Approche probabiliste pour la résolution d'équations paraboliques semi-linéaires B. Bouchard

Ceremade, University Paris-Dauphine

Joint works with:

I. Ekeland, N. Touzi, R. Elie, J.-F. Chassagneux and S. Menozzi

BSDEs and PDEs: reminder

Semilinear parabolic PDEs

The solution u of

$$
-\mathcal{L}u - f(\cdot, u, Du'\sigma) = 0 \text{ on } [0, T) \times \mathbb{R}^d
$$

$$
u(T, \cdot) = g \text{ on } \mathbb{R}^d
$$

with L the Dynkin operator

$$
\mathcal{L}u = \frac{\partial}{\partial t}u + b(x)'Du + \frac{1}{2}\text{Tr}\left[\sigma\sigma'(x)D^2u\right]
$$

is associated to the solution (Y, Z) of

$$
Y_t = g(X_T) + \int_t^T f(X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s
$$

where

$$
X_t = X_0 + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s,
$$

through

$$
Y_t = u(t, X_t) \quad , \quad Z_t = Du'\sigma(t, X_t)
$$

Semilinear parabolic PDEs

The solution u of

$$
-\mathcal{L}u - f(\cdot, u, Du'\sigma) = 0 \text{ on } [0, T) \times \mathbb{R}^d
$$

$$
u(T, \cdot) = g \text{ on } \mathbb{R}^d
$$

with L the Dynkin operator

$$
\mathcal{L}u = \frac{\partial}{\partial t}u + b(x)'Du + \frac{1}{2}\text{Tr}\left[\sigma\sigma'(x)D^2u\right]
$$

is associated to the solution (Y, Z) of

$$
Y_t = g(X_T) + \int_t^T f(X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s
$$

where

$$
X_t = X_0 + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s,
$$

Remark: if f is independent of u and Du then

$$
Y_t = u(t, X_t) = \mathbb{E}\left[g(X_T) + \int_t^T f(X_s)ds \mid \mathcal{F}_t\right]
$$

Numerical resolution: first approaches

• Ma, Protter and Yong (94), Douglas, Ma and Protter (96), Ma, Protter, San Martin and Torres (02): solve the PDE $\Rightarrow (\widehat{u}, \widehat{Du})$ and set $(Y^{\pi}, Z^{\pi}) = (\widehat{u}, \widehat{Du})(\cdot, X^{\pi})$.

• Coquet, Mackevicius and Memin (98), Briand, Delyon and Memin (01), Antonelli and Kohatsu (00): approximate W by a discrete random walk (with values in a finite statespace) and solve the associated discrete time BSDE.

 \Rightarrow Curse of dimensionality !

Euler scheme approximation

The forward process X

- Fix a grid of $[0, T]$: $\pi := \{t_i := hi, i \leq n\}$ with $h = T/n$.
- Set $X_0^{\pi} = X_0$
- For $i=1,\ldots,n$, set

$$
X_{t_i}^{\pi} = X_{t_{i-1}}^{\pi} + b(X_{t_{i-1}}^{\pi})h + \sigma(X_{t_{i-1}}^{\pi})(W_{t_i} - W_{t_{i-1}})
$$

The forward process X

- Fix a grid of $[0, T]$: $\pi := \{t_i := hi, i \leq n\}$ with $h = T/n$.
- Set $X_0^{\pi} = X_0$
- For $i=1,\ldots,n$, set

$$
X_{t_i}^{\pi} = X_{t_{i-1}}^{\pi} + b(X_{t_{i-1}}^{\pi})h + \sigma(X_{t_{i-1}}^{\pi})(W_{t_i} - W_{t_{i-1}})
$$

• Error:

$$
\max_{i
$$

The BSDE (Y, Z) : Adapted backward Euler scheme

• For $i = n-1, \ldots, 0$, write

$$
Y_{t_i} \sim Y_{t_{i+1}} + f(X_{t_i}, Y_{t_i}, Z_{t_i})h - Z_{t_i}(W_{t_{i+1}} - W_{t_i})
$$
 (1)

and take $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t_i}\right]$ to get

$$
Y_{t_i} \sim \mathbb{E}\left[Y_{t_{i+1}} \mid \mathcal{F}_{t_i}\right] + f(X_{t_i}, Y_{t_i}, Z_{t_i})h
$$

The BSDE (Y, Z) : Adapted backward Euler scheme

• For $i = n - 1, \ldots, 0$, write

$$
Y_{t_i} \sim Y_{t_{i+1}} + f(X_{t_i}, Y_{t_i}, Z_{t_i})h - Z_{t_i}(W_{t_{i+1}} - W_{t_i})
$$
 (2)

and take $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t_i}\right]$ to get

$$
Y_{t_i} \sim \mathbb{E}\left[Y_{t_{i+1}} \mid \mathcal{F}_{t_i}\right] + f(X_{t_i}, Y_{t_i}, Z_{t_i})h
$$

multiply (2) by $(W_{t_{i+1}} - W_{t_i})$

$$
Y_{t_i}(W_{t_{i+1}} - W_{t_i}) \sim Y_{t_{i+1}}(W_{t_{i+1}} - W_{t_i}) + f(X_{t_i}, Y_{t_i}, Z_{t_i})(W_{t_{i+1}} - W_{t_i})h
$$

-
$$
Z_{t_i}(W_{t_{i+1}} - W_{t_i})(W_{t_{i+1}} - W_{t_i})
$$

and take $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t_i}\right]$

$$
0 \sim \mathbb{E}\left[Y_{t_{i+1}}(W_{t_{i+1}}-W_{t_i}) \mid \mathcal{F}_{t_i}\right] - Z_{t_i}h
$$

The BSDE (Y, Z) : Adapted backward Euler scheme (2)

• Recall:

$$
Y_{t_i} \sim \mathbb{E}\left[Y_{t_{i+1}} \mid \mathcal{F}_{t_i}\right] + f(X_{t_i}, Y_{t_i}, Z_{t_i})h
$$

0 $\sim \mathbb{E}\left[Y_{t_{i+1}}(W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i}\right] - Z_{t_i}h$

The BSDE (Y, Z) : Adapted backward Euler scheme (2)

• Recall:

$$
Y_{t_i} \sim \mathbb{E}\left[Y_{t_{i+1}} \mid \mathcal{F}_{t_i}\right] + f(X_{t_i}, Y_{t_i}, Z_{t_i})h
$$

\n
$$
0 \sim \mathbb{E}\left[Y_{t_{i+1}}(W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i}\right] - Z_{t_i}h
$$

\n• Set $Y_T^{\pi} = g(X_T^{\pi})$ and for $i = n - 1, ..., 0$
\n
$$
Y_{t_i}^{\pi} = \mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_i}\right] + f(X_{t_i}^{\pi}, Y_{t_i}^{\pi}, Z_{t_i}^{\pi})h
$$

where

$$
Z_{t_i}^{\pi} = h^{-1} \mathbb{E} \left[Y_{t_{i+1}}^{\pi} (W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i} \right]
$$

The BSDE (Y, Z) : Adapted backward Euler scheme (2)

• Recall:

$$
Y_{t_i} \sim \mathbb{E}\left[Y_{t_{i+1}} \mid \mathcal{F}_{t_i}\right] + f(X_{t_i}, Y_{t_i}, Z_{t_i})h
$$

\n
$$
0 \sim \mathbb{E}\left[Y_{t_{i+1}}(W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i}\right] - Z_{t_i}h
$$

\n• Set $Y_T^{\pi} = g(X_T^{\pi})$ and for $i = n - 1, ..., 0$
\n
$$
Y_{t_i}^{\pi} = \mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_i}\right] + f(X_{t_i}^{\pi}, Y_{t_i}^{\pi}, Z_{t_i}^{\pi})h
$$

where

$$
Z_{t_i}^{\pi} = h^{-1} \mathbb{E} \left[Y_{t_{i+1}}^{\pi} (W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i} \right]
$$

• Could alternatively set

$$
Y_{t_i}^{\pi} = \mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_i}\right] + \mathbb{E}\left[f(X_{t_i}^{\pi}, Y_{t_{i+1}}^{\pi}, Z_{t_i}^{\pi}) \mid \mathcal{F}_{t_i}\right]h
$$

Numerical implementation

- Bally, Pages and Printems for the case f independent of Z .
- Replace X^{π} by a quantized version \hat{X}^{π} taking a finite number of possible values.
- Estimate the transition probabilities of \hat{X}^{π} .
- Use the algorithm: $\hat{Y}^{\pi}_{T}=g(\hat{X}^{\pi}_{T})$ and for $i=n-1,\ldots,0$

$$
\hat{Y}_{t_i}^{\pi} = \mathbb{E}\left[\hat{Y}_{t_{i+1}}^{\pi} \mid \hat{X}_{t_i}^{\pi}\right] + f(\hat{X}_{t_i}^{\pi}, \hat{Y}_{t_i}^{\pi})h
$$

Pure Monte-Carlo approaches

- Simulate $(X^{\pi,j}, W^j, , j \leq N)$
- \bullet Set $\widehat{Y}^{\pi,j}_T = g(X^{\pi,j}_T)$ $\overset{\pi, j}{T})$

• Given $\hat{\mathbb{E}}$ an approximation of \mathbb{E} based on the simulated data, use the induction

$$
\begin{array}{rcl}\n\widehat{Y}_{t_i}^{\pi,j} & = & \widehat{\mathbb{E}} \left[\widehat{Y}_{t_{i+1}}^{\pi} \mid X_{t_i}^{\pi,j} \right] + f(X_{t_i}^{\pi,j}, \widehat{Y}_{t_i}^{\pi,j}, \widehat{Z}_{t_i}^{\pi,j}) h \\
\widehat{Z}_{t_i}^{\pi,j} & = & h^{-1} \widehat{\mathbb{E}} \left[\widehat{Y}_{t_{i+1}}^{\pi}(W_{t_{i+1}} - W_{t_i}) \mid X_{t_i}^{\pi,j} \right]\n\end{array}
$$

• Two alternatives :

1. Chevance (97), Longstaff and Schwartz (01), Gobet, Lemor and Warin (05): non-parametric regression.

2. Lions and Regnier (01), B., Ekeland and Touzi (04), B. and Touzi (04): Malliavin calculus approach to rewrite conditional expectations in terms of unconditional expectations.

Approximation error

Control of the approximation error

• Say $f \equiv 0$, then

$$
Y_{t_i} = g(X_T) + \int_{t_i}^T f(X_s, Y_s, Z_s) ds - \int_{t_i}^T Z_s dW_s
$$

= $Y_{t_{i+1}} - \int_{t_i}^{t_{i+1}} Z_s dW_s$

implies

$$
Y_{t_i} = \mathbb{E}\left[Y_{t_{i+1}} | \mathcal{F}_{t_i}\right].
$$

Control of the approximation error

• Say $f \equiv 0$, then

$$
Y_{t_i} = g(X_T) + \int_{t_i}^T f(X_s, Y_s, Z_s) ds - \int_{t_i}^T Z_s dW_s
$$

= $Y_{t_{i+1}} - \int_{t_i}^{t_{i+1}} Z_s dW_s$

implies

$$
Y_{t_i} = \mathbb{E}\left[Y_{t_{i+1}} | \mathcal{F}_{t_i}\right].
$$

Thus

$$
\max_{i < n} \mathbb{E}\left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}^\pi|^2\right] \geq \max_{i < n} \mathbb{E}\left[|Y_{t_{i+1}} - Y_{t_i}^\pi|^2\right] \geq \max_{i < n} \mathbb{E}\left[|Y_{t_{i+1}} - Y_{t_i}|^2\right]
$$
\n
$$
\geq c \max_{i < n} \mathbb{E}\left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}|^2\right] =: c \mathcal{R}(Y)_{\mathcal{S}^2}
$$

for some $c > 0$.

Control of the approximation error (2)

• Set

$$
\tilde{Z}_{t_i} := h^{-1} \mathbb{E}\left[\int_{t_i}^{t_{i+1}} Z_s ds \mid \mathcal{F}_{t_i}\right]
$$

then

$$
\mathbb{E}\left[\sum_{i} \int_{t_i}^{t_{i+1}} \|Z_t - Z_{t_i}^{\pi}\|^2 dt\right] \geq \mathbb{E}\left[\sum_{i} \int_{t_i}^{t_{i+1}} \|Z_t - \tilde{Z}_{t_i}\|^2 dt\right] =: \mathcal{R}(Z)_{\mathcal{H}^2}
$$

Control of the approximation error (3)

• Conclusion: up to a constant $c > 0$, the error

$$
\text{Err}(h)^2 := \max_{i < n} \mathbb{E}\left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}^\pi|^2\right] + \mathbb{E}\left[\sum_i \int_{t_i}^{t_{i+1}} \|Z_t - Z_{t_i}^\pi\|^2 dt\right]
$$

is bounded from below by

$$
\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = \max_{i < n} \mathbb{E}\left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}|^2\right] + \mathbb{E}\left[\sum_i \int_{t_i}^{t_{i+1}} \|Z_t - \tilde{Z}_{t_i}\|^2 dt\right]
$$

Control of the approximation error (3)

• Conclusion: up to a constant $c > 0$, the error

$$
\text{Err}(h)^2 := \max_{i < n} \mathbb{E}\left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}^\pi|^2\right] + \mathbb{E}\left[\sum_i \int_{t_i}^{t_{i+1}} \|Z_t - Z_{t_i}^\pi\|^2 dt\right]
$$

is bounded from below by

$$
\mathcal{R}(Y)_{S^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = \max_{i < n} \mathbb{E}\left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}|^2\right] + \mathbb{E}\left[\sum_i \int_{t_i}^{t_{i+1}} \|Z_t - \tilde{Z}_{t_i}\|^2 dt\right]
$$

• One can actually show that

$$
\text{Err}(h)^2 = O\left(\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} + h\right)
$$

Control of the approximation error (4)

• Thus

$$
\text{Err}(h)^2 = O\left(\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} + h\right)
$$

where (formally)

$$
\mathcal{R}(Y)_{\mathcal{S}^2} = \max_{i < n} \mathbb{E}[\sup_{t \in [t_i, t_{i+1}]} |\underbrace{u(t, X_t)}_{Y_t} - \underbrace{u(t_i, X_{t_i})}_{Y_{t_i}}|^2]
$$

and

$$
\mathcal{R}(Z)_{\mathcal{H}^2} = \mathbb{E}[\sum_i \int_{t_i}^{t_{i+1}} \|\underline{Du'}\sigma(t, X_t) - h^{-1}\mathbb{E}\left[\int_{t_i}^{t_{i+1}} Du'\sigma(s, X_s) \mid \mathcal{F}_{t_i}\right] \|^2 dt]
$$

• The error depends on a very weak notion of regularity of (u, Du) .

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

> $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

> $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$

• Corollary: u is $\frac{1}{2}$ -Hölder in t and Lipschitz in x .

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

> $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$

• Elements of proof for $R(Z)_{H^2}$: (case $f = 0$, $d = 1$, smooth coefficients)

$$
Y_t = u(t, X_t) = \mathbb{E}\left[g(X_T) \mid \mathcal{F}_t\right]
$$

\n
$$
Z_t = Du(t, X_t)\sigma(X_t) = \frac{\partial}{\partial X_0}u(t, X_t)(\frac{\partial}{\partial X_0}X_t)^{-1}\sigma(X_t)
$$

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

> $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$

• Elements of proof for $R(Z)_{H^2}$: (case $f = 0$, $d = 1$, smooth coefficients)

$$
Y_t = u(t, X_t) = \mathbb{E}\left[g(X_T) \mid \mathcal{F}_t\right]
$$

\n
$$
Z_t = Du(t, X_t)\sigma(X_t) = \frac{\partial}{\partial X_0}u(t, X_t)(\frac{\partial}{\partial X_0}X_t)^{-1}\sigma(X_t)
$$

\n
$$
= \mathbb{E}\left[Dg(X_T)\frac{\partial}{\partial X_0}X_T \mid \mathcal{F}_t\right] \underbrace{(\frac{\partial}{\partial X_0}X_t)^{-1}\sigma(X_t)}_{\text{say=1} \text{for simplicity}}
$$

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

> $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$

• Elements of proof for $\mathcal{R}(Z)_{\mathcal{H}^2}$: (case $f = 0$, $d = 1$, smooth coefficients) Then,

$$
Z_t = \mathbb{E}\left[Dg(X_T)\frac{\partial}{\partial X_0}X_T | \mathcal{F}_t\right]
$$

is a Martingale $(\mathbb{E}[Z_t | \mathcal{F}_s] = Z_s$ for $s \le t)$

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

> $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$

• Elements of proof for $\mathcal{R}(Z)_{\mathcal{H}^2}$: (case $f = 0$, $d = 1$, smooth coefficients) Then,

$$
Z_t = \mathbb{E}\left[Dg(X_T)\frac{\partial}{\partial X_0}X_T | \mathcal{F}_t\right]
$$

is a Martingale $(\mathbb{E}\left[Z_t | \mathcal{F}_s\right] = Z_s$ for $s \leq t)$ which implies

$$
\mathbb{E}\left[|Z_t - Z_{t_i}|^2\right] \leq \mathbb{E}\left[Z_{t_{i+1}}^2 - Z_{t_i}^2\right], \ t \in [t_i, t_{i+1}]
$$

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

> $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$

• Elements of proof for $\mathcal{R}(Z)_{\mathcal{H}^2}$: (case $f = 0$, $d = 1$, smooth coefficients) Then,

$$
Z_t = \mathbb{E}\left[Dg(X_T)\frac{\partial}{\partial X_0}X_T | \mathcal{F}_t\right]
$$

is a Martingale $(\mathbb{E}\left[Z_t | \mathcal{F}_s\right] = Z_s$ for $s \leq t)$ which implies

$$
\mathbb{E}\left[|Z_t - Z_{t_i}|^2\right] \le \mathbb{E}\left[Z_{t_{i+1}}^2 - Z_{t_i}^2\right], \ t \in [t_i, t_{i+1}]
$$

and

$$
\int_{t_i}^{t_{i+1}} \mathbb{E}\left[|Z_t - \tilde{Z}_{t_i}|^2 \right] dt \le \int_{t_i}^{t_{i+1}} \mathbb{E}\left[|Z_t - Z_{t_i}|^2 \right] dt \le h \mathbb{E}\left[Z_{t_{i+1}}^2 - Z_{t_i}^2 \right] .
$$

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the coefficients are Lipschitz continuous. Then,

$$
\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h) \quad \text{and} \quad \text{Err}(h) = O(h^{\frac{1}{2}})
$$

We thus obtain a $O(h)$ behavior for

$$
\mathcal{R}(Y)_{\mathcal{S}^2} = \max_{i < n} \mathbb{E}[\sup_{t \in [t_i, t_{i+1}]} |\underbrace{u(t, X_t)}_{Y_t} - \underbrace{u(t_i, X_{t_i})}_{Y_{t_i}}|^2]
$$

and

$$
\mathcal{R}(Z)_{\mathcal{H}^2} = \mathbb{E}[\sum_i \int_{t_i}^{t_{i+1}} \|\underline{Du'}\sigma(t, X_t) - h^{-1}\mathbb{E}\left[\int_{t_i}^{t_{i+1}} Du'\sigma(s, X_s) \mid \mathcal{F}_{t_i}\right] \|^2 dt]
$$

with the only assumption that the coefficients are Lipschitz continuous. No ellipticity condition.

Extension 1:

Semilinear parabolic IPDEs

and systems

B. and Elie (05)

PDEs with integral term

The solution u of

 $-\mathcal{L} u-f(\cdot,u,D u' \sigma, \mathcal{I}[u](t,x))\;\;=\;\;0\quad \text{on}\,\;[0,T)\times\mathbb{R}^d\,,\,\,u(T,\cdot){=}g\quad \text{on}\,\;\mathbb{R}^d$ with the non local term

$$
\mathcal{I}[u](t,x) := \int_E \{u(t,x+\beta(x,e)) - u(t,x)\} \,\rho(e) \,\lambda(de)
$$

and L the non local Dynkin operator

 $\mathcal{L}u =$ ∂ ∂t $u + b(x)'Du +$ 1 2 $\text{Tr}\left[\sigma\sigma'(x)D^2u\right]+$ Z E ${u(t, x + \beta(x, e)) - u(t, x) - Du(t, x)\beta(x, e)} \lambda(de)$ is associated to the solution (Y, Z, U) of

$$
Y_t = g(X_T) + \int_t^T f(X_s, Y_s, Z_s, \int_E \rho(e)U_s(e)\lambda(de))ds - \int_t^T Z_s dW_s - \int_t^T \int_E U_s(e)\overline{\mu}(de, ds)
$$

where

$$
X_t = X_0 + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \int_0^t \int_E \beta(X_{s-}, e)\bar{\mu}(de, ds)
$$

through

$$
Y_t = u(t, X_t) \quad , \quad Z_t = Du'\sigma(t, X_t) \quad , \quad U_t(e) = u(t, X_{t-} + \beta(X_{t-}, e)) - u(t, X_{t-})
$$

Systems of PDEs

Pardoux, Pradeilles and Rao (97), Sow and Pardoux (04).

• System of κ PDE's $(m = 0, \ldots, \kappa - 1)$

$$
0 = u_t^m + b'_m D u^m + \frac{1}{2} \text{Tr}[\sigma_m \sigma'_m D^2 u^m] + f_m(\cdot, u, (D u^m)'\sigma_m)
$$

$$
g_m = u^m(T, \cdot).
$$

• Define for $i = 0, \ldots, \kappa - 1$

$$
\tilde{f}(m, x, y, \gamma, z) = f_m\left(x, (\ldots, y + \gamma^{\kappa-2}, y + \gamma^{\kappa-1}, \underbrace{y}_{i}, y + \gamma^1, y + \gamma^2, \ldots), z\right)
$$

• Set
$$
E = \{1, ..., \kappa - 1\}
$$
, $\lambda(de) = \lambda \sum_{k=1}^{\kappa - 1} \delta_k(e)$ and

$$
M_t = \int_0^t \int_E e\mu(de, ds) [\kappa]
$$

Systems of PDEs

Pardoux, Pradeilles and Rao (97), Sow and Pardoux (04).

• System of κ PDE's $(m = 0, \ldots, \kappa - 1)$

$$
0 = u_t^m + b'_m D u^m + \frac{1}{2} \text{Tr}[\sigma_m \sigma'_m D^2 u^m] + f_m(\cdot, u, (Du^m)'\sigma_m)
$$

$$
g_m = u^m(T, \cdot).
$$

$$
\Rightarrow u^{M_t}(t, X_t) = Y_t \text{ where}
$$

\n
$$
dX_t = b_{M_t}(X_t)dt + \sigma_{M_t}(X_t)dW_t
$$

\n
$$
-dY_t = \tilde{f}(M_t, X_t, Y_t, U_t, Z_t)dt - \lambda \sum_{k=1}^{\kappa-1} U(k)_t dt - Z_t dW_t - \int_E U_t(e)\overline{\mu}(de, dt)
$$

\n
$$
Y_T = g_{M_T}(X_T)
$$

Regularity result

• Theorem (B. and Elie 05): Assume all the coefficients are Lipschitz continuous and that $\mathbf H$: For each $e\in E$, the map $x\in \mathbb R^d\mapsto \beta(x,e)$ admits a Jacobian matrix $\nabla \beta(x,e)$ such that the function

$$
(x,\xi) \in \mathbb{R}^d \times \mathbb{R}^d \mapsto a(x,\xi;e) := \xi'(\nabla \beta(x,e) + I_d)\xi
$$

satisfies one of the following condition uniformly in $(x,\xi)\in\mathbb{R}^d\times\mathbb{R}^d$

$$
a(x,\xi;e) \ge |\xi|^2 K^{-1}
$$
 or $a(x,\xi;e) \le -|\xi|^2 K^{-1}$

.

Then,

$$
\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h) \quad \text{and} \quad \text{Err}(h) = O(h^{\frac{1}{2}})
$$

Remark: Same result without H if the coefficients are C_b^1 with Lipschitz first derivatives.

Extension 2:

Free boundary problems

B. and J.-F. Chassagneux (06)

Representation

The solution u of

 $\min \left\{ -\mathcal{L} u - f(\cdot, u, Du'\sigma) \;,\; u - g \right\} \;\;=\;\; 0 \quad \text{on}\; \llbracket 0, T) \times \mathbb{R}^d \;,\; u(T, \cdot) {=} g \quad \text{on}\; \mathbb{R}^d$ is associated to the solution (Y, Z, K) of

$$
Y_t = g(X_T) + \int_t^T f(X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s + K_T - K_t
$$

\n
$$
Y_t \ge g(X_t) , t \le T , \int_0^T (Y_s - g(X_s)) dK_s = 0 \text{ and } K \uparrow,
$$

through

$$
Y_t = u(t, X_t) \quad , \quad Z_t = Du'\sigma(t, X_t)
$$

Approximation scheme

• Backward "American" scheme:

$$
Z_{t_i}^{\pi} = h^{-1} \mathbb{E} \left[Y_{t_{i+1}}^{\pi} (W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i} \right]
$$

\n
$$
\tilde{Y}_{t_i}^{\pi} = \mathbb{E} \left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_i} \right] + h \ f(X_{t_i}^{\pi}, Y_{t_i}^{\pi}, Z_{t_i}^{\pi})
$$

\n
$$
Y_{t_i}^{\pi} = \max \left\{ g(X_{t_i}^{\pi}), \ \tilde{Y}_{t_i}^{\pi} \right\}, \ i \leq n - 1.
$$

with the terminal condition

$$
Y_T^{\pi} = g(X_T^{\pi}).
$$

Formulation for Z ?

• Previous approach $(d = 1, f = 0)$

$$
Y_t = u(t, X_t) = \mathbb{E}\left[g(X_{\tau^t}) \mid \mathcal{F}_t\right] \text{ with } \tau^t := \inf\{s \ge t : Y_s = g(X_s)\}
$$

\n
$$
Z_t = Du(t, X_t)\sigma(X_t) = \frac{\partial}{\partial X_0}u(t, X_t)(\frac{\partial}{\partial X_0}X_t)^{-1}\sigma(X_t)
$$

\n
$$
= \mathbb{E}\left[Dg(X_{\tau^t})\frac{\partial}{\partial X_0}X_{\tau^t} \mid \mathcal{F}_t\right](\frac{\partial}{\partial X_0}X_t)^{-1}\sigma(X_t)
$$

⇒ Problem...

Discretely reflected BSDE

 \bullet (Y, Z, K) solution of

$$
Y_t = g(X_T) + \int_t^T f(X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s + K_T - K_t
$$

\n
$$
Y_t \geq g(X_t) , t \in \pi ,
$$

with $K_{t_{i+1}} = K_{t_i} + [Y_{t_{i+1}-} - g(X_{t_{i+1}})]^{-}$.

• Then (for
$$
f = 0
$$
)
\n
$$
Z_t = \mathbb{E}\left[Dg(X_T)\nabla X_T + \sum_{t_{i+1}>t} \frac{\partial}{\partial X_0} [Y_{t_{i+1}-} - g(X_{t_{i+1}})]^- \mid \mathcal{F}_t\right] (\nabla X_t)^{-1} \sigma(X_t)
$$

• IPP in the Malliavin sens

$$
Z_t = \mathbb{E}\left[g(X_T)N_T^t + \sum_{t_{i+1}>t} [Y_{t_{i+1}} - g(X_{t_{i+1}})]^{-1}N_{t_{i+1}}^t \mid \mathcal{F}_t\right] (\nabla X_t)^{-1} \sigma(X_t)
$$

with

$$
N_s^t := (s-t)^{-1} \int_t^s \sigma(X_r)^{-1} \nabla X_r dW_r
$$

Regularity result and convergence rate (1)

Take the limit

$$
Z_t = \mathbb{E}\left[g(X_T)N_T^t + \int_t^T f(\Theta_s)N_s^t ds + \int_t^T N_s^t dK_s \mid \mathcal{F}_t\right] (\nabla X_t)^{-1} \sigma(X_t)
$$

with

$$
N_s^t := (s-t)^{-1} \int_t^s \sigma(X_r)^{-1} \nabla X_r dW_r
$$

Theorem (Ma and Zhang 05): Assume that all the coefficients are Lipschitz, b and $\sigma \in C^1_b$, $g \in C^{1,2}_b$ $b^{1,2}$ and σ is uniformly elliptic. Then,

$$
\mathcal{R}(Y)_{S^2} = O(h), \ \mathcal{R}(Z)_{\mathcal{H}^2} = O(h^{\frac{1}{2}})
$$
 and $\text{Err}(h) = O(h^{\frac{1}{4}})$

Regularity result and convergence rate (2)

Alternative representation (written formally in the case $f = 0$, u smooth and $Du = Dg$ on $\{u = g\}$): Use the martingale property of $Du(t, X_t)\nabla X_t$ to get

$$
Z_t = \mathbb{E}\left[Dg(X_{\tau^t})\nabla X_{\tau^t} \mid \mathcal{F}_t\right] (\nabla X_t)^{-1} \sigma(X_t)
$$

Theorem (B. and Chassagneux 06): Assume that all the coefficients are Lipschitz, $g \in C_b^1$ with Lipschitz derivatives. Then,

$$
\mathcal{R}(Y)_{\mathcal{S}^2} = O(h), \ \mathcal{R}(Z)_{\mathcal{H}^2} = O(h^{\frac{1}{2}})
$$
 and $\text{Err}(h) = O(h^{\frac{1}{4}})$

If moreover, $\sigma\in C^1_b$ with Lipschitz derivatives and $g\in C^2_b$ with Lipschitz first and second derivatives, then

$$
\max_{i < n} \mathbb{E}\left[\sup_{t \in [t_i, t_{i+1}]} |Y_t - Y_{t_i}^\pi|^2\right] = O(h^{\frac{1}{2}})\,.
$$

If in addition to the previous condition $X = X^{\pi}$ on π , then

 $\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h)$ and $\mathsf{Err}(h) = O(h)$ 1 $\bar{2})$.

Extension 3:

Cauchy-Dirichlet problems

B. and S. Menozzi (07)

The solution u of

$$
-\mathcal{L}u - f(\cdot, u, Du'\sigma) = 0 \text{ on } D := [0, T) \times \mathcal{O}
$$

$$
u = g \text{ on } \partial_P D := ([0, T) \times \partial \mathcal{O}) \cup (\{T\} \times \overline{\mathcal{O}})
$$

is associated to the solution (Y, Z) of

$$
Y_t = g(X_{\tau}) + \int_t^{\tau} f(X_s, Y_s, Z_s) ds - \int_t^{\tau} Z_s dW_s
$$

where

$$
\tau = \inf \{ t \geq 0 \; : \; (t, X_t) \notin [0, T) \times \mathcal{O} \},
$$

through

$$
Y_t = u(t \wedge \tau, X_{t \wedge \tau}) \quad , \quad Z_t = Du'\sigma(t, X_t)1_{t \leq \tau}
$$

Approximation scheme

We approximate the first exit time τ by

 $\tau^{\pi} := \inf\{t \in \pi \ : \ (t, X_t^{\pi}) \notin D\}$.

The Euler scheme is defined as previously with Y_{τ}^{π} $\tau^{\pi}_{\tau} = g(X^{\pi}_{\tau^{\pi}})$ and

$$
Z_{t_i}^{\pi} = h^{-1} \mathbb{E} \left[Y_{t_{i+1}}^{\pi} (W_{t_{i+1}} - W_{t_i}) \mid \mathcal{F}_{t_i} \right]
$$

$$
Y_{t_i}^{\pi} = \mathbb{E} \left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_i} \right] + h \ f(X_{t_i}^{\pi}, Y_{t_i}^{\pi}, Z_{t_i}^{\pi})
$$

Representation in the smooth case

For ease of notations ($d = 1$ and $f = 0$): martingale property of $Du(t, X_t)\nabla X_t$ gives

$$
Z_t = Du'\sigma(t, X_t)1_{t \leq \tau}
$$

= $\mathbb{E}[Du(\tau, X_\tau)\nabla X_\tau/\nabla X_t | \mathcal{F}_t]\sigma(X_t)1_{t \leq \tau}$

If Du bounded, we can use the same technique as in the first case to bound $R(Z)_1^{\pi}$ \mathcal{H}^2 !

Gradient bound on the boundary

HL: All coefficients are Lipschitz.

D1: $\mathcal{O} := \bigcap_{\ell=1}^m \mathcal{O}^{\ell}$ where \mathcal{O}^{ℓ} is a C^2 domain of \mathbb{R}^d with a compact boundary. **D2.** For all $x \in \partial O$, there is $y(x) \in O^c$, $r(x) \in [L^{-1}, L]$ and $\delta(x) \in B(0, 1)$ such that $\bar{B}(y(x), r(x)) \cap \bar{O} = \{x\}$ and

$$
\{x' \in B(x, L^{-1}) \; : \; \langle x' - x, \delta(x) \rangle \ge (1 - L^{-1}) \|x' - x\| \} \subset \overline{\mathcal{O}} \; .
$$

C. The boundary satisfies a non characteristic condition outside a neighborhood of $\mathcal{C}:=\bigcap_{\ell\neq k=1}^m\partial\mathcal{O}^\ell{\cap}\partial\mathcal{O}^k$ and σ is uniformly elliptic on a neighborhood of C.

Hg: $q \in C^{1,2}(\bar{D})$ and $\|\partial_t q\| + \|Dq\| + \|D^2 q\| < L$ on \bar{D} .

Theorem: Assume that the above conditions hold. Then, u is uniformly Lipschitz continuous and $|Z| \leq \xi$ a.e. for some $\xi \in L^p$ for all $p \geq 2$.

Regularity under general conditions

Recall that (formally) for $d = 1$ and $f = 0$:

$$
Z_t = Du'\sigma(t, X_t)1_{t \leq \tau}
$$

= $\mathbb{E}[Du(\tau, X_\tau)\nabla X_\tau/\nabla X_t | \mathcal{F}_t]\sigma(t, X_t)1_{t \leq \tau}$

Corollary: Assume that the above conditions hold. Then,

$$
\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} = O(h) .
$$

Abstract error and exit time approximation

Proposition: Assume that HL and Hg hold. Then,

$$
\text{Err}(h)_T^2 \le C\left(h + \mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} + \mathbb{E}\left[\xi|\tau - \tau^\pi|\right]\right)
$$

and

$$
Err(h)_{\tau \wedge \tau^{\pi}}^2 \leq C \left(h + \mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} + \mathbb{E} \left[\mathbb{E} \left[\xi | \tau - \tau^{\pi} | \mid \mathcal{F}_{\tau_+ \wedge \tau^{\pi}} \right]^2 \right] \right)
$$

where τ_+ is the next time after τ in the grid π :

 $\tau_+ := \inf\{t \in \pi \; : \; \tau \leq t\}.$

Abstract error and exit time approximation

Proposition: Assume that HL and Hg hold. Then,

$$
\text{Err}(h)_T^2 \leq C\left(h + \mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} + \mathbb{E}\left[\xi|\tau - \tau^\pi|\right]\right)
$$

and

$$
Err(h)_{\tau \wedge \tau}^2 \leq C \left(h + \mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2} + \mathbb{E} \left[\mathbb{E} \left[\xi | \tau - \tau^{\pi} | \mid \mathcal{F}_{\tau + \wedge \tau^{\pi}} \right]^2 \right] \right)
$$

where τ_+ is the next time after τ in the grid π :

 $\tau_+ := \inf\{t \in \pi \; : \; \tau \leq t\}.$

Theorem: Assume that HL, D1 and C hold. Then, for $\varepsilon \in (0,1)$ and each positive random variable $\xi \in \cap_p L^p$ there is $C^{\varepsilon} > 0$ such that

$$
\mathbb{E}\left[\xi \mathbb{E}\left[\xi \left|\tau - \tau^{\pi}\right| \mid \mathcal{F}_{\tau_+\wedge \tau^{\pi}}\right]^2\right] \leq C^{\varepsilon} h^{1-\varepsilon}.
$$

In particular, for each $\varepsilon \in (0,1/2)$,

$$
\mathbb{E}\left[|\tau-\tau^{\pi}| \right] \leq C^{\varepsilon}h^{1/2-\varepsilon}.
$$

Global approximation error

Theorem: Assume that HL and Hg hold. Then,

$$
\text{Err}(h)_T^2 \leq C(h + \underbrace{\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2}}_{O(h)} + \underbrace{\mathbb{E}[\xi|\tau - \tau^{\pi}]]}_{O(h^{\frac{1}{2}-\varepsilon})}
$$

and

$$
\text{Err}(h)_{\tau \wedge \tau^{\pi}}^2 \leq C(h + \underbrace{\mathcal{R}(Y)_{\mathcal{S}^2} + \mathcal{R}(Z)_{\mathcal{H}^2}}_{O(h)} + \underbrace{\mathbb{E}\left[\mathbb{E}\left[\xi|\tau - \tau^{\pi}| \mid \mathcal{F}_{\tau_{+} \wedge \tau^{\pi}}\right]^2\right]}_{O(h^{1-\varepsilon})})
$$

In particular: $u(0, X_0) - Y_0^{\pi} = O(h)$ $\frac{1}{2} - \varepsilon$) (weak error).

Remaining questions

Semilinear PDEs with quadratic driver ?

Elliptic semilinear PDEs ?

FBSDEs and quasilinear PDEs ?