-1 / 2}\{v\}\right\|_{0, \mathcal{F}_{h}^{I}}^{2} \\
& +\omega^{-1}\left\|\alpha^{-1 / 2}\left\{\nabla_{h} v\right\}\right\|_{0, \mathcal{F}_{h}^{I}}^{2}+\omega\left\|\delta^{-1 / 2} v\right\|_{0, \partial \Omega}^{2} .
\end{aligned}
$$

TDG p-convergence

Monk-Wang duality technique \rightarrow quasi-optimality in $L^{2}(\Omega)$-norm.

Assume for now: best approximation estimates for plane or circular waves (shown later in this talk).

TDG p-convergence

Monk-Wang duality technique \rightarrow quasi-optimality in $L^{2}(\Omega)$-norm.

Assume for now: best approximation estimates for plane or circular waves (shown later in this talk).

We obtain (h - and) p-estimates for plane/circular waves (2D):

$$
\begin{gathered}
\left\|u-u_{p}\right\|\left\|_{\mathcal{F}_{h}} \leq C(\omega h) \omega^{-\frac{1}{2}} h^{k-\frac{1}{2}}\left(\frac{\log (p)}{p}\right)^{k-\frac{1}{2}}\right\| u \|_{k+1, \omega, \Omega} \\
\omega\left\|u-u_{p}\right\|_{L^{2}(\Omega)} \leq C(\omega h) \operatorname{diam}(\Omega) h^{k-1}\left(\frac{\log (p)}{p}\right)^{k-\frac{1}{2}}\|u\|_{k+1, \omega, \Omega}
\end{gathered}
$$

Slightly different orders of convergence in p in 3D.

Numerical tests

Plane wave spaces, $\omega=10, h=1 / \sqrt{2}, L^{2}$-norm of errors:

Smooth solution in $C^{\infty}\left(\mathbb{R}^{2}\right)$

$$
u=J_{1}(\omega|x|) \cos \theta
$$

exponential convergence.

Singular solution in $H^{\frac{5}{2}-\epsilon}(\Omega)$

$$
u=J_{\frac{3}{2}}(\omega|x|) \cos \left(\frac{3}{2} \theta\right)
$$

algebraic convergence.

Disclaimer: ill-conditioning

TDG has:

- unconditional quasi-optimality,
- good approximation properties,

Great!

but with high frequency problems no free lunch is expected!
Where is the cheat?

Disclaimer: ill-conditioning

TDG has:

- unconditional quasi-optimality,
- good approximation properties,

Great!

but with high frequency problems no free lunch is expected!
Where is the cheat?
All wave-based methods (including TDG / UWVF) are strongly ill-conditioned.
(And no great preconditioner is available yet.)
Consequence of Trefftz basis; intuitively, think at (equispaced) plane waves:

$$
\begin{gathered}
V_{h}(K)=\operatorname{span}\left\{e^{i \omega \mathbf{x} \cdot \mathbf{d}_{1}}, \ldots, e^{i \omega \mathbf{x} \cdot \mathbf{d}_{p}}\right\} \quad " \xrightarrow{\omega h_{K} \rightarrow 0} " \operatorname{span}\{1\}, \\
\left\|e^{i \omega \mathbf{x} \cdot \mathbf{d}_{\ell+1}}-e^{i \omega \mathbf{x} \cdot \mathbf{d}_{\ell}}\right\| \xrightarrow{p \rightarrow \infty} 0 .
\end{gathered}
$$

Ideas: precise balance h vs p, adaptivity on \mathbf{d}_{ℓ} 's, new basis. . .

The road map

	Helmholtz	Maxwell
Formulation of TDG	\checkmark	
TDG $\|\|\|\cdot\|\|\|_{\mathcal{F}_{h}}$-quasi optimality	\checkmark	
TDG duality argument	$L^{2}(\Omega)$	
Approximation by GHPs		
Approximation by PWs		

Part II

TDG method for Maxwell's equations

The TDG for time-harmonic Maxwell's equations

Homogeneous Maxwell equations with impedance b.c.:

$$
\left\{\begin{array}{rl}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)-\omega^{2} \epsilon \mathbf{E}=\mathbf{0} & \\
\text { in } \Omega, \\
\mu^{-1}(\nabla \times \mathbf{E}) \times \mathbf{n}-i \omega \vartheta(\mathbf{n} \times \mathbf{E}) \times \mathbf{n}=\mathbf{g} &
\end{array} \in L_{T}^{2}(\partial \Omega) .\right.
$$

($\epsilon, \mu>0$ (piecewise) constant, assume $\equiv 1$ in this presentation.)

The TDG for time-harmonic Maxwell's equations

Homogeneous Maxwell equations with impedance b.c.:

$$
\left\{\begin{aligned}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)-\omega^{2} \in \mathbf{E}=\mathbf{0} & & \text { in } \Omega, \\
\mu^{-1}(\nabla \times \mathbf{E}) \times \mathbf{n}-i \omega \vartheta(\mathbf{n} \times \mathbf{E}) \times \mathbf{n}=\mathbf{g} & & \in L_{T}^{2}(\partial \Omega) .
\end{aligned}\right.
$$

($\epsilon, \mu>0$ (piecewise) constant, assume $\equiv 1$ in this presentation.)

Derivation of the TDG method similar to the Helmholtz case:

- $\exists!\mathbf{E}_{p}$ discrete solution,
- quasi optimality in mesh- and flux-dependent norm, containing only tangential jumps and traces:
\rightarrow no direct control on the divergence.
We obtain error estimates in $\mid\|\cdot\| \|_{\mathcal{F}_{h}}$, we want them in a mesh-independent norm (e.g., $L^{2}(\Omega)$).

The duality argument for Maxwell

Monk-Wang duality does not apply directly, we need:

- Helmholtz decomposition;

The duality argument for Maxwell

Monk-Wang duality does not apply directly, we need:

- Helmholtz decomposition;
- new wavenumber-explicit stability bounds for the dual BVP:

$$
\begin{aligned}
& \begin{cases}\nabla \times(\nabla \times \mathbf{\Phi})-\omega^{2} \boldsymbol{\Phi}=\mathbf{w}_{0} \in H\left(\operatorname{div}^{0} ; \Omega\right) & \text { in } \Omega, \\
(\nabla \times \boldsymbol{\Phi}) \times \mathbf{n}+i \omega \vartheta(\mathbf{n} \times \boldsymbol{\Phi}) \times \mathbf{n}=\mathbf{0} & \text { on } \partial \Omega,\end{cases} \\
& \Rightarrow \mathrm{S} \quad\|\nabla \times \boldsymbol{\Phi}\|_{0, \Omega}+\omega\|\boldsymbol{\Phi}\|_{0, \Omega} \leq C\left\|\mathbf{w}_{0}\right\|_{0, \Omega}, \\
& C \neq C(\omega),
\end{aligned}
$$

(using novel Rellich identities for Maxwell, star-shaped Ω);

The duality argument for Maxwell

Monk-Wang duality does not apply directly, we need:

- Helmholtz decomposition;
- new wavenumber-explicit stability bounds for the dual BVP:

$$
\begin{aligned}
& \begin{cases}\nabla \times(\nabla \times \boldsymbol{\Phi})-\omega^{2} \mathbf{\Phi}=\mathbf{w}_{0} \in H\left(\operatorname{div}^{0} ; \Omega\right) & \text { in } \Omega \\
(\nabla \times \boldsymbol{\Phi}) \times \mathbf{n}+i \omega \vartheta(\mathbf{n} \times \boldsymbol{\Phi}) \times \mathbf{n}=\mathbf{0} & \text { on } \partial \Omega\end{cases} \\
\Rightarrow \mathrm{S} \quad\|\nabla \times \boldsymbol{\Phi}\|_{0, \Omega}+\omega\|\boldsymbol{\Phi}\|_{0, \Omega} \leq C\left\|\mathbf{w}_{0}\right\|_{0, \Omega}, & C \neq C(\omega)
\end{aligned}
$$

(using novel Rellich identities for Maxwell, star-shaped Ω);

- new regularity result for polyhedral domains $(0<s<1 / 2)$:

$$
\|\nabla \times \boldsymbol{\Phi}\|_{1 / 2+s, \Omega}+\omega\|\boldsymbol{\Phi}\|_{1 / 2+s, \Omega} \leq C(1+\omega)\left\|\mathbf{w}_{0}\right\|_{0, \Omega} .
$$

We control the error in a mesh-independent norm slightly weaker than $\mathbf{L}^{2}(\Omega)$.

TDG error bounds for Maxwell

Conclusion: quasi-optimality of TDG in two norms

$$
\begin{aligned}
\left\|\mathbf{E}-\mathbf{E}_{p}\right\| \|_{\mathcal{F}_{h}} & \leq 3 \inf _{\boldsymbol{\xi}_{p} \in \mathbf{V}_{\bar{P}}^{E}\left(\mathcal{T}_{h}\right)}\left\|\mathbf{E}-\boldsymbol{\xi}_{p}\right\| \|_{\mathcal{F}_{h}^{+}} \\
\left\|\mathbf{E}-\mathbf{E}_{p}\right\|_{H(\mathrm{div}, \Omega)} & :=\sup _{\mathbf{v} \in H(\operatorname{div} ; \Omega)} \frac{\int_{\Omega}\left(\mathbf{E}-\mathbf{E}_{p}\right) \cdot \overline{\mathbf{v}} \mathrm{d} V}{\|\mathbf{v}\|_{H(\operatorname{div} ; \Omega)}} \\
& \leq C\left(\frac{\omega^{-\frac{1}{2}}+\omega^{-\frac{3}{2}}}{h^{\frac{1}{2}}}+h^{s}\left(\omega^{\frac{1}{2}}+\omega^{-\frac{3}{2}}\right)\right)\left\|\mathbf{E}-\mathbf{E}_{p}\right\| \|_{\mathcal{F}_{h}} .
\end{aligned}
$$

(First one from coercivity, second one from duality.)
Assumptions: constant ϵ and μ, polyhedral star-shaped Ω, shape-regular and quasi-uniform \mathcal{T}_{h}, $\mathbf{E} \in H^{1 / 2+s}$ (curl; Ω) only (\rightarrow no spurious solutions).

The road map

	Helmholtz	Maxwell
Formulation of TDG	\checkmark	\sim Helm.
TDG $\|\|\|\cdot\|\|\|_{\mathcal{F}_{h}}$-quasi optimality	\checkmark	\sim Helm.
TDG duality argument	$L^{2}(\Omega)$	$H(\operatorname{div}, \Omega)^{\prime}$
Approximation by GHPs		
Approximation by PWs		

Part III

Approximation in Trefftz spaces

The best approximation estimates

The analysis of any plane wave Trefftz method requires best approximation estimates:

$$
\begin{gathered}
-\Delta u-\omega^{2} u=0 \quad \text { in } D \in \mathcal{T}_{h}, \quad u \in H^{k+1}(D) \\
\operatorname{diam}(D)=h, \quad p \in \mathbb{N}, \quad \mathbf{d}_{1}, \ldots, \mathbf{d}_{p} \in \mathbb{S}^{N-1} \\
\inf _{\vec{\alpha} \in \mathbb{C}^{p} p}\left\|u-\sum_{\ell=1}^{p} \alpha_{\ell} e^{i \omega \mathbf{d}_{\ell} \cdot \mathbf{x}}\right\|_{H^{j}(D)} \leq C \epsilon(h, p)\|u\|_{H^{k+1}(D)},
\end{gathered}
$$

with explicit $\quad \epsilon(h, p) \xrightarrow[p \rightarrow \infty]{h \rightarrow 0} 0$.

The best approximation estimates

The analysis of any plane wave Trefftz method requires best approximation estimates:

$$
\begin{aligned}
& -\Delta u-\omega^{2} u=0 \quad \text { in } D \in \mathcal{T}_{h}, \quad u \in H^{k+1}(D) \\
& \operatorname{diam}(D)=h, \quad p \in \mathbb{N}, \quad \mathbf{d}_{1}, \ldots, \mathbf{d}_{p} \in \mathbb{S}^{N-1}
\end{aligned}
$$

$$
\inf _{\vec{\alpha} \in \mathbb{C}^{p}}\left\|u-\sum_{\ell=1}^{p} \alpha_{\ell} e^{i \omega \mathbf{d}_{\ell} \cdot \mathbf{x}}\right\|_{H^{j}(D)} \leq C \epsilon(h, p)\|u\|_{H^{k+1}(D)}
$$

with explicit $\quad \epsilon(h, p) \xrightarrow[p \rightarrow \infty]{h \rightarrow 0} 0$.
Goal: precise estimates on $\epsilon(h, p)$

- for plane and circular/spherical waves;
- both in h and p (simultaneously);
- in 2 and 3 dimensions;
- with explicit bounds in the wavenumber ω.

The Vekua theory in N dimensions

We need an old (1940s) tool from PDE analysis: Vekua theory.
$D \subset \mathbb{R}^{N}$ star-shaped wrt. $\mathbf{0}, \omega>0$.
Define two continuous functions:

$$
\begin{gathered}
M_{1}, M_{2}: D \times[0,1] \rightarrow \mathbb{R} \\
M_{1}(\mathbf{x}, t)=-\frac{\omega|\mathbf{x}|}{2} \frac{\sqrt{t}^{N-2}}{\sqrt{1-t}} J_{1}(\omega|\mathbf{x}| \sqrt{1-t}) \\
M_{2}(\mathbf{x}, t)=-\frac{i \omega|\mathbf{x}|}{2} \frac{\sqrt{t}^{N-3}}{\sqrt{1-t}} J_{1}(i \omega|\mathbf{x}| \sqrt{t(1-t)})
\end{gathered}
$$

The Vekua operators

$$
\begin{gathered}
V_{1}, V_{2}: C(D) \rightarrow C(D), \\
V_{j}[\phi](\mathbf{x}):=\phi(\mathbf{x})+\int_{0}^{1} M_{j}(\mathbf{x}, t) \phi(t \mathbf{x}) \mathrm{d} t, \quad \forall \mathbf{x} \in D, j=1,2 .
\end{gathered}
$$

4 properties of Vekua operators

$$
\begin{equation*}
V_{2}=\left(V_{1}\right)^{-1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \phi=0 \quad \Longleftrightarrow \quad\left(-\Delta-\omega^{2}\right) V_{1}[\phi]=0 \tag{2}
\end{equation*}
$$

Main idea of Vekua theory:
Harmonic functions $\frac{V_{2}}{V_{1}}$ Helmholtz solutions

3 Continuity in (ω-weighted) Sobolev norms, explicit in ω

$$
\left(H^{j}(D), W^{j, \infty}(D), j \in \mathbb{N}\right)
$$

(4) $P=\begin{gathered}\text { Harmonic } \\ \text { polynomial }\end{gathered}$
$\Longleftrightarrow \quad V_{1}[P]=$ circular/spherical wave

$$
[\underbrace{e^{i l \psi} J_{l}(\omega r)}_{2 D}, \quad \underbrace{Y_{l}^{m}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) j_{l}(\omega|\mathbf{x}|)}_{3 D}]
$$

Vekua operators \& approximation by GHPs

$$
-\Delta u-\omega^{2} u=0, \quad u \in H^{k+1}(D)
$$

$$
\downarrow V_{2}
$$

$V_{2}[u]$ is harmonic $\Longrightarrow \quad \begin{aligned} & \text { can be approximated } \\ & \text { by harmonic polynomials }\end{aligned}$
(harmonic Bramble-Hilbert in h,
Complex analysis in $p-2 \mathrm{D}$ (Melenk), new result in p-3D),

$$
\downarrow V_{1}
$$

u can be approximated by GHPs:
$\begin{gathered}\text { generalized } \\ \text { harmonic } \\ \text { polynomials }\end{gathered}:=V_{1}\left[\begin{array}{c}\text { harmonic } \\ \text { polynomials }\end{array}\right]=$ circular/spherical waves.
(Obtained bound applicable to GHP-based Trefftz schemes!)

The approximation of GHPs by plane waves

Link between plane waves and circular/spherical waves: Jacobi-Anger expansion

$$
\begin{array}{ll}
e^{i z \cos \theta}=\sum_{l \in \mathbb{Z}} i^{l} J_{l}(\boldsymbol{z}) e^{i l \theta} & \boldsymbol{z} \in \mathbb{C}, \theta \in \mathbb{R}, \\
\underbrace{e^{i r \boldsymbol{\xi} \cdot \boldsymbol{\eta}}}_{\text {plane wave }}=4 \pi \sum_{l \geq 0} \sum_{m=-l}^{l} i^{l} \underbrace{j_{l}(\boldsymbol{r}) Y_{l, m}(\boldsymbol{\xi})}_{G \mathbb{l}} \overline{Y_{l, m}(\boldsymbol{\eta})} & \boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{S}^{2}, r \geq 0 .
\end{array}
$$

3D

We need the other way round:
GHP \approx linear combination of plane waves

- truncation of J-A expansion,
- careful choice of directions (in 3D),
- solution of a linear system,
- residual estimates,
\rightarrow explicit error bound.

The final approximation by plane waves

Plane waves

Vekua theory,
harmonic appr.: algebraic in $h \& p$,
(Jacobi-Anger) ${ }^{-1}$: algebraic in h, $>$ exponential in p.

Final estimate

$$
\inf _{\alpha \in \mathbb{C}^{p}}\left\|u-\sum_{\ell=1}^{p} \alpha_{\ell} e^{i \omega \mathbf{x} \cdot \mathbf{d}_{\ell}}\right\|_{j, \omega, D} \leq C(\omega h) h^{k+1-j} q^{-\lambda(k+1-j)}\|u\|_{k+1, \omega, D}
$$

In 2D: $\quad p=2 q+1, \quad \lambda(D) \quad$ explicit, $\quad \forall \mathbf{d}_{\ell}$.
In 3D: $\quad p=(q+1)^{2}, \quad \lambda(D)$ unknown, special \mathbf{d}_{ℓ}.
If u extends outside D : exponential order in q. (Same for GHPs.)

Approximation by Maxwell plane waves

Basis of Maxwell plane waves:
$\left\{\mathbf{a}_{\ell} e^{i \omega \mathbf{x} \cdot \mathbf{d}_{\ell}}, \quad \mathbf{a}_{\ell} \times \mathbf{d}_{\ell} e^{i \omega \mathbf{x} \cdot \mathbf{d}_{\ell}}\right\}_{\ell=1, \ldots,(q+1)^{2}}$
$\left|\mathbf{a}_{\ell}\right|=\left|\mathbf{d}_{\ell}\right|=1, \mathbf{d}_{\ell} \cdot \mathbf{a}_{\ell}=0$.
Spherical waves defined via vector spherical harmonics.

Easy proof of approximation bounds by applying Helmholtz results to potentials.
Suboptimal orders, can be partially improved using Vekua.
Same technique (+ special potential representation) used for elastic wave equation and Kirchhoff-Love plates (CHARDON).

The road map

	Helmholtz	Maxwell	
Formulation of TDG	\checkmark	\sim Helm.	
TDG $\\|\left.\|\|\cdot\|\|\right\|_{\mathcal{F}_{h}}$-quasi optimality	\checkmark	\sim Helm.	
TDG duality argument	$L^{2}(\Omega)$	$H(\operatorname{div}, \Omega)^{\prime}$	
Approximation by GHPs	\checkmark	$\checkmark(p$ non sharp $)$	
Approximation by PWs	\checkmark	\checkmark (non sharp)	

Part IV

What about $h p$-TDG?

What else is needed?

So far we have proved:

- unconditional well-posedness and quasi-optimality,
- approximation bounds in h and p simultaneously.

What else do we need to obtain exponential convergence of $h p$-version of TDG?
(Mental picture: 2D, piecewise analytic domain/data, geometrically graded mesh, expected error $\sim e^{-b \sqrt{\# D O F s}}$.)

What else is needed?

So far we have proved:

- unconditional well-posedness and quasi-optimality,
- approximation bounds in h and p simultaneously.

What else do we need to obtain exponential convergence of $h p$-version of TDG?
(Mental picture: 2D, piecewise analytic domain/data, geometrically graded mesh, expected error $\sim e^{-b \sqrt{\# D O F s}}$.)

Two annoying subtleties:
(i) one related to approximation \rightarrow solved!
(ii) one related to TDG flux parameters (α, β, δ) and \mathcal{F}_{h}-norm \rightarrow still causing headache...
Moreover: what about analytic extension of Helmholtz solutions across impedance boundaries?
(This is joint work with Ch. Schwab (ETH Zürich), RH, IP.)

Fully-explicit approximation - issue (i)

Polynomial FEM: best approximation bounds on $K \in \mathcal{T}_{h}$ obtained by scaling to reference element \hat{K}.

Consider Trefftz methods for Laplace eq.: local basis made of harmonic polynomials is not preserved by affine scaling.

$$
\begin{aligned}
& \mathbb{P}^{q}(\hat{K}) \longrightarrow \mathbb{P}^{q}(K) \\
& \mathbb{H}^{q}(\hat{K}) \longrightarrow ? ? ?
\end{aligned}
$$

Every element K has "its own" approximation bound. The bounding constants depend on the shape of K : in unstructured graded meshes they are not uniformly bounded.

We want "universal bounds" independent of the geometry, but. ..

Fully-explicit approximation - issue (i)

Polynomial FEM: best approximation bounds on $K \in \mathcal{T}_{h}$ obtained by scaling to reference element \hat{K}.

Consider Trefftz methods for Laplace eq.: local basis made of harmonic polynomials is not preserved by affine scaling.

$$
\begin{aligned}
& \mathbb{P}^{q}(\hat{K}) \longrightarrow \mathbb{P}^{q}(K) \\
& \mathbb{H}^{q}(\hat{K}) \longrightarrow ? ? ?
\end{aligned}
$$

Every element K has "its own" approximation bound. The bounding constants depend on the shape of K : in unstructured graded meshes they are not uniformly bounded.

We want "universal bounds" independent of the geometry, but. . . we get more: fully explicit bounds for curvilinear non-convex elements.

Assumption and tools

Assumption:
(Very weak!)

- $D \subset \mathbb{R}^{2}$ s.t. $\operatorname{diam}(D)=1$, star-shaped wrt $B_{\rho}, 0<\rho<1 / 2$.

Define:

- $D_{\delta}:=\left\{\boldsymbol{z} \in \mathbb{R}^{2}, d(\boldsymbol{z}, D)<\delta\right\}, \quad \xi:=\left\{\begin{array}{l}1 \quad D \text { convex, } \\ \frac{2}{\pi} \arcsin \frac{\rho}{1-\rho}<1 .\end{array}\right.$ Use:
- M. Melenk's ideas;
- complex variable, identification $\mathbb{R}^{2} \leftrightarrow \mathbb{C}$, harmonic \leftrightarrow holomorphic;
- conformal map level sets, Schwarz-Christoffel;
- Hermite interpolant q_{n} i
- lot of "basic" geometry and trigonometry, nested polygons, plenty of
 pictures...

Explicit approximation estimate

Approximation result

Let $n \in \mathbb{N}$, f holomorphic in $D_{\delta}, \quad 0<\delta \leq 1 / 2$, $h:=\min \left\{(\xi \delta / 27)^{1 / \xi} / 3, \rho / 4\right\}, \quad \Rightarrow \quad \exists q_{n}$ of degree $\leq n$ s.t.

$$
\left\|f-q_{n}\right\|_{L^{\infty}(D)} \leq 7 \rho^{-2} h^{-\frac{72}{\rho^{4}}}(1+h)^{-n}\|f\|_{L^{\infty}\left(D_{\delta}\right)} .
$$

- Fully explicit bound;
- exponential in degree n;
- $h \geq$ "conformal distance" $\left(D, \partial D_{\delta}\right)$, related to physical dist. δ;
- in convex case $h=\min \{\delta / 27, \rho / 4\}$;
- extends to harmonic f / q_{n} and derivatives ($W^{j, \infty}$-norm);
- easily extended to GHPs and Helmholtz solutions;
- $\Rightarrow\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \lesssim e^{-b \sqrt{\# D O F s}}$ for Trefftz $h p$ IP-DG (Laplace), by analytic extension of Laplace solutions (Babuška-Guo).

Summary and open problems

What we have done:

- TDG formulation, well-posedness,
- h - and p-convergence, duality in $L^{2}(\Omega) / H(\operatorname{div} ; \Omega)^{\prime}$ norms,
- h\&p approximation estimates for spherical/plane waves,
- new Rellich-type identity and stability estimate for Maxwell,
- ideas towards exponential convergence of $h p$-TDG.

A lot of possible research directions:

> non-constant coefficients $\omega(\mathbf{x}), \epsilon(\mathbf{x}), \mu(\mathbf{x}), ~ \bullet$ adaptivity on PW directions,
reaction-diffusion type equations ($\omega \mapsto i \omega$), time-harmonic elasticity and other PDEs, more general domains and Rellich-type identities, improved approximation bounds, new bases, defeat ill-conditioning, ...

Our bibliography

(Helmholtz)

- R. Hiptmair, A. Moiola, I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version.
SIAM J. Numer. Anal.
- __, Vekua theory for the Helmholtz operator. Z. Angew. Math. Phys.
- __, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys.
- __, Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes. Appl. Numer. Math.
- _ Ch. SchwAB, Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefffz hp-dGFEM. submitted
(Maxwell)
- ___, Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Mod. Meth. Appl. Sci.
- __-, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput.
(Elasticity)
- A. Moiola, Plane wave approximation for linear elasticity problems. Appl. Anal.

Thank you!

Trick: Rellich-type identity for Maxwell

$\forall \mathbf{E}, \mathbf{H} \in C^{1}\left(B_{r}(\mathbf{x}) \rightarrow \mathbb{C}^{3}\right):$

$$
\begin{aligned}
& 2 \operatorname{Re}\{(\nabla \times \mathbf{E}-i \omega \mathbf{H}) \cdot(\overline{\mathbf{E}} \times \mathbf{x})+(\nabla \times \mathbf{H}+i \omega \mathbf{E}) \cdot(\overline{\mathbf{H}} \times \mathbf{x})\} \\
&=2 \operatorname{Re}\{\nabla \cdot[(\mathbf{E} \cdot \mathbf{x}) \overline{\mathbf{E}}+(\mathbf{H} \cdot \mathbf{x}) \overline{\mathbf{H}}]-(\mathbf{E} \cdot \mathbf{x})(\nabla \cdot \overline{\mathbf{E}})-(\mathbf{H} \cdot \mathbf{x})(\nabla \cdot \overline{\mathbf{H}})\} \\
& \quad-\nabla \cdot\left[|\mathbf{E}|^{2} \mathbf{x}+|\mathbf{H}|^{2} \mathbf{x}\right]+|\mathbf{E}|^{2}+|\mathbf{H}|^{2} .
\end{aligned}
$$

Trick: Rellich-type identity for Maxwell

$\forall \mathbf{E}, \mathbf{H} \in C^{1}\left(B_{r}(\mathbf{x}) \rightarrow \mathbb{C}^{3}\right):$

$$
\begin{aligned}
& 2 \operatorname{Re}\{(\nabla \times \mathbf{E}-i \omega \mathbf{H}) \cdot(\overline{\mathbf{E}} \times \mathbf{x})+(\nabla \times \mathbf{H}+i \omega \mathbf{E}) \cdot(\overline{\mathbf{H}} \times \mathbf{x})\} \\
&=2 \operatorname{Re}\{\nabla \cdot[(\mathbf{E} \cdot \mathbf{x}) \overline{\mathbf{E}}+(\mathbf{H} \cdot \mathbf{x}) \overline{\mathbf{H}}]-(\mathbf{E} \cdot \mathbf{x})(\nabla \cdot \overline{\mathbf{E}})-(\mathbf{H} \cdot \mathbf{x})(\nabla \cdot \overline{\mathbf{H}})\} \\
& \quad-\nabla \cdot\left[|\mathbf{E}|^{2} \mathbf{x}+|\mathbf{H}|^{2} \mathbf{x}\right]+|\mathbf{E}|^{2}+|\mathbf{H}|^{2} .
\end{aligned}
$$

Ω bounded polyhedron, star-shaped wrt. $B_{\gamma}(\mathbf{0})$ (i.e., $\mathbf{x} \cdot \mathbf{n} \geq \gamma$), $\mathbf{E}, \mathbf{H} \in H(\operatorname{curl} ; \Omega) \cap H(\operatorname{div} ; \Omega), \quad \mathbf{E} \times \mathbf{n}, \mathbf{H} \times \mathbf{n} \in L_{T}^{2}(\partial \Omega):$

$$
\begin{aligned}
& \|\mathbf{E}\|_{0, \Omega}^{2}+\|\mathbf{H}\|_{0, \Omega}^{2} \leq \frac{(\operatorname{diam}(\Omega))^{2}}{\gamma}\left(\left\|\mathbf{E}_{T}\right\|_{0, \partial \Omega}^{2}+\left\|\mathbf{H}_{T}\right\|_{0, \partial \Omega}^{2}\right) \\
& \quad+2|\int_{\Omega}(\mathbf{E} \cdot \mathbf{x})(\underbrace{\nabla \cdot \overline{\mathbf{E}}}_{=0})+(\mathbf{H} \cdot \mathbf{x})(\underbrace{\nabla \cdot \overline{\mathbf{H}}}_{=0}) \mathrm{d} V| \\
& \quad+2|\int_{\Omega}(\underbrace{\nabla \times \mathbf{E}-i \omega \mathbf{H}}_{=0}) \cdot(\overline{\mathbf{E}} \times \mathbf{x})+(\underbrace{\nabla \times \mathbf{H}+i \omega \mathbf{E}}_{=\text {Maxw. source term }}) \cdot(\overline{\mathbf{H}} \times \mathbf{x}) \mathrm{d} V| .
\end{aligned}
$$

Maxwell plane wave approximation

1 E Maxwell $\Rightarrow \quad \nabla \times \mathbf{E}$ Maxwell $\Rightarrow \quad(\nabla \times \mathbf{E})_{1,2,3}$ Helmholtz

$$
\left\|\nabla \times \mathbf{E}-\begin{array}{c}
\text { Helmholtz }
\end{array}\right\|_{\text {vector p.w. }}^{j, \omega, D}, ~ \leq C\left(h q^{-\lambda}\right)^{k+1-j}\|\nabla \times \mathbf{E}\|_{k+1, \omega, D} .
$$

2 With $j \geq 1$, apply $\nabla \times$ and reduce j (bad!):

$$
\begin{gathered}
\left\|\nabla \times \nabla \times \mathbf{E}-\nabla \times\left[\begin{array}{c}
\text { Helmholtz } \\
\text { vector p.w. }
\end{array}\right]\right\|_{j-1, \omega, D} \leq C\left(h q^{-\lambda}\right)^{k+1-j}\|\nabla \times \mathbf{E}\|_{k+1, \omega, D} . \\
\Downarrow
\end{gathered}
$$

3. $\| \omega^{2} \mathbf{E}$ - Maxwell p.w. $\left\|_{j-1, \omega, D} \leq C\left(h q^{-\lambda}\right)^{k+1-j}\right\| \nabla \times \mathbf{E} \|_{k+1, \omega, D}$.

Mismatch between Sobolev indices and convergence order: not sharp!

