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Robust adaptive variance reduction for normal random vectors. %

Aim

Efficient computation of
E(f(G))
where
o G~ Ny(0,1y)
@ f:R? — Ris such that P(f(G) # 0) > 0 and E(f>(G)) < +oc.

Motivation : If (W;);>o is a Brownian motion and F : C([0,T],R) — R,
then for a suitable discrete approximation F; : R? — R,

E(F(Wi.t < T)) ~E (Fa (Wy ~ Weenr)icua) )

mats)
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Robust adaptive variance reduction for normal random vectors. E

Adaptive variance reduction

@ Forf : R? — R specified, it is possible to develop efficient
variance reduction techniques (control variates, importance
sampling, conditioning, stratified sampling) by a fine analysis of
this function

@ Some banks prefer automatic variance reduction techniques
which do not require such an analysis (too many new financial
products)

@ Adaptive variance reduction : adaptively learn the structure of
f(G) from the successive random drawings (G;);>1 i.i.d.
~ N;(0,1;) performed to approximate E(f(G)) — tune the
variance reduction technique.

@ Robustness — to guarantee that the computation time needed to
achieve a given precision is reduced.
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Robust adaptive variance reduction for normal random vectors. E

Outline of the talk

© Importance Sampling
@ Convergence of the importance sampling parameter
@ Convergence of the RIS estimator
@ Numerical results

© Stratification
@ Adaptive allocation
@ Optimization of the strata
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

Importance samphng

Let p(x) = (2m) %2~ 2 denote the density of NV;(0, I,).
For (X;)i>1 1i.d. ]R”’—valued random vectors with density g(x) such
that

dx a.e., f (x) =0=gq(x

IE;(%’(XQ) dx_/f x)dx = E(f(G)).

=asn— o0, 1371 1q( i) = E(f(G)) as

var (29 - E((%’”)zoc)) E(f(G))
—

>E? (L2 (%)) = ( foa [f ) Ip(0)x)

with lower bound attained for g(x) = E(lfl(é))) and equal to 0 is f has
constant sign.
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

Parametric importance sampling

[x—0)?
2 .

For 6 € R, X; = G + 6 admits the density p(0,x) = (27r)~%/%¢~

P(x) _ e—@.x—i—# )

p(8,x)

B(7(6) =8 (£ B2 ) = (£(G + o)),

@ Whatever the choice of §, only necessitates the simulation of
(Gi)i21 iid. ~ ./\/:1(0,1,1).
@ change of probability measure based on the Esscher transform
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

Variance for parametric importance sampling
We assume that

V0 € R, E(f2(G)e™%C) < +oc. (1)

E (f(G n e)e—%—ez'z) _ E(f(G))

2
= M,(0,f) & IS f(Gi+ 0)e=%-Gi—%" is an a.s. convergent and
asymptotically normal estimator of E(f (G)).

Var(M,(0.f)) Ez(f (G))
where

2 2 2
() & def ( 2(G 0 o—20.G—1¢] ) ( Z(G n 9)6—0.(G+0)+"2'e—9.c—"2'>

— 0(6)=E <f2(G)e‘9'G+gz|2>.
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

Optimization of ¢
Under (1) the function v(f) = < 2(G)e _9'G+92|2> is

@ C* with derivatives obtained by differentiation under the
expectation :

Voo(0) = (0~ GGt ¥ )
Vie(0) =B ((Id +(0-G)(0-G)) 2<c>e'9-6'§-6'2>
> £ (G ) 1

@ strongly convex.
= 310, e R? : v(h,) = inf v(h).
OcR?
Approximate E(f(G)) by M, (6., f)!
Problem : v and therefore 6, unknown.
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Robust adaptive variance reduction for normal random vectors.

leportancc Sampling

Optimization of ¢

© Glasserman Heidelberger Shahabuddin 99 give a large deviations
s 16
argument to choose 6 maximizing log |f(0)| — 5-.
@ only gives an approximation of 6.,
© numerical search of a local maximum requires regularity of f

o Arouna 03,04 characterizes 6, as the unique solution of
2
E ((9 - G) 2(G)e_e'c‘*"zl) = 0 to approximate it by a

Robbins-Monro procedure
@ use of the same samples to estimate 6, and E(f(G)) : Arouna 04
@ estimator of E(f(G)) a.s. convergent and asymptotically normal
with optimal variance v(6,) — E*(f(G)).
@ But need of random truncation techniques to stabilize
o Lemaire and Pages 08 characterize 6, as the unique solution of
E ((20 — G)f*(G — 6)) = 0 to approximate it by a stable
Robbins-Monro procedure
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

Sample average optimization

Under (1), for n large enough f(G;) # 0 for some i € {1,...,n} and the

sample average approximation vn( ) IS fH(Gye G +# of v
@ C* with explicit derivatives :
Vouu(0) = . i(a — GG E
"
V30,(0) = zn:(zd + (0 GO — G) )A(Ge o+
"=

@ strongly convex as soon as 3i < ns.t. f(G;) # 0.
=39, eR? : 0,(6,) = fn .
(6) = in 0u(6)
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

Sample average optimization

The sample approximation 6, is characterized as the unique root of

Voua(0) = 0 & 0 — ZE 15552( e) ;OGG & Voun(0) =0

where u,(0) def 192_|2 +log (Z?:le(Gi)e—e.G,-)‘

S, GGHf2(G)e "
Y fA(Gile G
TGP O S GG
(i fA(Gi)e?4)? -
= 0, can be computed very precisely by 4 iterations of Newton's

algorithm.
Only necessitates a single computation of the payoffs (f(Gi))i<i<n-

Viu,(0) = I; +
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

Robust adaptive Importance Sampling estimator

Joint work with Jérome Lelong.

M0 = § S A 00

@ Use of the same samples to approximate 6, then E(f(G))
@ No independence between the variables

(f (Gi+ en)ee,,.c,egﬁ>

Questions :

1<i<n

@ Convergence of the RIS estimator?
@ Asymptotic normality?
@ Optimal variance v(6,) — E*(f(G))?
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

[ Convergence of the importance sampling parameter

© Importance Sampling
@ Convergence of the importance sampling parameter
@ Convergence of the RIS estimator
@ Numerical results
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

LConvergence of the importance sampling parameter

Parameter reduction

To save computation time, it may be useful to

@ introduce a matrix A € R?? with rank d’ < d,

Q approximate 7, € R minimizing the strictly convex and
continuous function RY 3 7 — (A7) by 7, € RY minimizing the
strictly convex and continuous function R? 5 7 — v, (A7),

@ approximate E(f(G)) by M,,(A,.f)

Sofar,d =dand A = I;.

Example : model driven by I independent Brownian motions on a
time-grid (f1,...,fny) = d =1 x N.

For d’ = I and a good choice of A, only one change of drift parameter
per Brownian motion.
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

LConvergence of the importance sampling parameter

Convergence of the importance sampling parameter

Proposition 1

Q@ Under (1), 7, and v, (ATy) converge a.s. to 7, and v(ATy).

Q If moreover V0 € R, E (f4(G)e ) < +o0, then
Va(m, — ) £ Ny (0, B~1CB~1) where B = A*V3u(Ar,)A and
C = Cov (A*(AT* - G) 2(G)e_AT*'G+|ATz*|2> .

Elements of proof :
a.s. convergence of 7, to 7, : classical result of M-estimators

s d
]E( sup f2(G)e_0'G+ezl> <ez ]E( H eMGk +e_MGk)) < 400
[0]<M k=1

= a.s. v,(0) — v(0) locally unif. (ULLN) = v, (A7,) — v(A7y)
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

|—Convergence of the RIS estimator

© Importance Sampling
@ Convergence of the importance sampling parameter
@ Convergence of the RIS estimator
@ Numerical results
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Robust adaptive variance reduction for normal random vectors.
leportancc Sampling Z@

L Convergence of the RIS estimator

Convergence of the estimator

Theorem 2

Assume that f : R? — R is dx a.e. continuous and such that
IA >0, 3B € [0,2), Vx € R, [f(x)] < rel!’. @)

Then, for any deterministic integer valued sequence (vy,), going to co with
n, M, (Ary,,f) converges a.s. to E(f(G)).

When f is continuous and satisfies (2), by the ULLN, a.s.,
M, (0,f) — E(f(G)) locally unif. = M, (Ar,,,f) — E(f(G)) Hence

[ATu, |
def S e ATvn -Gk — 25 v, £ :
1 et ‘Awk‘;/\ n = Ny(0,1;) a.s.. When f is dx a.e.
22:1 e—Ar,,n .G — —

continuous, iy o f~! 5 N;(0,14) o f~! a.s.. Under (2), we geta.s.
uniform integrability of a sequence of r.v. with laws p,, o f ~1 from the
a.s. convergence of M, (AT,,, e""ﬁ) to E(e‘c‘ﬁ).

Benf’amin Jourdain (project team Mathfi, Université Paris Est, CERMICS)
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

LConvergence of the RIS estimator

Asymptotic normality

Theorem 3

Assume (1), V0 € RY, E (f4(G)e=%C) < 400 and that f admits a
decomposition f = fi + f, with

Q f1a C! function s.t.
VM >0, E (sup|9|<M A1(G + 6)| + sup, g < [VA(G + 9)|) < +oo,

@ 3ae (Va7 +8d —d)/4,1],5€[0,2),A >0,
Wx,y € R, [fo(x) — foly)| < Ak |x —ylo,
Then \/n(My(A,.f) — E(f(G))) 5 M (0,0(Ar.) — E2(f(G)))

Note that —MIZJ;W is increasing with d’, equals 1 for d’ = 1 and
converges to 1 as d’ — oo.
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

|—Ctmvergence of the RIS estimator

Confidence intervals

Corollary 4

Under the assumptions of Theorem 3, if Var(f(G)) > 0, then

Vo= iE e M A ~ EG) £ M 0.1).

Confidence Interval with asymptotic level a for E(f(G)) :

M, (Ary, f) =N (1 %) \/vn(ATn) T ME(Amy )

n
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling

LConvergence of the RIS estimator

Asymptotic normality

Remark 5
© When d' =1, a.s. convergence and asymptotic normality preserved
under addition to f of f| + f; such that
T € R — f| (x + Ar) is nonincreasing
T € R — f1(x + A7) is nondecreasing
o 3A>0, 38 €[0,2), Vx € RY |fi (%) + |f; (¥)] < Xe
@ Assume that for some k € N*, f is CK with some finite moments
assumptions involving its derivative up to the order k.
If (vn)n is a deterministic sequence such that

o Vx e R,

|x[®

A >0, Vn e N*, v, > Anl/k,

then v/i(My(A,,,.f) — E(f(G))) 5 M (0,0(Ar,) — EX(f(G)))

Coflége de France, 18 march 2011
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

L Numerical results

© Importance Sampling
@ Convergence of the importance sampling parameter
@ Convergence of the RIS estimator
@ Numerical results
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &
L Numerical results

Multidimensional Black-Scholes model

dsi = Si(rdt + o'dW!), 1 <i <1
where (W, Wi); = (plij + 1ij)t with p € (— 721, 1).
Fort>u>0,S = Sie” o! (Wi=Wi)+(r— 2 (1) .
Let L denote the lower triangular matrix involved in the Cholesky
decomposition (plix + 1i=j)1<ij<1 = LL*.
Simulation of W = (W!,..., W') on the time-grid
O<ti<bh<...<ty:

W, VhL 0 0 0

W, vVhL Vi —HL 0 0

E = E ". ". "- E G,
Wiy, : R =) 0

Wiy VHL EH —HL ... Vino1 —tn—2L V/in —tn-iL
where G ~ Ny(0,1;) withd =1 x N.
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling Zﬁﬁ

L Numerical results

Basket options
Payoff: (Y1, w'Sh —K)y —d =1

p K Price Price MC Variance MC Price RIS Variance RIS

01 45 7.210 7.216 12.12 7.209 1.04
55 0.561 0.567 1.90 0.559 0.14
02 50 3.298 3.304 13.56 3.296 1.74
05 45 7.662 7.678 422 7.650 5.06
55  1.906 1.879 14.46 1.906 1.25
09 45 8215 8.154 69.47 8.211 7.89
55 2.823 2.823 30.08 2.819 2.58

Table: Basket option in dimensiond = [ = 40 withr = 0.05, T = 1, S =50,
o' =02,0' = Iforalli=1,...,Iand n = 10000.

In comparison with MC, variance divided by 10 and computation
time multiplied by 3 (4.5 CPU seconds instead of 1.5) — time needed

to achieve a given precision d1v1ded by 3.3.
Benfamm Jourdain (project team Mathfi, Université Paris Est, CERMIC:
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Robust adaptive variance reduction for normal random vectors.

leportancc Sampling

L Numerical results

One-dimensional barrier option

Payoff : (ST — K)JerlSde’ St/-ZL where t; = %

@ RIS : optimization of the translation parameter 6 € R?
@ RRIS : optimization of At for 7 € R with

A= (VHh,...,v/ti—ti_1)*. Payoff A-monotonic.

Price MC Var MC Var RIS Price RRIS Var RRIS

L Price

70 11.445 11.472 401.51 34.10 11.454 34.33
80 11.244 11.240 401.04 35.68 11.261 36.11
90 9.689 9.672 383.93 42.54 9.705 45.37

Table: Down and Out Call option with o = 0.2, 7 = 0.05, T = 2, S§ = 100,
K =110 and n = 10 000.

@ Variance similar for RIS and RRIS and divided by a least 7/ MC
@ Computation time multiplied by 2 for RRIS — Time needed to
achieve a given precision divided by 3.5.

Benf’amin Jourdain (project team Mathfi, Université Paris Est, CERMICS)
College de France, 18 march 2011
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Robust adaptive variance reduction for normal random vectors.
L Importance Sampling &

L Numerical results

One-dimensional barrier option

04 — |

| AT

02—

01—

Figure: Normalized distribution of M, (6,,f) (RIS) for the option with L = 80,
n = 10000, 5000 independent runs.
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Robust adaptive variance reduction for normal random vectors.
leportancc Sampling Z@

L Numerical results

Barrier basket option ‘
> > K=

RRIS:d’' = IrA(jfl)IJri,i =/t =t forj=1,...,Nandi=1,...,],
all the other coefficients of A being zero.

K Price PriceMC VarMC VarRIS Price RRIS Var RRIS

45 2371 2.348 22.46 2.58 2.378 2.62
50 1.175 1.178 10.97 0.78 1.179 0.79
55 0.515 0.513 4.72 0.19 0.517 0.19

Table: Down and Out Call option in dimension I = 5 with o = 0.2,
So = (50, 40, 60, 30, 20), L = (40, 30,45,20,10), p =0.3,r = 0.05, T = 2,
w = (0.2,0.2,0.2,0.2,0.2) and n = 100 000.

Variance of RRIS similar to RIS, divided by 10 to 20/MC.
Computation time multiplied by 2.
Time needed to achieve a given precision divided by 5 to 10.
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College de France, 18 march 2011 26/ 44



Robust adaptive variance reduction for normal random vectors.
leportancc Sampling Z@

L Numerical results

Conclusion

@ Fully automatic adaptive importance sampling technique for the
computation of E(f(G)) where f : RY — Rand G ~ Ny(0,1,).

© Theoretical results ensure convergence of the estimator and
asymptotic normality with optimal limiting variance for a large
class of financial payoffs f
@ According to our numerical experiments,
o time needed to achieve a given precision is divided by a factor
between 2 and 10 in comparison with crude Monte Carlo
& only one importance sampling parameter per Stock is enough
¢ asymptotic normality holds for a larger class of payoffs.
Investigation of the class of functions f s.t. 3X > 0, 5 € [0, 2),
Vi : RY — RY, C* and vanishing on B(0, M)‘,

B
[ Felosl <26 o2

Benf’amin Jourdain (project team Mathfi, Université Paris Est, CERMICS)
College de France, 18 march 2011

27 / 44



Robust adaptive variance reduction for normal random vectors.
L Stratification

© Stratification
@ Adaptive allocation
@ Optimization of the strata
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

Stratification
Let (A;)1<i<1 be a partition of R? into I strata s.t. pi def P(G € A))is
positive and known for i € {1,...,I} and efficient simulation

according to £(G|G € A;) is possible.
Example: A; = {x eR:< pu,x >€ [yi_l,yi)} where
—0 =Y <Yy <--- <Y1 <y1=+ooandueRdiss.t. ||M|| =1.

pi = N(yi) — N'(yi—1) where N'(x) = [*__ % \jTyTT and for U ~ U0, 1]
indep of G,

G+ NNV (i) + UN (i) = N(yi-1)) — < 1, G >] u ~ L(G|G € Ay).

Let (G )1<,< 1,1<j be independent random variables with G’

distributed according to L(G|G € A;).

ZIE(f )G € ADP(G € A))= Zp,]E(fGl
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

Stratified estimator of E(f (G))

Standard estimator : =1 f (G/) with (G/)j>1 i.i.d. according to the
law of G — Varlance

Dt (N) = Var(lf] (ZplE(fz (GY) <§PiE(f(Gil)))2)

< PEA(f(G)

1< .
> NIZ:;PNar(f(Gi))-

i

Stratified estimator : S1_, [P MG =L i Zl ' f(G)) where
N=Y"' Niandg = N Varjance :

Z7strat1f N q

i—1 ql N

\ :
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

Variance reduction

Proportional allocation : g = pi.e. N; = Np;. Then

—

pio; 1 - 2
Ustratlf N P # = N Zpigi < Ustandard(N )
1=1 ! i=1

Variance reduction !

Optimal allocation :

1 I 2
Nosratie(N, ) = ZL] (plal> <Z plgl) (Z Piai> = o?
i=1

i=1

pioi
Sipor”
Variance even smaller but the o; are unknown in general.

with the lower bound attained for g/ =
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

[ Adaptive allocation

© Importance Sampling

© Stratification
@ Adaptive allocation
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Robust adaptive variance reduction for normal random vectors.
LStratiﬁcation
L Adaptive allocation [éza

Algorithm : joint work with Pierre Etoré

Let N (resp. Nf-‘) denote the total number of random drawings G]1:
made in all the strata (resp. in stratum i) at the end of step k.

@ Atstep 1, allocate the N L first drawings in the strata
proportionally to the p; and estimate E(f(G})), o7 and g7,
@ At the beginning of step k > 2, allocate the N¥ — N*~! new
random drawings in the strata
» either proportionally to the estimations p;5 '/ >"|_, pi5} " of the
g; available at the end of step k — 1,
o or in order to minimize the estimated variance 5’ i ( (pict=1)? /NF of
the stratified estimator after step k under the constraints
le.:l NF = Nk, NF > Nf.‘_] , Vi — explicit solution.
Then refine the estimations of E(f(G})), 7 and g; using these
new drawings.
Convertion to N/, of the above allocations which belong to R/, by
some rounding procedure preserving the sum.

Benf’amin Jourdain (project team Mathfi, Université Paris Est, CERMICS)
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

L Adaptive allocation

Forced drawings
If 3}0 = 0 whereas o;, > 0, then
@ no drawings are made after step k = 1 in the stratum iy.

Nk Z f ( ) N1 Z f (G] ) does not converges to

(f( =E(f(G )|G€A)whenk—>+oo
@ The stratified estimator Zl 1 N* Z] f (G] ) does not converge to
E(f(G)).
Solution :

@ choose the sequence (Nk)k21 so that N* > N1 4 [ forall k > 2,
@ enforce one drawing in each stratum at each step k,

@ allocate the remaining N* — N¥~! — [ drawings according the
previous procedure.

Then

V1<i<I, Vk>1, |N>k|

\ :
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Robust adaptive variance reduction for normal random vectors.
L Stratification
L Adaptive allocation

Convergence

Theorem 6

Z”’ ch’ ——E(f(Q) | =1.

111]1

If, moreover, o;, > 0 for some ig € {1,...,I} and limy_, , % =0, then

ZPlZfG’ ©) | —£= M (0,02)

k—o0
i=1 l]1

with o? = (Y1, piai)Z the asymptotic variance for the optimal allocation.

c
=+ = (S B A6 - (f(G))) £ Ni(0,1)
— confidence intervals for E(f(G
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L Stratification
[ Optimization of the strata

© Importance Sampling

© Stratification

@ Optimization of the strata
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

LOptimization of the strata

Adaptive optimization of the strata

Joint work with Pierre Etoré, Gersende Fort and Eric Moulines.
Assume that for 1 <i < I, A; = {x € R? :< p,x >€ [y;_1,y;) } where
—c0o =Y <y <--- <Y1 <y1:+ooandueRdiss.t. ||| = 1. The

optimal standard deviation o, = Zle pio; is equal to

Z\/(V(Lyi)— (Lyie)) (W (f2 ) = v(f2,yi1)) = (W(f,y0) — v (f, i)

where V( 7y) = E(g(G)1{<u,G>Sy})’
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Coflége de France, 18 march 2011 37 /44



Robust adaptive variance reduction for normal random vectors.
L Stratification &

LOptimization of the strata

Adaptive optimization of the strata

Lemma 7
Under regularity assumptions

(g y) = n(y)EEG)| < pu, G >=y)
Vur(gy) = —n(y)E(G8(G)| < 1, G >=1y).

where n(y) = \/szﬂe_yz/z is the density of < j1,G >.

E(§(G)| < p.G >=y) =E[g(G] + (y— < pn. G} >))].
This enables
@ to estimate the gradient of o, w.r.t. (y1,...,y-1) and p using the
random drawings Gi: in the strata,

@ to perform a stochastic gradient descent simultaneously with the
adaptive allocation algorithm.
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

LOptimization of the strata

Optimization of the boundaries
Parametrization of the boundaries by a probability density /2 on R
with e.d.f. H(y) = [/
yi=H (4 )1e A; _{xeRd < p,x >€ [H (), H1 (1)},
with H~! the cag pseudo-inverse of H.

Theorem 8

Assume d > 2. If for
FS {1’1,1’1 X ]E(f(G)| <p,G>= ‘)7” X E(fz(G)| <p,G>= )}/

Iz %z(y)dy < +o00, then

lim o.(I) = E <\/Var(f(G)| <u,G >)> .

I—o00

Limit not depending on / = under optimal or adaptive allocation,
the choice of the boundaries of the strata is not important when the
number of strata is large — optlmlze the direction .
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

LOptimization of the strata

Algorithm

For1 <k <k Ny =kx M.
® adaptive allocation in the strata
@ initial stratification direction s
@ Ateachstepk, forg e {1,f,f?}andi€ {1,...,I — 1} compute

n(yi)
N, - N

1

v#’/(gvyi)|#:ltk = -

Nf 1+1
Z 3G+ (yi— < . G, >)me) Z g G1+1 + (i = )
j=N141 j=N 1

where g(x) = xg(x) and deduce an estimator V/H?ﬂu: "

Adapt the direction : py1 = e — YV .02 =,

\
Coflége de France, 18 march 2011 40/ 44



Robust adaptive variance reduction for normal random vectors.
L Stratification &

[ Optimization of the strata

Numerical example : Asian option with final knockout

payoff

d
> S K| 1s<n-
=1 +

® 50=50,r=005T=10=01d=16
@ I = 100 equiprobable strata given by y; = N~ (%)
@ k=200, M = 20000

\ proj ;
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

[ Optimization of the strata

Stratification direction

0.5 T T T T T T T

Figure: Barrier Option when (K, B) = (50, 60) : importance sampling
parameter v. = Ogus
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Robust adaptive variance reduction for normal random vectors.

L Stratification

LOptimization of the strata

Variance
B | alloc MC Adapt Str GHS Hreg e
60 | prop | 1.3393 - 0.4968 1.1466  0.4898
adap | 1.3393 0.1700 - 1.1153  0.2987
80 | prop | 0.70357 - 0.00107 0.00124 0.00126
adap | 0.70357 0.00046 - 0.00055 0.00057

K = 50, Importance sampling with 0gps
Price : 1.38 for B = 60 and 1.92 for B = 80.
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Robust adaptive variance reduction for normal random vectors.
L Stratification &

LOptimization of the strata

Stratification along several directions

@ generalization of all results to the case of stratification along
several orthogonal (= independence) directions.

o the direction p; may be used as the first column of a rotation
matrix applied to G before using Latin Hypercube Sampling

@ With Bernard Lapeyre and Piergiacomo Sabino, we have
developped a procedure enabling stratification of G along
non-orthogonal directions.

\ :
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