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APPLICATIONS OF NONLOCAL HEAT EQUATION

• A. Buades, B. Coll, and J.M M., A review of image denoising methods with a new one,
Multiscale Modeling and Simulation, 4 (2), 2005



Denoising, From DxO website
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Color image demosaicing
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Demosaicing of color images
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THE EFROS-LEUNG IMAGE AUTOSIMILARITY

A. Efros and Th. K. Leung Texture Synthesis by Non-parametric Sampling, IEEE International
Conference on Computer Vision, Corfu, Greece, September 1999



Image autosimilarity

Groups of similar windows in a digital image, long range interaction. First used by Efros and
Leung for texture synthesis. Fourier : too global, not geometrically adaptive. Wavelets: not
adaptive enough. Main idea: the image generates its own non local model because self-similarities
are non local.
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• Example 1 : removing text from images by the Efros Leung algorithm (“inpainting”)
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• Example 2 : changing the content of aerial views
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The main algorithm
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Example 3: texture synthesis from samples
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NOISE



The main assumption on noise

• Main Hypothesis In a digital image, the noise n(i) at each pixel i only depends on the
original pixel value Φ(i) and is additive, i.i.d. for all pixels j ∈ J(i) with the same original
value as i.

• J(i) is the neighborhood of i. The challenge is finding J(i) for every i. The simplest idea
to do so is to assume that all pixels with the same observed value u(i) have the same noise
model: neighborhood filters.

• A more sophisticated use of the Hypothesis : for a given pixel in an image, detect all pixels
which have the same underlying model.

• By the Hypothesis each j in J(i) obeys a model u(j) = v(i) + n(j) where n(j) are i.i.d. It is
then licit to perform a denoising of u(i) by replacing it by

NFu(i) =:
1

|J(i)|
∑

j∈J(i)

u(j).

• By the variance formula for independent variables one then obtains NFu(i) = v(i) + ñ(i)
where

Var(ñ(i)) =
1

|J(i)|Var(n(i)).

Image and film denoising by non local means p. 10/ 51



Figure 1: A. Buades, B. Coll, and J.M Morel, ”Neighborhood filters and PDE’s”, Numerische
Mathematik, 105 (1), 2006.
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FOUR NEIGHBORHOOD FILTERS FROM LOCAL TO NONLOCAL

• Gaussian mean : average of pixels in a whole Gaussian neighborhood.

Gρ[u](x) =
1

C(x)

∫

Ω

e
− |x−y|

2

ρ2 u(y)dy

where C(x) = C is the normalization parameter of the Gaussian parameter.

• Neighborhood filter. Average of pixels with a similar configuration in a whole Gaussian
neighborhood.

NFρ,h[u](x) =
1

C(x)

∫

Ω

e
− |x−y|

2

ρ2 e−
|u(x)−u(y)|2

h2 u(y) dy;

• Anisotropic filter (mean curvature motion): Average of spatially close pixels in the direction
of the level line

AFhu(x) = Gh ∗ u|l(~ξ) =
∫

R
Gh(t)u(x + t

Du⊥

|Du| )dt,

• NL-means filter. Average of pixels with a similar configuration in a whole Gaussian
neighborhood.

NLh,a[u](x) =
1

C(x)

∫

Ω

e−
1

h2

R
R2 Ga(t)|u(x+t)−u(y+t)|2dt u(y) dy,

where Ga is a Gaussian kernel of standard deviation a and h acts as a filtering parameter.
Markovian hypothesis: Pixels with a similar neighborhood have a similar grey level value.
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Diffusion kernel on graphs or discrete manifolds

• A. Buades, A. Chien, J.M Morel, and S. Osher : in preparation

• Leo Grady, Random Walks for Image Segmentation, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 28(11), 2006.

• S. Kindermann, S. Osher, P.W. Jones - Deblurring and denoising of images by nonlocal
functionals, Multiscale Modeling and Simulation 2005

• G. Gilboa, J. Darbon, S. Osher, and T. Chan, Nonlocal Convex Functionals for Image
Regularization 2006.

• A. Szlam, M. Maggioni, and R. R. Coifman, A general framework for adaptive regularization
based on diffusion processes on graphs, Yale technichal report, (2006).

• D. Comaniciu, and P. Meer, Mean shift: a robust approach toward feature space analysis,
Pattern Analysis and Machine Intelligence, 24(5), 2002.
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Diffusion kernel on graphs or discrete manifolds

• x → p(x) ∈M associates to a pixel in the image the “patch” around it.

• Define a symmetric isotropic kernel on the discrete “patch” manifold M

∀p, q ∈M, W0(p, q) = e−
||p−q||2

2σ2

• This operator defined on pixels thanks to the identification given by the mapping p :
∀x, y,W0(x, y) = W0(p(x), p(y)).

• Normalized filtering kernel: W (x, y) = W (p(x), q(y)) = 1
D(p)W0(p, q) ; D(p) =

∑
q W (p, q).

• The kernel W defines an operator on images g by Wg(x) =
∑

y W (x, y)g(y). This is a low-pass
filter because W1 = 1 and W is order preserving.

• High pass Laplace operator L and its symmetrized version L0 defined by L =: Id −W and
L0 = D

1
2 LD− 1

2 = Id−D− 1
2 W0D

− 1
2 , (2.4) where D = diagx(D(x)).

• L0 is a discrete graph Laplacian. The iteration of symmetric NL-means is interpreted as a
heat equation on the patch manifold (Gilboa, Osher) or as a Donoho-Johnstone threshold on
the eigenvalues of this Laplacian (Coifman, Szlam, Peyré)
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NONLOCAL HEAT KERNELS and EIGENVECTORS OF
LAPLACIAN



•Diffusion neighborhoods

Image Gaussian Anisotropic filt.

Neighborhood filter NLmeans
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The NL-means: An extension of all previous methods or Gestalt Grouping

• Flat region. The large coefficients are spread out like a convolution.

• Straight edge. The large coefficients are aligned like in a anisotropic filter.

• Curved edge. The weights favor pixels belonging to the same contour.

• Flat neighborhood. The average is made in the grey level neighborhood as the neighborhood
filter.
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• Periodic case. The large coefficients are distributed across the texture (non local).

• Repetitive structures. The weights favor similar configurations even they are far away (non
local).
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Figure 2: G. Peyré, Manifold models for signals and images, preprint, (2007).

Image and film denoising by non local means p. 19/ 51



Figure 3: G. Peyré, Manifold models for signals and images, preprint, (2007).
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Comparison: Visual quality: Input, Gauss, Neighborhood classic, Non local means

• Comparison on a periodic image
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Visual Comparison

- Restored images and removed noise by Gaussian convolution, sigma filter and NL-means.
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- Restored images and removed noise by the anisotropic filter, the sigma filter and the NL-means.
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TWO MAIN DENOISING PRINCIPLES



Denoising

We define a denoising method Dh as a decomposition

v = Dhv + n(Dh, v), (1)

where h is a filtering parameter which usually depends on the standard deviation of the noise σ.

• Preservation of original information. Features in n(Dh, v) = v −Dhv are removed from
v. We call this difference method noise when v is non or slightly noisy.

Principle 1 For every denoising algorithm, the method noise must be zero if the image
contains no noise and should be in general an image of independent zero-mean random
variables.

• No artifacts The transformation of a white noise into any correlated signal creates structure
and artifacts.

Principle 2 A denoising algorithm must transform a white noise image into a white
noise image (with lower variance).
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Other classic algorithms to be compared

- Minimization of the total variation

TVFλ(v) = arg min
u

∫

Ω

|Du|+ λ

∫
|v − u|2 (1)

- Wavelet thresholding

HWT =
∑

{(j,k)||〈v,ψj,k〉|>τ}
〈v, ψj,k〉ψj,k

where B = {ψj,k}(j,k) is a wavelet basis and τ the threshold.
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Method Noise

Preservation of original information. We recall that we defined the method noise as the
image difference n(Dh, v) = v −Dhv when v is non or slightly noisy.

Principle 1 For every denoising algorithm, the method noise must be zero if the image
contains no noise and should be in general an image of independent zero-mean random
variables.

Theorem 1 The convolution with a gaussian kernel Gh is such that

u−Gh ∗ u = −h2∆u + o(h2),

for h small enough.

Theorem 2 The image method noise of an anisotropic filter AFh is

u(x)−AFhu(x) = −1
2
h2|Du|curv(u)(x) + o(h2),

Theorem 3 The method noise of the Total Variation minimization is

u(x)− TVFλ(u)(x) = − 1
2λ

curv(TVFλ(u))(x).

Theorem 4 The method noise of a hard thresholding HWTµ(u) is

u−HWTµ(u) =
∑

{(j,k)||〈u,ψj,k〉|<τ}
〈u, ψj,k〉ψj,k
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Method Noise Method noise of six denoising methods

Gaussian, Anisotropic filtering, TV, stationary wavelet, neighborhood filter, NL-means.
In the noisy case, parameters are fixed in order to remove exactly an energy σ2 (σ = 2.5). The
same parameters have been used in the second experiment on the real image.
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Noise to Noise

No artifacts The transformation of a white noise into any correlated signal creates structure and
artifacts.

Principle 2 A denoising algorithm must transform a white noise image into a white
noise image (with lower variance).

Application of the denoising algorithms to a noise sample and its Fourier transforms. Gauss, TV,
wavelets, neighborhood filter, NL-means
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Films and NL-means

- The NL-means algorithm does not need to calculate the trajectories. It simply looks for the
resembling pixels, no matter where they lie in the movie.

Why do not average all?

- Straightforward extension as a spatiotemporal filter.
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Probability distributions in movement

The algorithm looks for the pixels with a more similar configuration even they have moved. This
algorithm is adapted to moving pictures without the need of an explicit motion estimation.
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Comparison

- Three consecutive frames of a noisy image sequence. The noisy sequence has been obtained by
the addition of a Gaussian additive white noise (σ = 15) to the original sequence.

- Comparison experiment between the motion compensated neighborhood filter and the NL-means.
The motion estimation has been obtained by the block matching algorithm.
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COLORIZATION AND SEGMENTATION BY
DIFFUSION



Colorization and segmentation

which is decomposed as in Y, U, V as (seeds in color).
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• Non local heat equation with neighborhood fixed by the grey level image and color seeds
Dirichlet condition.

• Replace each pixel (x, y) with no initial color by the weighted mean

û(x, y) =
1
|B|

∑

(v,w)∈B

u(v, w).

where B is the set of pixels with grey level similar to (x, y).

• Iterate
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The single point comparison of the neighborhood filter can lead to the mixing of objects color.
Middle: neighborhhod filter (Grady), right : NL-means.
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MEDICAL IMAGING



Grady and Funka-Lea multi-label segmentation for medical images
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Histogram concentration and enhancing 3D.

• Algorithm easily generalized to 3D.

• Application to a CT 3D image of the head where blood vessels should be segmented.

We diffuse the 3D image conditionally to the weights given by the initial data.
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Figure 4: Experience on a 2D image. From top to bottom: original image, iterative application of a

Gaussian mean, iterative application of a median filter, proposed method with neighborhood filter weights

and proposed method with NL-means weights. On the middle central line of each image. On the right,

histogram of the filtered image Image and film denoising by non local means p. 36/ 51



Figure 5: Application to a CT 3D image of the head where blood vessels should be segmented. Top: One

single image of the CT image with marked interested area. Middle: Display of interested area for several

slices of the 3D image. Second row: filtered slices by using median filter. Third row: neighborhood filter.

Fourth row: 3D nonlocal heat equation.
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Figure 6: Grey level histogram of interest 3D areas. Top left: original 3D image before. Top right: after

median filtering. Bottom left: after proposed method with neighborhood filter weights. Bootm right;

proposed method with NL-means weights The background is now represented by a few grey level values

when the volume is filtered by the proposed method and therefore a threshold can be more easily and

automatically applied.
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Figure 7: From top to bottom and left to right: original volume, filtered by iterative median filter,

neighborhood filter and NL-means weights. The isosurface extracted from the original image presents

many irregularities due to noise, while the median filter makes important parts disappear and vessels

disconnect. NL-means weight keeps more vessels. Image and film denoising by non local means p. 39/ 51



Figure 8: Result of the Grady seed neighborhood diffusion
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Figure 9: Same experiment with automatic threshold at the first local minimum after the background

pick, same patient, one year interval.
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3D Image segmentation by nonlocal heat equation

• Six of the 180 slices of a brain IRM.

• Manual segmentation of a single slice (0 black, 1 white).
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• Colorization algorithm

• Propagation to the whole 3D image from a single slice.
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Superficie 3D extreta de la segmentació del cervell.
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DEMOSAICING



PDEs II: AVOIDING SHOCKS BY LINEAR
REGRESSION



Drawbacks

• The neighborhood filter and the NL-means share a shock effect.

In general, image filters can be better understood by establishing their asymptotic action
when they are made more and more local. This action is then described by a PDE.

• Details and fine structures can be excessively filtered because of the window comparison
and the exponential kernel.
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Geometrical explanation

x

uHxL

uHxL+h

uHxL-h

YNFHxL

x- x+

The number of points y satisfying u(x) − h < u(y) ≤ u(x) is larger than the number satisfying
u(x) ≤ u(y) < u(x) + h. Thus, the average value Y NF (x) is smaller than u(x), enhancing that
part of the signal. The regression line of u inside (x−, x+) better approximates the signal at x.
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Linear regression correction

• Locally approximate the image by a plane.

• The filtered value at x = (x1, x2) is given by ax1 + bx2 + c, where a, b, c minimize

min
a,b,c

∫

Bρ(x)

w(x,y)(u(y)− ay1 − by2 − c)2dy

and

w(x,y) = e−
|u(y)−u(x)|2

h2 .

Points with a grey level value close to u(x) will have a larger influence in the minimization
process than those with a further grey level value.

Theorem 5 Suppose u ∈ C2(Ω), and let ρ, h > 0 such that ρ, h → 0 and O(ρ) = O(h). Let g̃ be the

continuous function defined as g̃(0) = 1
6
,

g̃(t) =
1

4t2

 
1− 2t e−t2

E(t)

!
,

for t 6= 0, where E(t) = 2
R t

0
e−s2

ds. Then

LYNFh,ρu(x)− u(x) ' (uξξ + g̃(
ρ

h
|Du|) uηη)

ρ2

6
.

where g̃ is a positive and decreasing to zero function satisfying g(0) = 1.

Image and film denoising by non local means p. 48/ 51



The regression correction filters the level lines by a curvature motion without computing any
derivative.
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The NL-means linear regression correction

• In order to apply the regression correction to the NL-means algorithm we restrict the search
zone for a pixel x = (x1, x2) to a neighborhood Bρ(x). The filtered value is given by
ax1 + bx2 + c, where a, b, c minimize

min
a,b,c

∫

Bρ(x)

w(x,y)(u(y)− ay1 − by2 − c)2dy

and
w(x,y) = e−

1
h2

R
R2 Ga(t)|u(x+t)−u(y+t)|2dt.

• The Neighborhood filter

• The NL-means
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• Dr Mabuse sequence.
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Linear regression correction films

The irregularities of the edges due to the noise are enhanced and lead to very irregular and
oscillatory contours. The irregularities of a certain edge are different from frame to frame leading
to a false motion impression when the sequence is played.

Two consecutive frames of a noisy sequence
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Frames filtered by the neighborhood filter and its correction
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Difference between the two consecutive frames

The linear regression correction avoids this effect and oscillations from frame to frame are reduced.

Image and film denoising by non local means p. 54/ 51



STATISTICAL CONSISTENCY OF NL-MEANS



Consistency of the NL-means algorithm

• Hypothesis: As the size of the image grows we can find many similar samples for all the details
of the image (stationarity assumptions).

– Let Z denote the sequence of random variables Zi = {V (i), V (Ni\{i})}
– Let denote N̂Ln the NL-means algorithm applied to the subsequence of Z, Zn =
{V (i), V (Ni\{i})}n

i=1 and where v(Ni\{i}) is used to compute the weights instead of
v(Ni).

– Let r(i) denote E[V (i) | V (Ni\{i}) = v(Ni\{i})].

• Theorem 6 (Conditional expectation theorem) Let Z = {V (i), V (Ni\{i})} for i =
1, 2, . . . be a strictly stationary and mixing process. Then,

|NLn(i)− r(i)| → 0 a.s

for i ∈ {1, . . . , n}.

• Additive white noise model

Theorem 7 Let V, U,N be random fields on I such that V = U + N , where N is a signal
independent white noise. Then, the following statements are hold.

(i) E[V (i) | V (Ni\{i}) = x] = E[U(i) | V (Ni\{i}) = x] for all i ∈ I and x ∈ Rp.

(ii) The expected random variable E[U(i) | V (Ni\{i})] is the function of V (Ni\{i}) that
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minimizes the mean square error

min
g

E[U(i)− g(V (Ni\{i}))]2 (1)
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