Étude numérique d'un problème de diffusion non-linéaire Séminaire de Mathématiques Appliquées du Collège de France

Pauline Lafitte¹ C. Mascia²

¹SIMPAF - INRIA & Ecole Centrale Paris

²Univ. La Sapienza, Rome

25 novembre 2011

Plan

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

Plan

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

Transition de phase

Motivation : transport de la masse dans un milieu en relaxation (ex : polymères au point de vitrification)

Problème : comprendre la modélisation de la transition de phase et approcher numériquement sa position

Polymère diphasique

Equations

Modélisation due à Jäckle et Frisch (1985) :

$$rac{\partial u}{\partial t}(x,t) = rac{\partial^2 v}{\partial x^2}(x,t), \ x \in \mathbb{R}, \ t > 0$$

où u(x, t) est le paramètre d'ordre, v(x, t) le potentiel défini par

$$\mathbf{v} = \phi(\mathbf{u}) + \int_{-\infty}^{t} \theta(t - \cdot) \frac{\partial}{\partial t} (\psi(\mathbf{u}) - \phi(\mathbf{u})) ds$$

avec θ la fonction mémoire et ϕ de type cubique, loc. Lipschitz

Equations

Modélisation due à Jäckle et Frisch (1985) :

$$\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 v}{\partial x^2}(x,t), \ x \in \mathbb{R}, \ t > 0$$

où u(x, t) est le paramètre d'ordre, v(x, t) le potentiel défini par

$$v = \phi(u) + \int_{-\infty}^{t} \theta(t - \cdot) \frac{\partial}{\partial t} (\psi(u) - \phi(u)) ds$$

avec θ la fonction mémoire et ϕ de type cubique, loc. Lipschitz

fonction de diffusion ϕ

Simplifications : $\theta(t) = \exp(-t/\tau)$ et $\psi : u \mapsto \varepsilon u/\tau$

$$\tau \frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \left(\phi(u) + \varepsilon \frac{\partial u}{\partial t} \right)$$

Simplifications : $\theta(t) = \exp(-t/\tau)$ et $\psi : u \mapsto \varepsilon u/\tau$

$$\tau \frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \left(\phi(u) + \varepsilon \frac{\partial u}{\partial t} \right)$$

Cas au = 0 (sans mémoire), $\varepsilon > 0$: Novick-Cohen et Pego (1991)

$$\begin{array}{l} \mathsf{Pb.} \\ \mathsf{de} \\ \mathsf{Cauchy} \end{array} \left\{ \begin{aligned} &\frac{\partial u}{\partial t} = \Delta_{\mathsf{x}} \left(\phi(u) + \varepsilon \frac{\partial u}{\partial t} \right) \ \mathsf{dans} \ \Omega \times \mathbb{R}^{+*}, \quad \Omega \subset \mathbb{R}^{d}, \\ &\frac{\partial}{\partial n} \left(\phi(u) + \varepsilon \frac{\partial u}{\partial t} \right) = 0 \ \mathsf{sur} \ \partial \Omega \times \mathbb{R}^{+*}, \\ &u(\cdot, 0) \in L^{\infty}(\Omega) \end{aligned} \right.$$

 \longrightarrow existence globale et unicité de la solution C^1 .

$$egin{aligned} &rac{\partial u}{\partial t} = rac{\partial^2}{\partial x^2} \phi(u), x \in \mathbb{R}, \ t > 0 \ & \ u(x,0) = u^0(x) \ ext{donnée} \end{aligned}$$

$$egin{aligned} &rac{\partial u}{\partial t} = rac{\partial^2}{\partial x^2} \phi(u), x \in \mathbb{R}, \ t > 0 \ & u(x,0) = u^0(x) \ ext{donnée} \end{aligned}$$

• Si $\phi : u \mapsto \mathbf{m}u$, solution :

$$u(x,t) = \frac{1}{\sqrt{4\pi mt}} \int_{\mathbb{R}} e^{-(x-y)^2/(4mt)} u^0(y) dy$$

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \phi(u), x \in \mathbb{R}, t > 0 \\ u(x,0) = u^0(x) \text{ donnée} \end{cases}$$

• Si $\phi : u \mapsto \mathbf{m}u$, solution :

$$u(x,t) = \frac{1}{\sqrt{4\pi \mathbf{m}t}} \int_{\mathbb{R}} e^{-(x-y)^2/(4\mathbf{m}t)} u^0(y) dy$$

• ϕ non monotone \Rightarrow pb mal posé

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \left(\phi(u) + \varepsilon \frac{\partial}{\partial t} u \right), x \in \mathbb{R}, t > 0 \\ u(x,0) = u^0(x) \text{ donnée} \end{cases}$$

$$\text{Si } \phi: u \mapsto \mathsf{m}u, \text{ solution }: \\ u(x,t) = \frac{1}{\sqrt{4\pi\mathsf{m}t}} \int_{\mathbb{R}} e^{-(x-y)^2/(4\mathsf{m}t)} u^0(y) dy$$

$$\phi \text{ non monotone } \Rightarrow \mathsf{pb mal posé}$$

$$\text{Pour } \varepsilon > 0, \text{ sortie exponentielle} \\ \text{si linéarisation autour de } \overline{u} \in I \end{cases}$$

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

 $=rac{\partial^2\phi(u)}{\partial x^2}$ $rac{\partial u}{\partial t}$

 $=\frac{\partial^2\phi(u)}{\partial x^2}$ $\frac{\partial u}{\partial t}$

$$\frac{\partial u}{\partial t} = \frac{\partial^2 \phi(u)}{\partial x^2}$$

Plotnikov (1993-99) : description par mesures de Young

 $u = \lambda_{-}\phi_{-}^{-1}(\mathbf{v}) + \lambda_{I}\phi_{I}^{-1}(\mathbf{v}) + \lambda_{+}\phi_{+}^{-1}(\mathbf{v})$

$$\frac{\partial u}{\partial t} = \frac{\partial^2 \phi(u)}{\partial x^2}$$

Plotnikov (1993-99) : description par mesures de Young

 $u = \lambda_{-}\phi_{-}^{-1}(\mathbf{v}) + \lambda_{I}\phi_{I}^{-1}(\mathbf{v}) + \lambda_{+}\phi_{+}^{-1}(\mathbf{v})$

$$G^* := \lambda_- G \circ \phi_-^{-1} + \lambda_I G \circ \phi_I^{-1} + \lambda_+ G \circ \phi_+^{-1}$$
, on a

$$\frac{\partial G^*(\mathbf{v})}{\partial t} - \frac{\partial}{\partial x} \left(g(\mathbf{v}) \frac{\partial \mathbf{v}}{\partial x} \right) + g'(\mathbf{v}) \left(\frac{\partial \mathbf{v}}{\partial x} \right)^2 \le 0$$

Une interface qui bouge?

Evans et Portilheiro (2004) : solutions (faibles) diphasiques solutions régulières par morceaux + « inégalité d'entropie »

Une interface qui bouge?

< => < => < =>

Evans et Portilheiro (2004) : solutions (faibles) diphasiques

solutions régulières par morceaux + « inégalité d'entropie »

25 novembre 2011 11 / 47

Concept de solution

À l'interface γ :

• Conditions de transmission :

$$[\phi(u)]_{\gamma} = 0, \qquad \xi'(t) [u]_{\gamma} + \left[\frac{\partial \phi(u)}{\partial x}\right]_{\gamma} = 0$$

Concept de solution

À l'interface γ :

• Conditions de transmission :

$$[\phi(u)]_{\gamma} = 0, \qquad \xi'(t) [u]_{\gamma} + \left[\frac{\partial \phi(u)}{\partial x}\right]_{\gamma} = 0$$

• Conditions d'entropie : $\phi(u(\xi(t), t)) \in [A, B]$ et

$$\begin{cases} \xi'(t) = 0 & \text{si } \phi(u(\xi(t), t)) \in (A, B) \\ \xi'(t) \ge 0 & \text{si } \phi(u(\xi(t), t)) = A, \\ \xi'(t) \le 0 & \text{si } \phi(u(\xi(t), t)) = B. \end{cases}$$

Concept de solution

À l'interface γ :

• Conditions de transmission :

$$[\phi(u)]_{\gamma} = 0, \qquad \xi'(t) [u]_{\gamma} + \left[\frac{\partial \phi(u)}{\partial x}\right]_{\gamma} = 0$$

• Conditions d'entropie : $\phi(u(\xi(t), t)) \in [A, B]$ et

$$\left\{egin{aligned} \xi'(t) &= 0 & ext{si} \ \ \phi(u(\xi(t),t)) \in (A,B) \ \ \xi'(t) &\geq 0 & ext{si} \ \ \phi(u(\xi(t),t)) &= A \,, \ \ \xi'(t) &\leq 0 & ext{si} \ \ \phi(u(\xi(t),t)) &= B. \end{aligned}
ight.$$

Mascia, Terracina et Tesei (2009) : existence locale et unicité; Smarazzo, Tesei (2010) : temps long

Interface immobile

Interface immobile : espace des phases

vue dans le plan de phase $(u, \phi(u))$

Mouvement vers la droite

vue dans le plan espace-temps

Mouvement vers la droite : espace des phases

vue dans le plan de phase $(u, \phi(u))$

Mouvement vers la gauche

25 novembre 2011 17 / 47

Mouvement vers la gauche : espace des phases

Plan

Introduction

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

Solutions auto-similaires

Validation des schémas numériques : calcul explicite de la solution d'un problème de Riemann

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 \phi(u)}{\partial x^2} \\ u(\cdot, 0) = u^0 : x \mapsto \begin{cases} u_- \le b, & x < 0 \\ u_+ \ge a, & x > 0 \end{cases} \end{cases}$$

Solutions auto-similaires

Validation des schémas numériques : calcul explicite de la solution d'un problème de Riemann

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 \phi(u)}{\partial x^2} \\ u(\cdot, 0) = u^0 : x \mapsto \begin{cases} u_- \le b, & x < 0 \\ u_+ \ge a, & x > 0 \end{cases} \end{cases}$$

solution auto-similaire : (x, t) ightarrow ($\lambda x, \lambda^2 t$) d'où

$$u(x,t) = f(\xi), \qquad \xi = \frac{x}{\sqrt{t}}$$

Solutions auto-similaires

Validation des schémas numériques : calcul explicite de la solution d'un problème de Riemann

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 \phi(u)}{\partial x^2} \\ u(\cdot, 0) = u^0 : x \mapsto \begin{cases} u_- \le b, & x < 0 \\ u_+ \ge a, & x > 0 \end{cases} \end{cases}$$

solution auto-similaire : (x, t) ightarrow ($\lambda x, \lambda^2 t$) d'où

$$u(x,t) = f(\xi), \qquad \xi = \frac{x}{\sqrt{t}}$$

• courbe de discontinuité : $\xi(t) = \bar{\xi}\sqrt{t}$

• équation pour $f: \forall \xi \in \mathbb{R} \setminus \{\overline{\xi}\}, \quad (\phi \circ f)''(\xi) + \frac{1}{2}\xi f'(\xi) = 0.$

Cas type

 ϕ continue affine par morceaux avec m, q > 0 :

$$\phi(u) = mu + egin{cases} q, \ {
m si} \ u \leq b, \ -q, \ {
m si} \ u \geq a. \end{cases}$$

Cas type

 ϕ continue affine par morceaux avec m,q>0 :

$$\phi(u) = mu + \begin{cases} q, \text{ si } u \leq b, \\ -q, \text{ si } u \geq a. \end{cases}$$

On définit $E_{-}^{m}(\xi) := \frac{1}{\sqrt{4 \pi m}} \int_{-\infty}^{\xi} e^{-y^{2}/4m} dy, \ E_{+}^{m}(\xi) := 1 - E_{-}^{m}(\xi).$

Cas type

 ϕ continue affine par morceaux avec m,q>0 :

$$\phi(u) = mu + \begin{cases} q, \text{ si } u \leq b, \\ -q, \text{ si } u \geq a. \end{cases}$$

On définit
$$E_{-}^{m}(\xi) := \frac{1}{\sqrt{4 \pi m}} \int_{-\infty}^{\xi} e^{-y^{2}/4m} \, dy, \ E_{+}^{m}(\xi) := 1 - E_{-}^{m}(\xi).$$

Forme générale : $u(x,t) = f(x/\sqrt{t})$,

$$f(\xi):=egin{cases} \phi_-^{-1}(g(\xi)) & \quad \xiar\xi, \end{cases}$$

avec

$$g(\xi) := \phi(u_{-})E_{+}^{m}(\xi) + \phi(u_{+})E_{-}^{m}(\xi)$$

Condition caractéristique (CC) :

$$\mathcal{C}:=rac{1}{2}(\phi(u_-)+\phi(u_+))\in [\mathcal{A},\mathcal{B}],$$

Condition caractéristique (CC) :

$${\cal C}:=rac{1}{2}(\phi(u_-)+\phi(u_+))\in [{\cal A},{\cal B}],$$

(CC) vérifiée SSI l'interface est immobile, c'est-à-dire $\bar{\xi} = 0$

Ex. :
$$m = 2$$
, $q_{\pm} = \mp 3$, $u_{-} = -1.5$. $u_{+} = 2$

 $u et \phi(u) en fonction de x$

vues de u (à g.) et $\phi(u)$ (à d.) dans le plan espace-temps

(CC) non vérifiée SSI l'interface bouge et $\bar{\xi}$ est donnée par la relation implicite $g(\bar{\xi}) = B$ si C > B ou $g(\bar{\xi}) = A$ si C < A. Ex. : m = 2, $q_{\pm} = \mp 3$, $u_{-} = -2.1$. $u_{+} = 4.2$

 $u et \phi(u) en fonction de x$

vues de u (à g.) et $\phi(u)$ (à d.) dans le plan espace-temps

Plan

Introduction

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

4 Schéma diphasique

Plan

Introduction

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

4 Schéma diphasique

Discrétisation en espace

Discrétisation centrée d'ordre 2, maillage uniforme Δx , J points : $\frac{\partial^2 u}{\partial x^2}(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + O(h^2)$

Discrétisation en espace

Discrétisation centrée d'ordre 2, maillage uniforme Δx , J points : $\frac{\partial^2 u}{\partial x^2}(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + O(h^2)$ $U^{0} := \begin{pmatrix} u_{-} \\ \vdots \\ u_{-} \\ u_{+} \\ \vdots \\ u_{+} \end{pmatrix} \in \mathbb{R}^{J}, \quad \mathbb{A} := \begin{pmatrix} 1 & -1 & 0 & \cdots & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \ddots & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \ddots & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \ddots & 2 & -1 & 0 \\ 0 & 0 & 0 & \cdots & \cdots & 0 & -1 & 1 \end{pmatrix}$

Discrétisation en espace

Discrétisation centrée d'ordre 2, maillage uniforme Δx , J points : $\frac{\partial^2 u}{\partial x^2}(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + O(h^2)$ $U^{0} := \begin{pmatrix} u_{-} \\ \vdots \\ u_{-} \\ u_{+} \\ \vdots \\ u_{+} \end{pmatrix} \in \mathbb{R}^{J}, \quad \mathbb{A} := \begin{pmatrix} 1 & -1 & 0 & \cdots & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \ddots & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \ddots & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \ddots & 2 & -1 & 0 \\ 0 & 0 & 0 & \cdots & \cdots & 0 & -1 & 1 \end{pmatrix}$

Schéma semi-discret non-linéaire autonome :

$$\frac{dU}{dt} = -\left(\Delta x^2 \mathbb{I} + \varepsilon \,\mathbb{A}\right)^{-1} \mathbb{A} \,\phi(U) =: -\mathbb{A}_{\Delta x^2,\varepsilon} \phi(U)$$

Limite régulière : $\varepsilon = 0$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Cas général

Problème : ϕ est presque toujours linéaire, mais... pas toujours ! **Techniques :**

- Etude de $V = \phi(U)$
- Réinterprétation en EDO linéaire non-autonome :

$$rac{dU}{d au}(au)=-M(au)U(au)+W(au), \quad au=t/\Delta x^2$$

 $\tau \mapsto M(\tau) \in \mathbb{R}^{J \times J}$ et $\tau \mapsto W(\tau) \in \mathbb{R}^{J}$ constantes par morceaux.

 \rightarrow Saut quand U_j change de phase.

Cas général

Problème : ϕ est presque toujours linéaire, mais... pas toujours ! **Techniques :**

- Etude de $V = \phi(U)$
- Réinterprétation en EDO linéaire non-autonome :

$$rac{dU}{d au}(au)=-M(au)U(au)+W(au), \quad au=t/\Delta x^2$$

 $\tau \mapsto M(\tau) \in \mathbb{R}^{J imes J}$ et $\tau \mapsto W(\tau) \in \mathbb{R}^{J}$ constantes par morceaux.

 \rightarrow Saut quand U_j change de phase.

Cas symétrique : m = 2, q = 3; dans S^- : b = -1, c = -2, dans S^+ : a = 1, d = 2et $A = \phi(a) = \phi(c) = -1$, $B = \phi(b) = \phi(d) = 1$

Généralisation aisée par produit par une matrice diagonale

Plan

Introduction

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

4 Schéma diphasique

Interface immobile : $u_+ + u_- \in [-1, 1]$

Remarque : $V = \phi(U)$ est solution d'une EDO autonome

 $\frac{dV}{d\tau} = -2\mathbb{A} V,$

 $\operatorname{\mathsf{car}}\, \exp(-2 au\mathbb{A})\in (\mathbb{R}^+)^{J imes J}, \, \|\exp(-2 au\mathbb{A})\|_\infty=1.$

Interface immobile : $u_+ + u_- \in [-1, 1]$

Remarque : $V = \phi(U)$ est solution d'une EDO autonome

$$\frac{dV}{d\tau} = -2\mathbb{A} V,$$

 $\operatorname{car}\, \exp(-2 au\mathbb{A})\in (\mathbb{R}^+)^{J imes J}$, $\|\exp(-2 au\mathbb{A})\|_\infty=1.$

Analyse spectrale :

$$\lim_{t\to+\infty}V_j(t/h^2)=\frac{\phi(u_+)+\phi(u_-)}{2}=v^{\infty},$$

$$U_j^{\infty} = \begin{cases} \phi_-^{-1}(v^{\infty}) & \text{si } j \leq K, \\ \phi_+^{-1}(v^{\infty}) & \text{si } j \geq K+1 \end{cases}$$

Interface immobile : $u_+ + u_- \in [-1, 1]$

Remarque : $V = \phi(U)$ est solution d'une EDO autonome

$$\frac{dV}{d\tau} = -2\mathbb{A} V,$$

 $\operatorname{car}\, \exp(-2 au\mathbb{A})\in (\mathbb{R}^+)^{J imes J}$, $\|\exp(-2 au\mathbb{A})\|_\infty=1.$

Analyse spectrale :

$$\lim_{t\to+\infty}V_j(t/h^2)=\frac{\phi(u_+)+\phi(u_-)}{2}=v^\infty,$$

et

$$U_j^{\infty} = \begin{cases} \phi_-^{-1}(v^{\infty}) & \text{si } j \leq K, \\ \phi_+^{-1}(v^{\infty}) & \text{si } j \geq K+1 \end{cases}$$

 \longrightarrow Schéma discret Δt , Δx

Schéma implicite plutôt que semi-implicite ou explicite à cause de la régularité : même ordre de convergence (0.5 en $\Delta t / 1$ en Δx) mais pas de CFL.

Résultats numériques

implicite (var Δt)				implicite (var Δx)				explicite ($\Delta t = \Delta x^2/4$)		
K	J	erreur	сри	K	J	erreur	сри	J	erreur	сри
14		3.5e-3	0.16		6.	2.6e-2	1.76	6	3.7e-2	0.02
16		3.3e-3	0.62		7.	1.3e-2	1.94	7	1.9e-2	0.13
18		3.3e-3	1.24		8.	6.7e-3	2.31	8	9.4e-3	0.16
20	9	3.3e-3	3.05	20	9.	3.3e-3	3.05	9	4.7e-3	0.80
22		3.3e-3	9.87		10.	1.7e-3	4.48	10	2.4e-3	3.87
					11.	8.4e-4	7.71	11	1.2e-3	25.54
					12.	4.3e-4	14.37	12	6.0e-4	193.12
					13.	2.3e-4	33.90	13	3.1e-4	1971.31
								14	1.7e-4	17407.04

Comparaison des erreurs L^2 sur $\phi(u)$ et temps d'exécution (cpu) pour les schémas implicite et explicite par rapport à $\Delta t = 2^{-K}$, $\Delta x = 2^{-J}$.

Plan

Introduction

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

4 Schéma diphasique

Interface mobile : $u_+ + u_- > 1$

u et $\phi(u)$ en fonction de x dans le cas de ϕ symétrique

Question : Que sont $M(\tau)$ et $W(\tau)$?

Question : Que sont $M(\tau)$ et $W(\tau)$? Condition initiale type, $\delta > 0$:

$$U_j^0 = \left\{egin{array}{ccc} -1 & ext{si} \ j \leq K \ 2 & ext{si} \ j = K+1 \ 2+\delta & ext{si} \ j \geq K+2 \end{array}
ight.$$

Développement de Taylor : localement en temps

$$\begin{cases} U_{j \leq K-1} \text{ décroissant dans } \mathbf{S}_{-}, \\ U_{K} \text{ croissant à travers la phase instable I} \\ U_{j \geq K+1} \text{ décroissant dans } \mathbf{S}_{+}. \end{cases}$$

$$\begin{cases} M(\tau) = \mathbb{AD} =: \mathbb{B} \text{ avec } \mathbb{D} = diag(2, \dots, 2, -1, 2, \dots, 2) \\ W(\tau) = (0, \dots, 0, -3, 0, 3, 0, \dots, 0)^T =: \mathcal{B}, \end{cases}$$

$$\begin{cases} M(\tau) = \mathbb{AD} =: \mathbb{B} \text{ avec } \mathbb{D} = diag(2, \dots, 2, -1, 2, \dots, 2) \\ W(\tau) = (0, \dots, 0, -3, 0, 3, 0, \dots, 0)^T =: \mathcal{B}, \end{cases}$$

Solution : $U(\tau) = \exp(-\tau \mathbb{B})U(0) + \left(\int_0^\tau \exp(-s\mathbb{B})ds\right)\mathcal{B}.$

$$\begin{cases} M(\tau) = \mathbb{AD} =: \mathbb{B} \text{ avec } \mathbb{D} = diag(2, \dots, 2, -1, 2, \dots, 2) \\ W(\tau) = (0, \dots, 0, -3, 0, 3, 0, \dots, 0)^T =: \mathcal{B}, \end{cases}$$

Solution : $U(\tau) = \exp(-\tau \mathbb{B})U(0) + \left(\int_0^\tau \exp(-s\mathbb{B})ds\right)\mathcal{B}.$

Analyse spectrale : $\operatorname{Sp}(\mathbb{B}) = \{\mu_{-1} < 0\} \cup \{0\} \cup \{\mu_1, \dots, \mu_{J-2} > 0\}.$

$$\begin{cases} M(\tau) = \mathbb{AD} =: \mathbb{B} \text{ avec } \mathbb{D} = diag(2, \dots, 2, -1, 2, \dots, 2) \\ W(\tau) = (0, \dots, 0, -3, 0, 3, 0, \dots, 0)^T =: \mathcal{B}, \end{cases}$$

Solution : $U(\tau) = \exp(-\tau \mathbb{B})U(0) + \left(\int_0^\tau \exp(-s\mathbb{B})ds\right)\mathcal{B}.$

Analyse spectrale : $\operatorname{Sp}(\mathbb{B}) = \{\mu_{-1} < 0\} \cup \{0\} \cup \{\mu_1, \dots, \mu_{J-2} > 0\}.$

Temps de sortie (P_{μ} projecteurs spectraux) :

$$\tilde{\tau} \simeq \frac{\log\left(1 - [P_0 U(0)](K) - \sum_{\mu \in \mathsf{Sp}(\mathbb{B}) \setminus \{0\}} \frac{[P_\mu \mathcal{B}](K)}{\mu}\right)}{\log\left(\left[P_{\mu_{-1}}\left(U(0) - \frac{\mathcal{B}}{\mu_{-1}}\right)\right](K)\right)}$$

 \rightarrow Pas de schéma implicite ! Le schéma explicite capture la position de l'interface, mais u_L peut traverser la zone instable I.

Évolution en temps petit en (x, u) pour $(u_-, u_+) = (-2, 4)$.

animation

Évolution en temps petit en $(u, \phi(u))$ pour $(u_-, u_+) = (-2, 4)$.

Résultats numériques

interface obtenue par le schéma explicite

Plan

Introduction

- Modèle
- Théorie

2 Solution explicite du problème de Riemann

3 Schéma semi-discret

- Description du schéma
- Interface immobile
- Interface mobile

4 Schéma diphasique

Idée : utiliser la condition d'entropie d'Evans et Portilheiro

Matrice de projection
$$\Pi_j := \begin{pmatrix} 0_{j-1} & 0 & 0 \\ 0 & l_2 & 0 \\ 0 & 0 & 0_{J-j-1} \end{pmatrix}$$

Soit $U \in \mathbb{R}^J$, $j_* \in \{1, \dots, J\}$ et $C := C(U, j_*)$ la valeur de transition

$$C = C(U, j_*) := \frac{1}{2} \left(\phi_{-}(U_{j_*-1}) + \phi_{+}(U_{j_*+2}) \right).$$

Idée : utiliser la condition d'entropie d'Evans et Portilheiro

Matrice de projection
$$\Pi_j := \begin{pmatrix} 0_{j-1} & 0 & 0 \\ 0 & l_2 & 0 \\ 0 & 0 & 0_{J-j-1} \end{pmatrix}$$

Soit $U \in \mathbb{R}^J$, $j_* \in \{1, \dots, J\}$ et $C := C(U, j_*)$ la valeur de transition $C = C(U, j_*) := \frac{1}{2} \left(\phi_-(U_{j_*-1}) + \phi_+(U_{j_*+2}) \right).$

• Si $|C| \leq 1$, $\overline{C} = C$ et conditions de transmission :

$$\phi(U_{j_*}) = \phi(U_{j_*+1}) = \frac{1}{2} \left(\phi(U_{j_*-1}) + \phi(U_{j_*+2}) \right) = C(U, j_*)$$

Idée : utiliser la condition d'entropie d'Evans et Portilheiro

Matrice de projection
$$\Pi_j := \begin{pmatrix} 0_{j-1} & 0 & 0 \\ 0 & l_2 & 0 \\ 0 & 0 & 0_{J-j-1} \end{pmatrix}$$

Soit $U \in \mathbb{R}^{J}$, $j_{*} \in \{1, ..., J\}$ et $C := C(U, j_{*})$ la valeur de transition $C = C(U, j_{*}) := \frac{1}{2} (\phi_{-}(U_{j_{*}-1}) + \phi_{+}(U_{j_{*}+2})).$

• Si $|C| \leq 1$, $\overline{C} = C$ et conditions de transmission :

$$\phi(U_{j_*}) = \phi(U_{j_*+1}) = \frac{1}{2} \left(\phi(U_{j_*-1}) + \phi(U_{j_*+2}) \right) = C(U, j_*)$$

• Si C > 1, troncature : $\overline{C} = 1$ & $U_{j_*} = -1$ & $U_{j_*+1} = 2$

Idée : utiliser la condition d'entropie d'Evans et Portilheiro

Matrice de projection
$$\Pi_j := \begin{pmatrix} 0_{j-1} & 0 & 0 \\ 0 & l_2 & 0 \\ 0 & 0 & 0_{J-j-1} \end{pmatrix}$$

Soit $U \in \mathbb{R}^J$, $j_* \in \{1, \dots, J\}$ et $C := C(U, j_*)$ la valeur de transition $C = C(U, j_*) := \frac{1}{2} \left(\phi_-(U_{j_*-1}) + \phi_+(U_{j_*+2}) \right).$

• Si $|C| \leq 1$, $\overline{C} = C$ et conditions de transmission :

$$\phi(U_{j_*}) = \phi(U_{j_*+1}) = \frac{1}{2} \left(\phi(U_{j_*-1}) + \phi(U_{j_*+2}) \right) = C(U, j_*)$$

• Si C > 1, troncature : $\overline{C} = 1 \& U_{j_*} = -1 \& U_{j_*+1} = 2$

• Si C < -1, troncature : $\overline{C} = -1$ & $U_{j_*} = -2$ & $U_{j_*+1} = 1$

Soit

$$\mathbb{F}(U,j_*) := (0,\ldots,0, \quad \phi_-^{-1}(\overline{C}), \phi_+^{-1}(\overline{C}), 0,\ldots,0)$$

 j_* -ème élément

Soit

$$\mathbb{F}(U,j_*) := (0,\ldots,0, \quad \underbrace{\phi_-^{-1}(\overline{C})}_{-}, \phi_+^{-1}(\overline{C}), 0,\ldots,0)$$

 j_* -ème élément

Pour $U^n \in \mathbb{R}^J$ donné et

$$\begin{split} \tilde{U}^{n} &:= \mathbb{F}(U^{n}, j_{*}^{n}) + (I - \Pi^{j_{*}^{n}}) U^{n}, \\ \begin{pmatrix} \Pi_{j_{*}^{n}} U^{n+1} = \mathbb{F}(U^{n}, j_{*}^{n}), \\ (I - \Pi_{j_{*}^{n}}) U^{n+1} = (I - \Pi_{j_{*}^{n}}) \left(U^{n} - \frac{\Delta t}{\Delta x^{2}} \mathbb{A} \phi(\tilde{U}^{n}) \right) \\ \xi' &= \frac{2(T(C^{n}) - C^{n})}{(\phi_{+}^{-1}(T(C^{n})) - \phi_{-}^{-1}(T(C^{n}))) \Delta x} \\ j_{*}^{n+1} &= j_{*}^{n} + \Delta t[\xi'/\Delta x] + 1 \end{split}$$

Soit

$$\mathbb{F}(U,j_*) := (0,\ldots,0, \quad \underbrace{\phi_-^{-1}(\overline{C})}_{-}, \phi_+^{-1}(\overline{C}), 0,\ldots,0)$$

 j_* -ème élément

Pour $U^n \in \mathbb{R}^J$ donné et

$$\begin{split} \tilde{U}^{n} &:= \mathbb{F}(U^{n}, j_{*}^{n}) + (I - \Pi^{j_{*}^{n}}) U^{n}, \\ \begin{pmatrix} \Pi_{j_{*}^{n}} U^{n+1} = \mathbb{F}(U^{n}, j_{*}^{n}), \\ (I - \Pi_{j_{*}^{n}}) U^{n+1} = (I - \Pi_{j_{*}^{n}}) \left(U^{n} - \frac{\Delta t}{\Delta x^{2}} \mathbb{A} \phi(\tilde{U}^{n}) \right) \\ \xi' &= \frac{2(T(C^{n}) - C^{n})}{(\phi_{+}^{-1}(T(C^{n})) - \phi_{-}^{-1}(T(C^{n}))) \Delta x} \\ j_{*}^{n+1} &= j_{*}^{n} + \Delta t[\xi'/\Delta x] + 1 \end{split}$$

- Condition CFL $\Delta t = O(\Delta x^2)$
- Pas de point dans la zone instable I
- Généralisation possible au cas cubique
Résultats numériques

animation

Évolution de l'erreur (relative) de la position de l'interface $(u_-, u_+) = (-2, 4)$

< = > < = > < = >

• Analyser numériquement le cas cubique

• Problème multi-dimensionnel

• Trouver des méthodes numériques adaptées

• Explorer le cas des frontières oscillantes

Résultats préliminaires en dimension supérieure

Carré Papillon Obtenus avec GMSH et GetDP (C. Geuzaine et J.-F. Remacle)

Frontière ocillante

Frontière ocillante

 ${\color{black}{\leftarrow}} \Box {\color{black}{\leftarrow}} {\color{black}{\leftarrow}$

25 novembre 2011 46 / 47

Bibliographie

Josef Jäckle and Harry L. Frisch.

Relaxation of chemical potential and a generalized diffusion equation. *J. of Polymer Science*, 1985.

Amy Novick-Cohen and Robert L. Pego. Stable patterns in a viscous diffusion equation. *TAMS*, 1991.

Pavel I. Plotnikov.

Forward-backward parabolic equations and hysteresis. *J. of Mathematical Sciences*, 1999.

Irreversibility and hysteresis for a forward-backward diffusion equation. *M3AS*, 2004.

Corrado Mascia, Andrea Terracina, and Alberto Tesei. Two-phase entropy solutions of a forward-backward parabolic equation. *ARMA*, 2009.

Pauline Lafitte and Corrado Mascia. Numerical exploration of a forward–backward diffusion equation. *accepté dans M3AS*, 2011.