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Plan of the talk
Let Ω be a bounded smooth subset in R

N . If 1 < q ≤ 2, there exists a
maximal solution of

− ∆u + |∇u|q + λu = f (x) in Ω , (1)

which satisfies the boundary condition

u(x) → +∞ as x → ∂Ω (i.e. dist(x , ∂Ω) → 0) . (2)
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Plan of the talk
Let Ω be a bounded smooth subset in R

N . If 1 < q ≤ 2, there exists a
maximal solution of

− ∆u + |∇u|q + λu = f (x) in Ω , (1)

which satisfies the boundary condition

u(x) → +∞ as x → ∂Ω (i.e. dist(x , ∂Ω) → 0) . (2)

We assume f ∈ W 1,∞(Ω) (unless stated) and Ω connected.
We discuss:

◮ Link with state constraint problems

◮ Qualitative properties and blow-up profile

◮ Applications to the ergodic problem with Dirichlet conditions

◮ How the blow-up solutions (and their profile) play a role in the large
time behaviour for viscous HJ

ut − ∆u + |∇u|q = f , u|∂Ω×(0,T )
= 0
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1. Boundary blow-up solutions and state constraint

Let Ω be a bounded smooth subset in R
N , and f ∈ L∞. When

1 < q ≤ 2, there exists a (unique) solution u of the problem

{
−∆u + |∇u|q + λu = f (x) in Ω ,

u(x) → +∞ as d(x) → 0
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1. Boundary blow-up solutions and state constraint

Let Ω be a bounded smooth subset in R
N , and f ∈ L∞. When

1 < q ≤ 2, there exists a (unique) solution u of the problem

{
−∆u + |∇u|q + λu = f (x) in Ω ,

u(x) → +∞ as d(x) → 0

u is the maximal solution in Ω and arises from a state constraint problem
for the Brownian motion [J-M Lasry-P.L. Lions, Math. Ann. 1989]:
“constrain a Brownian motion in a given domain by controlling its drift”

Given a Brownian motion Bt and the SDE

{

dXt = a(Xt)dt +
√

2 dBt ,

X0 = x ∈ Ω ,

find an optimal feedback control a ∈ C (Ω) such that Xt does never leave
the domain Ω.
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1. Boundary blow-up solutions and state constraint

Let Ω be a bounded smooth subset in R
N , and f ∈ L∞. When

1 < q ≤ 2, there exists a (unique) solution u of the problem

{
−∆u + |∇u|q + λu = f (x) in Ω ,

u(x) → +∞ as d(x) → 0

u is the maximal solution in Ω and arises from a state constraint problem
for the Brownian motion [J-M Lasry-P.L. Lions, Math. Ann. 1989]:
“constrain a Brownian motion in a given domain by controlling its drift”

Given a Brownian motion Bt and the SDE

{

dXt = a(Xt)dt +
√

2 dBt ,

X0 = x ∈ Ω ,

find an optimal feedback control a ∈ C (Ω) such that Xt does never leave
the domain Ω.

NB: This is clearly a singular problem: one has to use unbounded
controls (singular at ∂Ω).
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Given the cost functional

J(x , a) = E

∫ ∞

0

{

f (Xt) + γq |a(Xt)|q
′
}

e−λ tdt

where q′ = q

q−1 , one defines the value function

u(x) = inf
a∈A

J(x , a)

where A = {a ∈ C (Ω) : Xt ∈ Ω , ∀t > 0 a.s.}.
By Dynamic programming principle one expects u to be the maximal
solution of

−∆u + |∇u|q + λu = f (x) in Ω.
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Given the cost functional

J(x , a) = E

∫ ∞

0

{

f (Xt) + γq |a(Xt)|q
′
}

e−λ tdt

where q′ = q

q−1 , one defines the value function

u(x) = inf
a∈A

J(x , a)

where A = {a ∈ C (Ω) : Xt ∈ Ω , ∀t > 0 a.s.}.
By Dynamic programming principle one expects u to be the maximal
solution of

−∆u + |∇u|q + λu = f (x) in Ω.

Actually
• if 1 < q ≤ 2 then u(x) → ∞ on the boundary.

• if q > 2 the maximal solution is bounded (indeed, continuous in Ω),
and the situation is very different
(see e.g. [Barles-Da Lio], [Barles], [Capuzzo Dolcetta-Leoni-Porretta]).
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Results from [Lasry-PL. Lions]:

1. (case λ > 0) Let 1 < q ≤ 2. Then the value function u is the
unique solution (in W 2,p

loc
(Ω) for every p <∞) of

{
−∆u + |∇u|q + λu = f (x) in Ω ,

u(x) → +∞ as d(x) → 0
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loc
(Ω) for every p <∞) of

{
−∆u + |∇u|q + λu = f (x) in Ω ,

u(x) → +∞ as d(x) → 0

and
a(x) = −q|∇u(x)|q−2∇u(x)

is the unique optimal control law.
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Results from [Lasry-PL. Lions]:

1. (case λ > 0) Let 1 < q ≤ 2. Then the value function u is the
unique solution (in W 2,p

loc
(Ω) for every p <∞) of

{
−∆u + |∇u|q + λu = f (x) in Ω ,

u(x) → +∞ as d(x) → 0

and
a(x) = −q|∇u(x)|q−2∇u(x)

is the unique optimal control law.

They also studied the case λ = 0 and the ergodic limit λ→ 0:

2. (case λ = 0) There exists a unique constant c0 such that the problem

{
−∆u + |∇u|q + c0 = f (x) in Ω ,

u(x) → +∞ as d(x) → 0

admits a solution. Moreover the solution u is unique (up to an additive
constant).
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2. Qualitative properties and blow-up profile

The asymptotic of u when x → ∂Ω was determined in [LL]:







u(x) ∼ Cqd(x)−
2−q

q−1 if 1 < q < 2,

u(x) ∼ − log(d(x)) if q = 2,
[d(x) := dist (x , ∂Ω)]

where Cq = (q−1)
−

2−q
q−1

2−q
.

• The blow-up of u is independent on the dimension N (essentially, 1-D
behaviour).

• The blow-up is faster as q → 1 and decreases up to a logarithmic rate
when q = 2.

Remark : u ∈ L1 if and only if 2−q

q−1 < 1 which means 3
2 < q ≤ 2.
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Recent results also characterize the asymptotics of ∇u (and then the
behaviour of the optimal control and the dynamics).

In [Porretta-Véron ’06] we prove that

lim
x→∂Ω

d(x)
1

q−1∇u(x) = c̃q ν(x)

where ν(x) is the outward normal unit vector on ∂Ω, and c̃q = (q−1)
−

1
q−1 .
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Recent results also characterize the asymptotics of ∇u (and then the
behaviour of the optimal control and the dynamics).

In [Porretta-Véron ’06] we prove that

lim
x→∂Ω

d(x)
1

q−1∇u(x) = c̃q ν(x)

where ν(x) is the outward normal unit vector on ∂Ω, and c̃q = (q−1)
−

1
q−1 .

In particular this implies:

∂u

∂ν
∼ c̃q

d(x)
1

q−1

and
∂u

∂τ
= o

(
∂u

∂ν

)

.
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Recent results also characterize the asymptotics of ∇u (and then the
behaviour of the optimal control and the dynamics).

In [Porretta-Véron ’06] we prove that

lim
x→∂Ω

d(x)
1

q−1∇u(x) = c̃q ν(x)

where ν(x) is the outward normal unit vector on ∂Ω, and c̃q = (q−1)
−

1
q−1 .

In particular this implies:

∂u

∂ν
∼ c̃q

d(x)
1

q−1

and
∂u

∂τ
= o

(
∂u

∂ν

)

.

This is the expected scaling from the asymptotics of u: set α = 2−q

q−1

{
if 1 < q < 2 , u ∼ Cqd(x)−α → ∇u ∼ −Cqα d(x)−(α+1)∇d(x)

if q = 2 , u ∼ − log(d(x)) → ∇u ∼ − 1
d(x)∇d(x)

(note: α+ 1 = 1
q−1 , c̃q = Cqα and ∇d(x) = −ν)
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Rmk: The first order asymptotic of ∇u is crucial to deal with the
nonlinear term |∇u|q as:

|∇u|q = |∇u|q−2∇u∇u ≃ cq

d(x)
∇u · ν(x) (3)

Next one can use this information to get further qualitative properties.
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nonlinear term |∇u|q as:

|∇u|q = |∇u|q−2∇u∇u ≃ cq

d(x)
∇u · ν(x) (3)

Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ∼ Cq d(x)−α α =
2 − q

q − 1
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Rmk: The first order asymptotic of ∇u is crucial to deal with the
nonlinear term |∇u|q as:

|∇u|q = |∇u|q−2∇u∇u ≃ cq

d(x)
∇u · ν(x) (3)

Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ∼ Cq d(x)−α α =
2 − q

q − 1

We set S = Cq d(x)−α and we look at the equation for the error term
z = u − S which looks like [using (3)...]

−∆z + z − α+2
d(x)∇z∇d(x) + O(dα |∇z|2) = f (x) + g(x),

g = ∆S − S − |∇S |q
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Rmk: The first order asymptotic of ∇u is crucial to deal with the
nonlinear term |∇u|q as:

|∇u|q = |∇u|q−2∇u∇u ≃ cq

d(x)
∇u · ν(x) (3)

Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ∼ Cq d(x)−α α =
2 − q

q − 1

We set S = Cq d(x)−α and we look at the equation for the error term
z = u − S which looks like [using (3)...]

−∆z + z − α+2
d(x)∇z∇d(x) + O(dα |∇z|2) = f (x) + g(x),

g = ∆S − S − |∇S |q

This equation has a singular but well-oriented transport term. We
estimate |∇z| and get a full description near the boundary:
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Rmk: The first order asymptotic of ∇u is crucial to deal with the
nonlinear term |∇u|q as:

|∇u|q = |∇u|q−2∇u∇u ≃ cq

d(x)
∇u · ν(x) (3)

Next one can use this information to get further qualitative properties.
Strategy: we already know that

u(x) ∼ Cq d(x)−α α =
2 − q

q − 1

We set S = Cq d(x)−α and we look at the equation for the error term
z = u − S which looks like [using (3)...]

−∆z + z − α+2
d(x)∇z∇d(x) + O(dα |∇z|2) = f (x) + g(x),

g = ∆S − S − |∇S |q

This equation has a singular but well-oriented transport term. We
estimate |∇z| and get a full description near the boundary:

• precise behaviour of normal and tangent components

• curvature effects in the optimal control profile
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Theorem (Leonori–Porretta Siam ’07)

Being ν and τ the normal and tangent vectors, we have, as d(x) → 0,

∂u

∂ν
=

c̃q

d(x)
1

q−1

[

1 +
(N−1)

2
κ(x) d(x) + o(d(x))

]

, ∀1 < q ≤ 2 ,

where x is the projection of x onto ∂Ω and κ(x) the mean curvature
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Theorem (Leonori–Porretta Siam ’07)

Being ν and τ the normal and tangent vectors, we have, as d(x) → 0,

∂u

∂ν
=

c̃q

d(x)
1

q−1

[

1 +
(N−1)

2
κ(x) d(x) + o(d(x))

]

, ∀1 < q ≤ 2 ,

where x is the projection of x onto ∂Ω and κ(x) the mean curvature and







∂u

∂τ
∈ L∞(Ω) if 3

2 < q ≤ 2,

∂u

∂τ
= O (| log d |) if q = 3

2 ,

∂u

∂τ
= O

(
1

d
3−2q
q−1

)

if 1 < q < 3
2 .
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Theorem (Leonori–Porretta Siam ’07)

Being ν and τ the normal and tangent vectors, we have, as d(x) → 0,

∂u

∂ν
=

c̃q

d(x)
1

q−1

[

1 +
(N−1)

2
κ(x) d(x) + o(d(x))

]

, ∀1 < q ≤ 2 ,

where x is the projection of x onto ∂Ω and κ(x) the mean curvature and







∂u

∂τ
∈ L∞(Ω) if 3

2 < q ≤ 2,

∂u

∂τ
= O (| log d |) if q = 3

2 ,

∂u

∂τ
= O

(
1

d
3−2q
q−1

)

if 1 < q < 3
2 .

Key point: Bernstein’s type gradient estimates for singular equations

−∆z + λ z + H(x ,∇z) = F (x) in Ω

like our model H(x ,∇z) ∼ − µ
d(x)∇z∇d(x) + γ dα |∇z|2.
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Corollary (Profile of the optimal control)

Let a(x) = −q|∇u(x)|q−2∇u(x) be the optimal control for the state
contraint problem.
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Corollary (Profile of the optimal control)

Let a(x) = −q|∇u(x)|q−2∇u(x) be the optimal control for the state
contraint problem.

As d(x) → 0, we have: for any 1 < q < 2

a(x) = −
[

q′

d(x)
+

q′(N−1)

2
κ(x)

]

ν(x) + o(1)
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Corollary (Profile of the optimal control)

Let a(x) = −q|∇u(x)|q−2∇u(x) be the optimal control for the state
contraint problem.

As d(x) → 0, we have: for any 1 < q < 2

a(x) = −
[

q′

d(x)
+

q′(N−1)

2
κ(x)

]

ν(x) + o(1)

For q = 2 we have

a(x) = −
[

2

d(x)
+ (N−1) κ(x) + o(1)

]

ν(x) + ψ(x) τ(x)

where ψ ∈ L∞(Ω).
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Corollary (Profile of the optimal control)

Let a(x) = −q|∇u(x)|q−2∇u(x) be the optimal control for the state
contraint problem.

As d(x) → 0, we have: for any 1 < q < 2

a(x) = −
[

q′

d(x)
+

q′(N−1)

2
κ(x)

]

ν(x) + o(1)

For q = 2 we have

a(x) = −
[

2

d(x)
+ (N−1) κ(x) + o(1)

]

ν(x) + ψ(x) τ(x)

where ψ ∈ L∞(Ω).

Note in particular:

(i) The control tangentially is zero on ∂Ω if q 6= 2,
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Corollary (Profile of the optimal control)

Let a(x) = −q|∇u(x)|q−2∇u(x) be the optimal control for the state
contraint problem.

As d(x) → 0, we have: for any 1 < q < 2

a(x) = −
[

q′

d(x)
+

q′(N−1)

2
κ(x)

]

ν(x) + o(1)

For q = 2 we have

a(x) = −
[

2

d(x)
+ (N−1) κ(x) + o(1)

]

ν(x) + ψ(x) τ(x)

where ψ ∈ L∞(Ω).

Note in particular:

(i) The control tangentially is zero on ∂Ω if q 6= 2, bounded if q = 2.
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Corollary (Profile of the optimal control)

Let a(x) = −q|∇u(x)|q−2∇u(x) be the optimal control for the state
contraint problem.

As d(x) → 0, we have: for any 1 < q < 2

a(x) = −
[

q′

d(x)
+

q′(N−1)

2
κ(x)

]

ν(x) + o(1)

For q = 2 we have

a(x) = −
[

2

d(x)
+ (N−1) κ(x) + o(1)

]

ν(x) + ψ(x) τ(x)

where ψ ∈ L∞(Ω).

Note in particular:

(i) The control tangentially is zero on ∂Ω if q 6= 2, bounded if q = 2.

(ii) On the hypersurfaces parallel to ∂Ω, the control is maximum where
the domain has a maximal mean curvature
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The “constrained dynamics”

Near the boundary, the dynamics looks like

{

dXt =
[

q′

d(Xt )
+ q′(N−1)

2 κ(xt)
]

∇d(Xt)dt +
√

2 dBt ,

X0 = x ∈ Ω ,

Ω

The control (i.e. the drift) has to be stronger where the domain is more
curved.
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3. Applications of blow-up sol.

Pb1. Let f ∈ L∞. If q > 1 the Dirichlet problem
{

−∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω

may have no solutions (if f is “too negative”).
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3. Applications of blow-up sol.

Pb1. Let f ∈ L∞. If q > 1 the Dirichlet problem
{

−∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω

may have no solutions (if f is “too negative”).

Classical example when q = 2:
{

−∆u + |∇u|2 = f (x)

u|
∂Ω

= 0
v = e−u − 1

{

−∆v = −f (x)(v + 1)

v|
∂Ω

= 0

If f ≤ −λ1 (first eigenvalue), then there is no solution.
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3. Applications of blow-up sol.

Pb1. Let f ∈ L∞. If q > 1 the Dirichlet problem
{

−∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω

may have no solutions (if f is “too negative”).

Classical example when q = 2:
{

−∆u + |∇u|2 = f (x)

u|
∂Ω

= 0
v = e−u − 1

{

−∆v = −f (x)(v + 1)

v|
∂Ω

= 0

If f ≤ −λ1 (first eigenvalue), then there is no solution.

But:
• There is a solution if ‖f ‖∞ is sufficiently small

• If λ > 0, there always exists a solution of
{

λu − ∆u + |∇u|q = f (x) in Ω

u = 0 .

[Kazdan-Kramer, Boccardo-Murat-Puel, Ferone-Murat,
Dall’Aglio-Giachetti-Puel, Sirakov...]
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Pb1. For λ > 0, consider the solution uλ of

{

λuλ − ∆uλ + |∇uλ|q = f (x) in Ω

uλ = 0 on ∂Ω
(4)

• What happens to the solutions of (4) when λ→ 0 ?
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Pb1. For λ > 0, consider the solution uλ of

{

λuλ − ∆uλ + |∇uλ|q = f (x) in Ω

uλ = 0 on ∂Ω
(4)

• What happens to the solutions of (4) when λ→ 0 ?

Pb2. Similar question holds for the asymptotic behaviour as t → +∞ of

{

ut − ∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω × (0,T ), u(0) = u0 in Ω .
(5)

• If the stationary problem has no solution, what happens as t → +∞?
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Pb1. For λ > 0, consider the solution uλ of

{

λuλ − ∆uλ + |∇uλ|q = f (x) in Ω

uλ = 0 on ∂Ω
(4)

• What happens to the solutions of (4) when λ→ 0 ?

Pb2. Similar question holds for the asymptotic behaviour as t → +∞ of

{

ut − ∆u + |∇u|q = f (x) in Ω

u = 0 on ∂Ω × (0,T ), u(0) = u0 in Ω .
(5)

• If the stationary problem has no solution, what happens as t → +∞?

Recall: the stochastic interpretation of (4), (5) suggests

lim
λ→0

λ uλ = lim
t→∞

u(t)

t

and that this limit be a constant.
[Bensoussan-Frehse, Arisawa-PL Lions, Alvarez-Bardi,
Barles-Souganidis...]
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Recall that if Xt is a process satisfying the SDE

dXt = a(Xt) +
√

2dBt , X0 = x ∈ Ω ,

the sol. uλ of (4) can be represented as

uλ(x) = inf
A

Ex

{∫ τx

0

[

f (Xt) + γq|a(Xt)|
q

q−1

]

e
−λt dt

}

where Ex is the expectation conditioned to X0 = x , τx is the exit time
from Ω.
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Recall that if Xt is a process satisfying the SDE

dXt = a(Xt) +
√

2dBt , X0 = x ∈ Ω ,

the sol. uλ of (4) can be represented as

uλ(x) = inf
A

Ex

{∫ τx

0

[

f (Xt) + γq|a(Xt)|
q

q−1

]

e
−λt dt

}

where Ex is the expectation conditioned to X0 = x , τx is the exit time
from Ω.

When λ→ 0, uλ remains bounded unless τx → ∞ → state constraint pb.
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Recall that if Xt is a process satisfying the SDE

dXt = a(Xt) +
√

2dBt , X0 = x ∈ Ω ,

the sol. uλ of (4) can be represented as

uλ(x) = inf
A

Ex

{∫ τx

0

[

f (Xt) + γq|a(Xt)|
q

q−1

]

e
−λt dt

}

where Ex is the expectation conditioned to X0 = x , τx is the exit time
from Ω.

When λ→ 0, uλ remains bounded unless τx → ∞ → state constraint pb.

Indeed, if f is very negative inside, the control will try to push the
process in the interior to realize the minimum: this can lead to the state
constraint problem and the so-called ergodic behaviour:

lim
λ→0

λ

∫ ∞

0

f (Xt)e
−λtdt = lim

T→∞

1

T

∫ T

0

f (Xt)dt ∀x ∈ Ω
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So the explanations come from the interpretation in terms of stochastic
control problems. Indeed we will see:

◮ The existence of a stationary solution depends on the ergodic
constant for state constraint problems

◮ The behaviour of uλ and of u(t) is described by boundary blow-up
solutions

◮ The profile of boundary blow-up solutions determines the rate of
convergence for the large time behaviour (new rates induced by
boundary conditions)

NB: This is the same for any Dirichlet type condition u = g|∂Ω×(0,T )

with g continuous.
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant c0 such that the problem

{

−∆v + |∇v |q + c0 = f (x) in Ω,
lim

x→∂Ω
v(x) = +∞ ,

admits a solution, and v is unique up to an additive constant.
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant c0 such that the problem

{

−∆v + |∇v |q + c0 = f (x) in Ω,
lim

x→∂Ω
v(x) = +∞ ,

admits a solution, and v is unique up to an additive constant.

Crucial point: There exists a solution of the Dirichlet problem

{

−∆û + |∇û|q = f (x) in Ω

û = 0 on ∂Ω,
(6)

if and only if c0 > 0.
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant c0 such that the problem

{

−∆v + |∇v |q + c0 = f (x) in Ω,
lim

x→∂Ω
v(x) = +∞ ,

admits a solution, and v is unique up to an additive constant.

Crucial point: There exists a solution of the Dirichlet problem

{

−∆û + |∇û|q = f (x) in Ω

û = 0 on ∂Ω,
(6)

if and only if c0 > 0.

• The reason is simple: c0 > 0 gives the existence of subsolutions to (6).
(recall PL Lions [Arma ’80]: if ∃ a subsolution ⇒ ∃ a solution)
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First remark: existence of stationary solutions depends on the ergodic
constant for state constraint pb.
Recall: there exists a unique constant c0 such that the problem

{

−∆v + |∇v |q + c0 = f (x) in Ω,
lim

x→∂Ω
v(x) = +∞ ,

admits a solution, and v is unique up to an additive constant.

Crucial point: There exists a solution of the Dirichlet problem

{

−∆û + |∇û|q = f (x) in Ω

û = 0 on ∂Ω,
(6)

if and only if c0 > 0.

• The reason is simple: c0 > 0 gives the existence of subsolutions to (6).
(recall PL Lions [Arma ’80]: if ∃ a subsolution ⇒ ∃ a solution)

• When q = 2 we have c0 = λ1(−∆ + f ) and this is consistent with
[Kazdan-Kramer] (eigenvalues are particular cases of ergodic constants !)
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So, the behaviour of uλ sol. of

{

λuλ − ∆uλ + |∇uλ|q = f (x) in Ω

uλ = 0

depends on the value of ergodic constant c0.

Easy case: c0 > 0 ⇐⇒ there exists a solution of the limit problem

{

−∆û + |∇û|q = f (x) in Ω

û = 0 on ∂Ω

then ‖uλ‖∞ is bounded, and standard arguments give uλ → û.
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So, the behaviour of uλ sol. of

{

λuλ − ∆uλ + |∇uλ|q = f (x) in Ω

uλ = 0

depends on the value of ergodic constant c0.

Easy case: c0 > 0 ⇐⇒ there exists a solution of the limit problem

{

−∆û + |∇û|q = f (x) in Ω

û = 0 on ∂Ω

then ‖uλ‖∞ is bounded, and standard arguments give uλ → û.

Interesting case: c0 ≤ 0 . Then we have

{

uλ → −∞ (complete blow-up)

λ uλ → c0

(and rescaling uλ we obtain the sol. v of the ergodic problem)

A. Porretta Solutions explosives et comportement asymptotique



Theorem
Let 1 < q ≤ 2, and f ∈ L∞. Let uλ be sol. of (4).

(i) If c0 > 0 (hence there exists a sol. û with λ = 0), then uλ → û
uniformly as λ→ 0.
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Theorem
Let 1 < q ≤ 2, and f ∈ L∞. Let uλ be sol. of (4).

(i) If c0 > 0 (hence there exists a sol. û with λ = 0), then uλ → û
uniformly as λ→ 0.

(ii) If c0 ≤ 0, then

{

uλ → −∞ for every x ∈ Ω,

λ uλ(x) → c0 for every x ∈ Ω,

and
vλ : = uλ + ‖uλ‖∞ → v0 locally uniformly,

where c0 is the unique constant such that

{

−∆v + |∇v |q + c0 = f (x) in Ω,

lim
x→∂Ω

v(x) = +∞ ,

admits a solution, and v0 is the unique solution such that
min

Ω
v0(x) = 0.
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Proof of this result relies on two fundamental points:

◮ Interior gradient estimates (Bernstein’s technique):

|∇uλ| is (locally) uniformly bounded.

→ hence λ uλ must converge to a constant

◮ Uniqueness of the ergodic constant c0 and of v0 (strong max.
principle) imply convergence for the whole sequence.
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Proof of this result relies on two fundamental points:

◮ Interior gradient estimates (Bernstein’s technique):

|∇uλ| is (locally) uniformly bounded.

→ hence λ uλ must converge to a constant

◮ Uniqueness of the ergodic constant c0 and of v0 (strong max.
principle) imply convergence for the whole sequence.

NB: One can prove that uλ(x) − uλ(x0) → v − v(x0) for any point x0.

The fact that the same convergence holds for uλ + ‖uλ‖∞ gives an idea
of the barrier effect:
uλ + ‖uλ‖∞ is locally uniformly bounded, i.e. maximum points of |uλ|
remain sufficiently far from boundary (“the blow-up comes from the
interior”)
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

{

ut − ∆u + |∇u|q = f (x) in Ω ,

u = 0 on ∂Ω × (0,T ), u(0) = u0 .
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

{

ut − ∆u + |∇u|q = f (x) in Ω ,

u = 0 on ∂Ω × (0,T ), u(0) = u0 .

(i) If c0 > 0 ( ⇐⇒ there exists a stationary sol. û), then u(t)
t→∞→ û.

(ii) If c0 ≤ 0, then u(t) → −∞ and

lim
t→∞

u(t)

t
= c0
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

{

ut − ∆u + |∇u|q = f (x) in Ω ,

u = 0 on ∂Ω × (0,T ), u(0) = u0 .

(i) If c0 > 0 ( ⇐⇒ there exists a stationary sol. û), then u(t)
t→∞→ û.

(ii) If c0 ≤ 0, then u(t) → −∞ and

lim
t→∞

u(t)

t
= c0

Rmk: the typical result (e.g. periodic case) is that

u(t) − c0t is bounded −→ rate of convergence: | u(t)
t

− c0| = O( 1
t
)

u(t) − c0t → v where v is a sol. of the ergodic problem

[Barles-Souganidis, Namah-Roquejoffre,..]
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Large time behaviour
[Work in progress with G. Barles and T. Tabet Tchamba]

{

ut − ∆u + |∇u|q = f (x) in Ω ,

u = 0 on ∂Ω × (0,T ), u(0) = u0 .

(i) If c0 > 0 ( ⇐⇒ there exists a stationary sol. û), then u(t)
t→∞→ û.

(ii) If c0 ≤ 0, then u(t) → −∞ and

lim
t→∞

u(t)

t
= c0

Rmk: the typical result (e.g. periodic case) is that

u(t) − c0t is bounded −→ rate of convergence: | u(t)
t

− c0| = O( 1
t
)

u(t) − c0t → v where v is a sol. of the ergodic problem

[Barles-Souganidis, Namah-Roquejoffre,..]

• This is also true when q > 2 (Tabet Tchamba).
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In the range 1 < q ≤ 2 we have a different behaviour.

◮ u − c0t is bounded when c0 < 0 and 3
2 < q ≤ 2

◮ if c0 < 0 and 1 < q ≤ 3
2 , or if c0 = 0, then

u − c0t may be unbounded

and it may happen that u − c0t → −∞
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In the range 1 < q ≤ 2 we have a different behaviour.

◮ u − c0t is bounded when c0 < 0 and 3
2 < q ≤ 2

◮ if c0 < 0 and 1 < q ≤ 3
2 , or if c0 = 0, then

u − c0t may be unbounded

and it may happen that u − c0t → −∞

The reason for this new situation is that

◮ the blow-up rate is influenced by the profile of blow-up solutions

◮ when c0 = 0 the blow-up rate becomes slower in any case
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Blow-up rate

We prove indeed the following rate of convergence:

• Case c0 < 0:

u − c0t = O(1) when 3
2 < q ≤ 2.

u − c0t = O(log t) when q = 3
2

u − c0t = O(t
3−2q
2−q ) when 1 < q < 3

2
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Blow-up rate

We prove indeed the following rate of convergence:

• Case c0 < 0:

u − c0t = O(1) when 3
2 < q ≤ 2.

u − c0t = O(log t) when q = 3
2

u − c0t = O(t
3−2q
2−q ) when 1 < q < 3

2

• Case c0 = 0:

u − c0t = O(log t) when q = 2

u − c0t = O(t2−q) when 1 < q < 2

NB: The following bounds are locally uniformly.
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Of course this gives the rate of convergence of u(t)
t

:

• Case c0 < 0







u(t)
t

− c0 = O( 1
t
) if 3

2 < q ≤ 2

u(t)
t

− c0 = O
(

log t

t

)

if q = 3
2

u(t)
t

− c0 = O

(

1

t
q−1
2−q

)

if 1 < q < 3
2

• Case c0 = 0

u(t)

t
− c0 = O

(
1

tq−1

)

for any 1 < q ≤ 2
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Idea of the proof: compare u − c0t with a suitable translation of a
blow-up sol. v of the ergodic problem

{

−∆v + |∇v |q + c0 = f (x) in Ω,

lim
x→∂Ω

v(x) = +∞ ,

Indeed, set ũ = u − c0t, it solves the equation

{

ũt − ∆ũ + |∇ũ|q = f − c0

ũ|
∂Ω×(0,T )

= −c0 t

and one expects u − c0t ≃ v(x) + .... (error terms).
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Idea of the proof: compare u − c0t with a suitable translation of a
blow-up sol. v of the ergodic problem

{

−∆v + |∇v |q + c0 = f (x) in Ω,

lim
x→∂Ω

v(x) = +∞ ,

Indeed, set ũ = u − c0t, it solves the equation

{

ũt − ∆ũ + |∇ũ|q = f − c0

ũ|
∂Ω×(0,T )

= −c0 t

and one expects u − c0t ≃ v(x) + .... (error terms).

NB: The bound from above is trivial: u − c0t ≤ v + ‖u0‖∞.

The problem is the bound from below since u → −∞.

Idea: construct a subsolution using the graph v(x) as a propagating front.
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Example of our construction: if Ω is star-shaped we take

ṽ(x , t) = r(t)
2−q

q−1 v(r(t)x)

with r(t) < 1, r(t) ↑ 1 as t → ∞

This corresponds to a translation of the profile:

(i) ṽ is defined on Ω
r(t) ⊃ Ω

(ii) The graph of v moves with velocity 1 − r(t)

(iii) The velocity r(t) is chosen in a way that ṽ is comparable to u − c0t

on the boundary: r(t)
2−q

q−1 v(r(t)x) ≃ −c0t on ∂Ω × (0, t)

(recall c0 ≤ 0)

This will fix the velocity r(t)..... 1 − r(t) ≃ 1

t
1
α

)
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Ω

1-r(t)

-c_0 t

∂Ω
-----

[1-r(t)]

v(x)
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Computing the equation for ṽ(x , t) = r(t)
2−q

q−1 v(r(t)x) we find

ṽt − ∆ṽ + |∇ṽ |q = r(t)
q

q−1 (f − c0) + r ′(t)....

= f − c0 − (1 − r(t))(f − c0) + r ′(t)....
︸ ︷︷ ︸

negligeable
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Computing the equation for ṽ(x , t) = r(t)
2−q

q−1 v(r(t)x) we find

ṽt − ∆ṽ + |∇ṽ |q = r(t)
q

q−1 (f − c0) + r ′(t)....

= f − c0 − (1 − r(t))(f − c0) + r ′(t)....
︸ ︷︷ ︸

negligeable

hence
ṽt − ∆ṽ + |∇ṽ |q ≃ f − c0 − (1 − r(t))(f − c0)

Since ũ = u − c0t satisfies

ũt − ∆ũ + |∇ũ|q = f − c0

the correction term is H(t) ≃ ‖f − c0‖
∫ t

0
(1 − r(s))ds:
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Computing the equation for ṽ(x , t) = r(t)
2−q

q−1 v(r(t)x) we find

ṽt − ∆ṽ + |∇ṽ |q = r(t)
q

q−1 (f − c0) + r ′(t)....

= f − c0 − (1 − r(t))(f − c0) + r ′(t)....
︸ ︷︷ ︸

negligeable

hence
ṽt − ∆ṽ + |∇ṽ |q ≃ f − c0 − (1 − r(t))(f − c0)

Since ũ = u − c0t satisfies

ũt − ∆ũ + |∇ũ|q = f − c0

the correction term is H(t) ≃ ‖f − c0‖
∫ t

0
(1 − r(s))ds:

General bound:

ṽ − H(t) is a subsolution ⇒ u − c0t ≥ ṽ − H(t)
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Computing the equation for ṽ(x , t) = r(t)
2−q

q−1 v(r(t)x) we find

ṽt − ∆ṽ + |∇ṽ |q = r(t)
q

q−1 (f − c0) + r ′(t)....

= f − c0 − (1 − r(t))(f − c0) + r ′(t)....
︸ ︷︷ ︸

negligeable

hence
ṽt − ∆ṽ + |∇ṽ |q ≃ f − c0 − (1 − r(t))(f − c0)

Since ũ = u − c0t satisfies

ũt − ∆ũ + |∇ũ|q = f − c0

the correction term is H(t) ≃ ‖f − c0‖
∫ t

0
(1 − r(s))ds:

General bound:

ṽ − H(t) is a subsolution ⇒ u − c0t ≥ ṽ − H(t)

Optimality of the bound: if f − c0 < −δ < 0, then also

ṽ − δH(t) is a supersolution ⇒ u − c0t ≤ ṽ − δH(t)

which gives us the optimality of the convergence rate.
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The velocity 1 − r(t) is fixed by the boundary rate:

on ∂Ω × (0,T ), ṽ (x , t) ≃ u − c0t = −c0t

Recall at the boundary ṽ ≃ d(x)−α ≃ (1 − r(t))−α. This gives

(1 − r(t))−α ≃ −c0t
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The velocity 1 − r(t) is fixed by the boundary rate:

on ∂Ω × (0,T ), ṽ (x , t) ≃ u − c0t = −c0t

Recall at the boundary ṽ ≃ d(x)−α ≃ (1 − r(t))−α. This gives

(1 − r(t))−α ≃ −c0t

and since

u − c0t & ṽ(x , t) − H(t) , H ≃
∫ t

0

(1 − r(s))ds

we get

u − c0t & v(r(t)x) − O(t1− 1
α )

Rmk: u − c0t is locally uniformly bounded only if 1 − 1
α
< 0 i.e. α < 1

(this means q > 3
2 and corresponds to the case v ∈ L1:

H(t) is the integral of 1 − r(t) = area below the graph of v).
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The velocity 1 − r(t) is fixed by the boundary rate:

on ∂Ω × (0,T ), ṽ (x , t) ≃ u − c0t = −c0t

Recall at the boundary ṽ ≃ d(x)−α ≃ (1 − r(t))−α. This gives

(1 − r(t))−α ≃ −c0t

and since

u − c0t & ṽ(x , t) − H(t) , H ≃
∫ t

0

(1 − r(s))ds

we get

u − c0t & v(r(t)x) − O(t1− 1
α )

Rmk: u − c0t is locally uniformly bounded only if 1 − 1
α
< 0 i.e. α < 1

(this means q > 3
2 and corresponds to the case v ∈ L1:

H(t) is the integral of 1 − r(t) = area below the graph of v).
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Things to be done, work in progress...

◮ Inhomogeneous diffusions
{

dXt = a(Xt)dt +
√

2σ(Xt)dBt ,

X0 = x ∈ Ω ,

with associated HJB equation

−tr
(
A(x)D2u

)
+ λu + |∇u|q = f (x)

where A(x) = σ(x)σT (x).
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Things to be done, work in progress...

◮ Inhomogeneous diffusions
{

dXt = a(Xt)dt +
√

2σ(Xt)dBt ,

X0 = x ∈ Ω ,

with associated HJB equation

−tr
(
A(x)D2u

)
+ λu + |∇u|q = f (x)

where A(x) = σ(x)σT (x).
If A(x) elliptic and smooth, one can use the same approach
replacing the distance function d(x) with the solution of the first
order equation







A(x)∇ρ∇ρ = γ |∇ρ|q in Ω

ρ > 0 ,

ρ = 0 on ∂Ω.

◮ general diffusions, possibly non smooth and/or possibly degenerate ?

◮ singular domains (link with Wiener criteria for the Brownian
motion)?
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