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Plan of the talk

Let Q be a bounded smooth subset in RV, If 1 < g < 2, there exists a
maximal solution of

— Au+|Vul?+ Au = f(x) in Q, (1)
which satisfies the boundary condition

u(x) — +oo asx — 9N (i.e. dist(x,00Q) — 0). (2)
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Plan of the talk
Let Q be a bounded smooth subset in RV, If 1 < g < 2, there exists a
maximal solution of

— Au+|Vul?+ Au = f(x) in Q, (1)
which satisfies the boundary condition

u(x) — +oo asx — 9N (i.e. dist(x,00Q) — 0). (2)

We assume f € W1°°(Q) (unless stated) and Q connected.
We discuss:

v

Link with state constraint problems

» Qualitative properties and blow-up profile

» Applications to the ergodic problem with Dirichlet conditions
>

How the blow-up solutions (and their profile) play a role in the large
time behaviour for viscous HJ

ur— Au+ |Vul? =1, =0

U‘BQX(O,T)
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1. Boundary blow-up solutions and state constraint

Let Q be a bounded smooth subset in RN, and f € L. When
1 < g <2, there exists a (unique) solution u of the problem

—Au+|Vul?4+ Au="f(x) in Q
u(x) = +oo as d(x) —
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1. Boundary blow-up solutions and state constraint

Let Q be a bounded smooth subset in RN, and f € L. When
1 < g <2, there exists a (unique) solution u of the problem

—Au+|Vul? 4+ u=1(x) in Q,
u(x) > +oc0 as d(x)—0

u is the maximal solution in Q and arises from a state constraint problem
for the Brownian motion [J-M Lasry-P.L. Lions, Math. Ann. 1989]:
“constrain a Brownian motion in a given domain by controlling its drift”

Given a Brownian motion B; and the SDE

dX; = a(X;)dt + /2 dB;,
Xo=x€ Q,

find an optimal feedback control a € C(2) such that X; does never leave
the domain Q.
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1. Boundary blow-up solutions and state constraint

Let Q be a bounded smooth subset in RN, and f € L. When
1 < g <2, there exists a (unique) solution u of the problem

—Au+|Vul? 4+ u=1(x) in Q,
u(x) > +oc0 as d(x)—0

u is the maximal solution in Q and arises from a state constraint problem
for the Brownian motion [J-M Lasry-P.L. Lions, Math. Ann. 1989]:
“constrain a Brownian motion in a given domain by controlling its drift”

Given a Brownian motion B; and the SDE

dX; = a(X;)dt + /2 dB;,
Xo=x€ Q,

find an optimal feedback control a € C(2) such that X; does never leave

the domain .

NB: This is clearly a singular problem: one has to use unbounded
controls (singular at 9Q).
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Given the cost functional
Soi2) = € [ {F0) + 20 |a00] e e
0

where q' = q%l, one defines the value function

u(x) = inf J(x, a)

ac A

where A={ae C(Q): X; € Q,Vt >0a.s.}.

By Dynamic programming principle one expects u to be the maximal
solution of
—Au+ |VulT4+ Au=1(x) in Q.
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Given the cost functional
Soi2) = € [ {F0) + 20 |a00] e e
0

where q' = q%l, one defines the value function

u(x) = inf J(x, a)

ac A

where A={ae C(Q): X; € Q,Vt >0a.s.}.

By Dynamic programming principle one expects u to be the maximal
solution of
—Au+ |VulT4+ Au=1(x) in Q.

Actually
e if 1< g<2then u(x)— oo on the boundary.

e if g > 2 the maximal solution is bounded (indeed, continuous in Q),
and the situation is very different
(see e.g. [Barles-Da Lio], [Barles], [Capuzzo Dolcetta-Leoni-Porrettal).
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Results from [Lasry-PL. Lions]:

1. (case A > 0) Let 1< g <2. Then the value function u is the
unique solution (in W2 (Q) for every p < oc) of

loc

—Au+|Vul? 4+ du=1(x) in Q,
u(x) — +oo0 as d(x)—0
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Results from [Lasry-PL. Lions]:

1. (case A > 0) Let 1< g <2. Then the value function u is the
unique solution (in W2 (Q) for every p < oc) of

loc

—Au+|Vul? 4+ du=1(x) in Q,
u(x) — +oo0 as d(x)—0

and
a(x) = —q|Vu(x)| ">V u(x)

is the unique optimal control law.
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Results from [Lasry-PL. Lions]:

1. (case A > 0) Let 1< g <2. Then the value function u is the
unique solution (in W2 (Q) for every p < oc) of

loc

—Au+|Vul? 4+ du=1(x) in Q,
u(x) — +oo0 as d(x)—0

and
a(x) = —q|Vu(x)|72Vu(x)
is the unique optimal control law.
They also studied the case A = 0 and the ergodic limit A — 0:
2. (case A = 0) There exists a unique constant ¢y such that the problem

—Au+|VulT4+ ¢ =f(x) inQ,
u(x) > +oc0 as d(x)—0

admits a solution. Moreover the solution u is unique (up to an additive
constant).
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2. Qualitative properties and blow-up profile

The asymptotic of u when x — 9Q was determined in [LL]:

-

u(x) ~ Cud(x)"1  ifl<g<2,

u(x) ~ —log(d(x))  ifq=2,

[d(x) := dist (x, 09Q)]

1

2—gq
where C; = (o=1) 21) qq .

e The blow-up of u is independent on the dimension N (essentially, 1-D
behaviour).

e The blow-up is faster as g — 1 and decreases up to a logarithmic rate
when g = 2.

Remark : u € L! if and only |f 2 1 < 1 which means 3 < qg< 2.
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Recent results also characterize the asymptotics of Vu (and then the
behaviour of the optimal control and the dynamics).

In [Porretta-Véron '06] we prove that

Xirgﬂ d(x)ﬁVU(x) =& v(x)

where v/(x) is the outward normal unit vector on 99, and &; = (g—1)” 7.
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Recent results also characterize the asymptotics of Vu (and then the
behaviour of the optimal control and the dynamics).

In [Porretta-Véron '06] we prove that

Xirgﬂ d(x)ﬁVU(x) =& v(x)

where v/(x) is the outward normal unit vector on 99, and &; = (g—1)” 7.
In particular this implies:

ou Cy and ou Y ou
ov d(X)q—ll or ov)
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Recent results also characterize the asymptotics of Vu (and then the
behaviour of the optimal control and the dynamics).

In [Porretta-Véron '06] we prove that

Xirgﬂ d(x)ﬁVU(x) =& v(x)

where v/(x) is the outward normal unit vector on 99, and &; = (g—1)” 7.
In particular this implies:

@Niqu and %o<?)
1%

ov d(x)7T or

This is the expected scaling from the asymptotics of u: set o = i%‘l’

if 1<g<2, u~Cud(x)™™ — Vur~ —Coad(x)"(@Vd(x)
if g=2, u~ —log(d(x)) — Vu~ —ﬁVd(X)

(note: a+1= ﬁ, Eq = CqO[ and Vd(X) = —V)
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Rmk: The first order asymptotic of Vu is crucial to deal with the
nonlinear term |Vul|? as:

Cq

d(x)

|Vul9 = |Vu|q*2VuVu ~ Vu-v(x) (3)

Next one can use this information to get further qualitative properties.
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Rmk: The first order asymptotic of Vu is crucial to deal with the
nonlinear term |Vul|? as:

Cq

d(x)

|Vul9 = |Vu|q*2VuVu ~ Vu-v(x) (3)

Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ~ Cgd(x)~¢ o=—"7
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Rmk: The first order asymptotic of Vu is crucial to deal with the
nonlinear term |Vul|? as:

(x) 3)

¢
|Vul? = |[Vu|T2VuVuy ~ -2

d(x)
Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ~ Cgd(x)~¢ o=—"7

We set S = C, d(x)~* and we look at the equation for the error term
z = u — S which looks like [using (3)...]

—Az 4z - §8VzVd(x) + O(d* |Vz[?) = f(x) + g(x),
g=AS-S5—|VSJ
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Rmk: The first order asymptotic of Vu is crucial to deal with the
nonlinear term |Vul|? as:

(x) 3)

¢
|Vul? = |[Vu|T2VuVuy ~ -2
d(x)
Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ~ Cgd(x)~¢ o=—"7

We set S = C, d(x)~* and we look at the equation for the error term
z = u — S which looks like [using (3)...]
—Az+ 2= §3V2V(x) + O(d* [V2?) = F(x) + g (x),
g=AS—-S—-|VS9

This equation has a singular but well-oriented transport term. We
estimate |Vz| and get a full description near the boundary:
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Rmk: The first order asymptotic of Vu is crucial to deal with the
nonlinear term |Vul|? as:

|Vul? = |Vu|"2VuVu ~

Cq
X 3
e LR ()
Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ~ Cgd(x)~¢ a=——"
We set S = C, d(x)~* and we look at the equation for the error term
z = u — S which looks like [using (3)...]
—Az+ 2= §3V2V(x) + O(d* [V2?) = F(x) + g (x),
g=AS—-S—-|VS9

This equation has a singular but well-oriented transport term. We
estimate |Vz| and get a full description near the boundary:

e precise behaviour of normal and tangent components

e curvature effects in the optimal control profile
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Theorem (Leonori—Porretta Siam '07)

Being v and T the normal and tangent vectors, we have, as d(x) — 0,
ou ¢
— = q i |:1 =+
W d(x)T

(N-1)
2

K(X) d(x) + o(d(x))} , Vi<g<2,

where X is the projection of x onto 02 and k(X) the mean curvature
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Theorem (Leonori—Porretta Siam '07)

Being v and T the normal and tangent vectors, we have, as d(x) — 0,
ou ¢
— = q i |:1 =+
W d(x)T

(N-1)
2

K(X) d(x) + o(d(x))} , Vi<g<2,

where X is the projection of x onto 02 and k(X) the mean curvature and

ou

EeLOO(Q) if2<qg<2,
ou .
E:O(|Iogd|) lfq:%,

ou 1 .

E: (ﬁ) lf1<q<%
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Theorem (Leonori—Porretta Siam '07)
Being v and T the normal and tangent vectors, we have, as d(x) — 0,

(N-1)
2

W d(x)e

K(X) d(x) + o(d(x))} , Vi<g<2,

where X is the projection of x onto 02 and k(X) the mean curvature and

ou . .

EGL (Q) If%<qS2,
ou .

5. = 9(llogd)) iflg=2"

ou 1 .

E: (ﬁ) lf1<q<%

Key point: Bernstein's type gradient estimates for singular equations
—Az+ Az + H(x,Vz) = F(x) in Q

like our model H(x, Vz) ~ —55VzVd(x) + v d* |Vz]2.
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Corollary (Profile of the optimal control)

Let a(x) = —q|Vu(x)|92Vu(x) be the optimal control for the state
contraint problem.
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Corollary (Profile of the optimal control)

Let a(x) = —q|Vu(x)|92Vu(x) be the optimal control for the state
contraint problem.

As d(x) — 0, we have: forany 1l < q <2

) =~ | gy + 5 K| ¥60 + o)
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Corollary (Profile of the optimal control)

Let a(x) = —q|Vu(x)|92Vu(x) be the optimal control for the state
contraint problem.

As d(x) — 0, we have: forany 1l < q <2

! q'(N—-1)

a(x) = — { dE’X) + K(y)} v(x) + o(1)

where 1) € L*(Q).
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Corollary (Profile of the optimal control)

Let a(x) = —q|Vu(x)|92Vu(x) be the optimal control for the state
contraint problem.

As d(x) — 0, we have: forany 1l < q <2

/ q'(Nfl)

a(x) = — { dE’X) + K(y)} v(x) + o(1)

where 1) € L>°(Q).
Note in particular:
(i) The control tangentially is zero on 0% if g # 2,
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Corollary (Profile of the optimal control)

Let a(x) = —q|Vu(x)|92Vu(x) be the optimal control for the state
contraint problem.

As d(x) — 0, we have: forany 1l < q <2

/ q'(Nfl)

a(x) = — { dE’X) + K(y)} v(x) + o(1)

where 1) € L>°(Q).
Note in particular:
(i) The control tangentially is zero on 0R2 if g # 2, bounded if g = 2.
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Corollary (Profile of the optimal control)

Let a(x) = —q|Vu(x)|92Vu(x) be the optimal control for the state
contraint problem.

As d(x) — 0, we have: forany 1l < q <2

! q'(N—-1)

a(x) = — { dE’X) + m(y)} v(x) + o(1)

where 1) € L>°(Q).
Note in particular:
(i) The control tangentially is zero on 0R2 if g # 2, bounded if g = 2.

(ii) On the hypersurfaces parallel to 992, the control is maximum where
the domain has a maximal mean curvature
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The “constrained dynamics”

Near the boundary, the dynamics looks like

dX: = 3ty + U R()| Vd(Xo)dt + V2 dB,
Xo=x€Q,

The control (i.e. the drift) has to be stronger where the domain is more
curved.
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3. Applications of blow-up sol.
Pbl. Let f € L*°. If g > 1 the Dirichlet problem

—Au+ |Vul? = f(x) in Q
u=0 on 002

may have no solutions (if f is “too negative”).
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3. Applications of blow-up sol.
Pbl. Let f € L*°. If g > 1 the Dirichlet problem
{—Au—l— [Vul? = f(x) in Q
u=20 on 00
may have no solutions (if f is “too negative”).
Classical example when g = 2:

{—Au+ VaP=f) . {—Av = —f(x)(v+1)
=0 =0

g Vi
29 Fele}

If £ < —M\; (first eigenvalue), then there is no solution.
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3. Applications of blow-up sol.
Pbl. Let f € L*°. If g > 1 the Dirichlet problem

—Au+ |Vul? = f(x) in Q
u=0 on 002

may have no solutions (if f is “too negative”).

Classical example when g = 2:

{—Au+ VaP=f) . {—Av = —f(x)(v+1)
=0 =0

g Vi
29 Fele}

If £ < —M\; (first eigenvalue), then there is no solution.

But:
e There is a solution if ||f||« is sufficiently small

e If A > 0, there always exists a solution of
Au—Au+ |[Vul? = f(x) in Q
u=0.

[Kazdan-Kramer, Boccardo-Murat-Puel, Ferone-Murat,

Dall’Aglio-Giachetti-Puel, Sirakov...]



Pbl. For A > 0, consider the solution uy of

Auy — Auy + [Vuy|9 = f(x) in Q
uy=20 on 00

e What happens to the solutions of (4) when A — 0 ?
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Pbl. For A > 0, consider the solution uy of

{)\u,\ — Auy + [Vuy|? = f(x) in Q )

uy=20 on 022

e What happens to the solutions of (4) when A — 0 ?

Pb2. Similar question holds for the asymptotic behaviour as t — 400 of

{ut—Au+|Vu|"— f(x) in Q (5)

u=0 ondQx(0,T), u(0) = wo in Q.

e If the stationary problem has no solution, what happens as t — +00?
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Pbl. For A > 0, consider the solution uy of

{)\u,\ — Auy + [Vuy|? = f(x) in Q )

uy=20 on 022
e What happens to the solutions of (4) when A — 0 ?

Pb2. Similar question holds for the asymptotic behaviour as t — 400 of

{ut—Au+|Vu|"— f(x) in Q (5)

u=0 ondQx(0,T), u(0) = wo in Q.
e If the stationary problem has no solution, what happens as t — +00?

Recall: the stochastic interpretation of (4), (5) suggests

. . u(t
lim Auy = lim Q
A—0 t—oco t
and that this limit be a constant.
[Bensoussan-Frehse, Arisawa-PL Lions, Alvarez-Bardi,

Barles-Souganidis...]
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Recall that if X; is a process satisfying the SDE
dX: = a(X;) + V2dB;, Xo=x€Q,
the sol. uy of (4) can be represented as

irp) =i B { [ [F0X) +laxl ] e

where E, is the expectation conditioned to Xp = x, 7x is the exit time
from Q.
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Recall that if X; is a process satisfying the SDE
dX: = a(X;) + V2dB;, Xo=x€Q,

the sol. uy of (4) can be represented as

irp) =i B { [ [F0X) +laxl ] e

where E, is the expectation conditioned to Xp = x, 7x is the exit time
from Q.

When A — 0, uy remains bounded unless 7, — 0o — state constraint pb.
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Recall that if X; is a process satisfying the SDE
dX: = a(X;) + V2dB;, Xo=x€Q,

the sol. uy of (4) can be represented as

irp) =i B { [ [F0X) +laxl ] e

where E, is the expectation conditioned to Xp = x, 7x is the exit time
from Q.

When A — 0, uy remains bounded unless 7, — 0o — state constraint pb.

Indeed, if f is very negative inside, the control will try to push the
process in the interior to realize the minimum: this can lead to the state
constraint problem and the so-called ergodic behaviour:

o0 1 T
. — )\t _ . -
J\IE]O)\ /0 f(Xe)e dt = Tlinoo T/o f(Xe)dt Vx eQ
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So the explanations come from the interpretation in terms of stochastic
control problems. Indeed we will see:

» The existence of a stationary solution depends on the ergodic
constant for state constraint problems

» The behaviour of uy and of u(t) is described by boundary blow-up
solutions

» The profile of boundary blow-up solutions determines the rate of
convergence for the large time behaviour (new rates induced by
boundary conditions)

NB: This is the same for any Dirichlet type condition u =
with g continuous.

g\anx(o,n
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant ¢y such that the problem

—Av +|Vv|9 4+ ¢ = f(x) in Q,
IirgQ v(x) = 400,

admits a solution, and v is unique up to an additive constant.
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant ¢y such that the problem

—Av +|Vv|9 4+ ¢ = f(x) in Q,
IirgQ v(x) = 400,

admits a solution, and v is unique up to an additive constant.

Crucial point:  There exists a solution of the Dirichlet problem

—Ab+ |Vi|? = f(x) in Q
=0 on 09,

if and only if ¢g > 0.
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant ¢y such that the problem

—Av +|Vv|9 4+ ¢ = f(x) in Q,
IirgQ v(x) = 400,

admits a solution, and v is unique up to an additive constant.

Crucial point:  There exists a solution of the Dirichlet problem

{—Aﬁ+ IVal9=f(x) in Q ©)

=0 on 09,

if and only if ¢g > 0.

e The reason is simple: ¢g > 0 gives the existence of subsolutions to (6).
(recall PL Lions [Arma '80]: if 3 a subsolution = 3 a solution)
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant ¢y such that the problem

—Av +|Vv|9 4+ ¢ = f(x) in Q,
IirgQ v(x) = 400,

admits a solution, and v is unique up to an additive constant.

Crucial point:  There exists a solution of the Dirichlet problem

{—Aﬁ+ IVal9=f(x) in Q ©)

=0 on 09,

if and only if ¢g > 0.

e The reason is simple: ¢g > 0 gives the existence of subsolutions to (6).
(recall PL Lions [Arma '80]: if 3 a subsolution = 3 a solution)

e When g = 2 we have ¢g = A\;(—A + f) and this is consistent with
[Kazdan-Kramer] (eigenvalues are particular cases of ergodic constants !)
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So, the behaviour of uy sol. of

Auy — Auy + [Vuy|? = f(x) in Q
uy = 0

depends on the value of ergodic constant ¢.

Easy case: ¢g > 0 <= there exists a solution of the limit problem

—AD+ |Vl = f(x) in Q
=0 onoQ

then ||uy||oo is bounded, and standard arguments give uy — 0.
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So, the behaviour of uy sol. of

Auy — Auy + [Vuy|? = f(x) in Q
uy = 0

depends on the value of ergodic constant ¢.

Easy case: ¢g > 0 <= there exists a solution of the limit problem

—AD+ |Vl = f(x) in Q
=0 onoQ

then ||uy||oo is bounded, and standard arguments give uy — 0.

Interesting case: ¢y < 0. Then we have

uy — —00 (complete blow-up)
A uy — Q

(and rescaling uy we obtain the sol. v of the ergodic problem)
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Theorem
Let 1< q<2 andf e L>®. Letuy be sol. of (4).

(i) If co > 0 (hence there exists a sol. & with A = 0), then uy — @
uniformly as A — 0.
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Theorem
Let 1< q<2 andf e L>®. Letuy be sol. of (4).

(i) If co > 0 (hence there exists a sol. & with A = 0), then uy — @
uniformly as A — 0.

(i) Ifcp <0, then

uy — —0o0 for every x € Q,
Aun(x) — co for every x € Q,

and
vy = ux + ||urlloo — vo  locally uniformly,

where ¢y is the unique constant such that

{—Av+|Vv|q+co— f(x) in Q,

li =
iy V= Heo,

admits a solution, and vy is the unique solution such that
min vo(x) = 0.
in vo(x)
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Proof of this result relies on two fundamental points:

» Interior gradient estimates (Bernstein's technique):
|[Vuy| is (locally) uniformly bounded.

— hence A uy must converge to a constant

» Uniqueness of the ergodic constant ¢y and of vy (strong max.
principle) imply convergence for the whole sequence.
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Proof of this result relies on two fundamental points:

» Interior gradient estimates (Bernstein's technique):
|[Vuy| is (locally) uniformly bounded.

— hence A uy must converge to a constant

» Uniqueness of the ergodic constant ¢y and of vy (strong max.
principle) imply convergence for the whole sequence.

NB: One can prove that uy(x) — ux(x0) — v — v(xo) for any point xp.

The fact that the same convergence holds for uy + ||uy||oc gives an idea
of the barrier effect:

ux + ||ux]|co is locally uniformly bounded, i.e. maximum points of |uy|
remain sufficiently far from boundary (“the blow-up comes from the
interior” )
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

us — Au+ |Vul9 = f(x) in Q,
u=0 ondQx(0,T), u(0) = up .
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

us — Au+ |Vul9 = f(x) in Q,
u=0 ondQx(0,T), u(0) = up .

o0

(i) If cg > 0 (<= there exists a stationary sol. &), then u(t) “=5° 0.

(i) If @ <0, then u(t) — —o0 and
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

us — Au+ |Vul9 = f(x) in Q,
u=0 ondQx(0,T), u(0) = up .

o0

(i) If cg > 0 (<= there exists a stationary sol. &), then u(t) “=5° 0.
(i) If ¢ <0, then u(t) — —oo and

t
lim M = Q
t—oo t

Rmk: the typical result (e.g. periodic case) is that

u(t) — cot is bounded — rate of convergence: |Ltt) —cl=0(3)
u(t) — cot — v where v is a sol. of the ergodic problem

[Barles-Souganidis, Namah-Roquejoffre, . ]
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

us — Au+ |Vul9 = f(x) in Q,
u=0 ondQx(0,T), u(0) = up .

o0

(i) If cg > 0 (<= there exists a stationary sol. &), then u(t) “=5° 0.

(i) If @ <0, then u(t) — —o0 and

t
lim M = Q
t—oo t

Rmk: the typical result (e.g. periodic case) is that
u(t) — cot is bounded — rate of convergence: |Ltt) —cl=0(3)
u(t) — cot — v where v is a sol. of the ergodic problem

[Barles-Souganidis, Namah-Roquejoffre, . ]

e This is also true when g > 2 (Tabet Tchamba).



In the range 1 < g < 2 we have a different behaviour.
» u— ¢yt is bounded when ¢y < 0 and % <qg<?2
> ifco<0and1<q§%,orifco:0,then

u— cpt  may be unbounded

and it may happen that v — ¢t — —o0
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In the range 1 < g < 2 we have a different behaviour.
» u— ¢yt is bounded when ¢y < 0 and % <qg<?2
> ifco<0and1<q§%,orifco:0,then
u— cpt  may be unbounded
and it may happen that v — ¢t — —o0
The reason for this new situation is that
» the blow-up rate is influenced by the profile of blow-up solutions

» when ¢y = 0 the blow-up rate becomes slower in any case
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Blow-up rate

We prove indeed the following rate of convergence:

e Case ¢p < 0:

u—ct = 0(1) when 2 < g<2.
u— cot = O(log t) when g = 2
u—cot:O(tziz:) when 1 < g < 3
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Blow-up rate

We prove indeed the following rate of convergence:

e Case ¢p < 0:

u—ct = 0(1) when 2 < g<2.

u— cot = O(log t) when g = 2

u—cot:O(tziz:) when 1 < g < 3
e Case ¢y = 0:

u— cot = O(log t) when g =2

u—cot = O(t>79) when 1 < g <2
NB: The following bounds are locally uniformly.
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Of course this gives the rate of convergence of @:

e Case ¢ <0

{0 ¢ =0(2) if3<q<2

4 _cy=o(e8t) ifq=3

”(tt)—c0—0< 11> ifl<g<3
t2—4q

e Case ¢ =0

u(t 1
¥—CO—O(F> forany 1< g<2
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Idea of the proof: compare u — ¢yt with a suitable translation of a
blow-up sol. v of the ergodic problem

—Av + |Vv|74 ¢ = f(x) in Q,

lim v(x) = +oo
x—09Q (x) ’
Indeed, set &I = u — cpt, it solves the equation

Uy — AL+ |Vl =f — g
Yisox@ry = —Gt

and one expects u — ¢pt =~ v(x) + .... (error terms).
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Idea of the proof: compare u — ¢yt with a suitable translation of a
blow-up sol. v of the ergodic problem

—Av +|Vv|7+ g = f(x) in Q,

lim v(x) = +oo
x—09Q (x) ’
Indeed, set &I = u — cpt, it solves the equation

by — AU+ |Vi|9=f —q
alaQX(U,T) =0t

and one expects u — ¢pt =~ v(x) + .... (error terms).

NB: The bound from above is trivial: v — ¢t < v + || tp|| co-
The problem is the bound from below since v — —oc.

Idea: construct a subsolution using the graph v(x) as a propagating front.
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Example of our construction: if £ is star-shaped we take

2—gq

V(x,t) = r(t)7tv(r(t)x)

with r(t) <1, r(t)T1last— oo
This corresponds to a translation of the profile:
(i) ¥ is defined on % o0
(ii) The graph of v moves with velocity 1 — r(t)
(iii) The velocity r(t) is chosen in a way that ¥ is comparable to u — ¢yt
on the boundary: r(t)% v(r(t)x) ~ —cot on 9 x (0, t)
(recall ¢ < 0)

This will fix the velocity r(t)..... 1—r(t)~ 1)
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-c 0t Vo)

[1-r(®)]
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Computing the equation for V(x, t) = r(t) 1 v(r(t)x) we find

Ve — AV + VP9 = r(t) T3 (F — o) + £ (1)....
=f—co—(1—r@®))(f-a)+ r(t)..
negligeable
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Computing the equation for V(x, t) = r(t) 1 v(r(t)x) we find

Ve — AV + VP9 = r(t) T3 (F — o) + £ (1)....
=f—co—(1—r@t)(f—c)+ r(t)..
N—_———

negligeable

hence
i —AV+|VV|T=f —c—(1—r(t)(f — )

Since I = u — ¢yt satisfies
Uy — AU+ |Vilf=f—c

the correction term is H(t) = ||f — co|| [, (1 — r(s))ds:
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Computing the equation for V(x, t) = r(t) 1 v(r(t)x) we find
Ve — AV + VP9 = r(t) T3 (F — o) + £ (1)....
=f—c—(1—r(t))(f—co)+ r'(t)...
~——
negligeable

hence
i —AV+|VV|T=f —c—(1—r(t)(f — )

Since I = u — ¢yt satisfies
Uy — AU+ |Vilf=f—c

the correction term is H(t) = ||f — co|| [, (1 — r(s))ds:
General bound:

¥ — H(t) s a subsolution = u — cot > ¥ — H(t)
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Computing the equation for V(x, t) = r(t) 1 v(r(t)x) we find
Ve — AV + VP9 = r(t) T3 (F — o) + £ (1)....
=f—c—(1—r(t))(f—co)+ r'(t)...
negligeable

hence
i —AV+|VV|T=f —c—(1—r(t)(f — )

Since I = u — ¢yt satisfies
Uy — AU+ |Vilf=f—c

the correction term is H(t) = ||f — co|| [, (1 — r(s))ds:
General bound:

¥ — H(t) s a subsolution = u — cot > ¥ — H(t)
Optimality of the bound: if f — ¢y < —§ < 0, then also
v —d H(t) is a supersolution = u — ot < 7 — § H(t)

which gives us the optimality of the convergence rate.
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The velocity 1 — r(t) is fixed by the boundary rate:
on 9Q x (0, T), V(x,t) ~ u— gt =—cpt
Recall at the boundary ¥ ~ d(x)~* ~ (1 — r(t))~®. This gives

(1—r(t) ™ =~ —cot
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The velocity 1 — r(t) is fixed by the boundary rate:
on 9Q x (0, T), V(x,t) ~ u— gt =—cpt
Recall at the boundary ¥ ~ d(x)~* ~ (1 — r(t))~®. This gives
(1—r(t) ™ =~ —cot

and since

U= ot > U(x, t) — H(t), H:A(Lﬂﬁ”ﬁ

we get
u— ot = v(r(t)x) — O(t~ =)
Rmk: u — ¢ot is locally uniformly bounded only if 1 — % <0ie a<l
(this means g > % and corresponds to the case v € L1
H(t) is the integral of 1 — r(t) = area below the graph of v).
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The velocity 1 — r(t) is fixed by the boundary rate:
on 9Q x (0, T), V(x,t) ~ u— gt =—cpt
Recall at the boundary ¥ ~ d(x)~* ~ (1 — r(t))~®. This gives
(1—r(t) ™ =~ —cot

and since

U= ot > U(x, t) — H(t), H:A(Lﬂﬁ”ﬁ

we get
u— ot = v(r(t)x) — O(t~ =)
Rmk: u — ¢ot is locally uniformly bounded only if 1 — % <0ie a<l
(this means g > % and corresponds to the case v € L1
H(t) is the integral of 1 — r(t) = area below the graph of v).
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Things to be done, work in progress...

» Inhomogeneous diffusions

dX; = a(X;)dt + 2 0(X;)dB;,
Xo=x€Q,

with associated HJB equation
—tr (A(x)D?u) + Au + |Vu|? = f(x)

where A(x) = a(x)o T (x).
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Things to be done, work in progress...
» Inhomogeneous diffusions

dX; = a(X;)dt + 2 0(X;)dB;,
Xo=x€Q,

with associated HJB equation
—tr (A(x)D?u) + Au + |Vu|? = f(x)

where A(x) = a(x)o T (x).

If A(x) elliptic and smooth, one can use the same approach
replacing the distance function d(x) with the solution of the first
order equation

A(x)VpVp=~[Vpl?  inQ
p>0,
p=0 on 0.
» general diffusions, possibly non smooth and/or possibly degenerate ?

» singular domains (link with Wiener criteria for the Brownian
motion)?
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