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BSDEs and PDEs: reminder



Semilinear parabolic PDEs

The solution u of

−Lu− f(·, u, Du′σ) = 0 on [0, T )× Rd

u(T, ·) = g on Rd

with L the Dynkin operator

Lu =
∂

∂t
u + b(x)′Du +

1

2
Tr

[
σσ′(x)D2u

]

is associated to the solution (Y, Z) of

Yt = g(XT ) +
∫ T

t
f(Xs, Ys, Zs)ds−

∫ T

t
ZsdWs

where

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs ,

through

Yt = u(t, Xt) , Zt = Du′σ(t, Xt)
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with L the Dynkin operator

Lu =
∂

∂t
u + b(x)′Du +

1

2
Tr

[
σσ′(x)D2u
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is associated to the solution (Y, Z) of

Yt = g(XT ) +
∫ T

t
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∫ T

t
ZsdWs

where

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs ,

Remark: if f is independent of u and Du then

Yt = u(t, Xt) = E
[
g(XT ) +

∫ T

t
f(Xs)ds | Ft

]



Numerical resolution: first approaches

• Ma, Protter and Yong (94), Douglas, Ma and Protter (96), Ma, Protter,

San Martin and Torres (02):

solve the PDE ⇒ (û, D̂u) and set (Y π, Zπ) = (û, D̂u)(·, Xπ).

• Coquet, Mackevicius and Memin (98), Briand, Delyon and Memin (01),

Antonelli and Kohatsu (00):

approximate W by a discrete random walk (with values in a finite state-

space) and solve the associated discrete time BSDE.

⇒ Curse of dimensionality !



Euler scheme approximation



The forward process X

• Fix a grid of [0, T ]: π := {ti := hi, i ≤ n} with h = T/n.

• Set Xπ
0 = X0

• For i = 1, . . . , n, set

Xπ
ti

= Xπ
ti−1

+ b(Xπ
ti−1

)h + σ(Xπ
ti−1

)(Wti −Wti−1)



The forward process X

• Fix a grid of [0, T ]: π := {ti := hi, i ≤ n} with h = T/n.

• Set Xπ
0 = X0

• For i = 1, . . . , n, set

Xπ
ti

= Xπ
ti−1

+ b(Xπ
ti−1

)h + σ(Xπ
ti−1

)(Wti −Wti−1)

• Error:

max
i<n

E

 sup
t∈[ti,ti+1]

|Xt −Xπ
ti
|2

1
2

≤ Ch
1
2 .



The BSDE (Y, Z): Adapted backward Euler scheme

• For i = n− 1, . . . ,0, write

Yti ∼ Yti+1 + f(Xti, Yti, Zti)h− Zti(Wti+1 −Wti) (1)

and take E
[
· | Fti

]
to get

Yti ∼ E
[
Yti+1 | Fti

]
+ f(Xti, Yti, Zti)h



The BSDE (Y, Z): Adapted backward Euler scheme
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The BSDE (Y, Z): Adapted backward Euler scheme (2)
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− Ztih
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)h

where

Zπ
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The BSDE (Y, Z): Adapted backward Euler scheme (2)

• Recall:

Yti ∼ E
[
Yti+1 | Fti

]
+ f(Xti, Yti, Zti)h

0 ∼ E
[
Yti+1(Wti+1 −Wti) | Fti

]
− Ztih

• Set Y π
T = g(Xπ

T ) and for i = n− 1, . . . ,0

Y π
ti

= E
[
Y π

ti+1
| Fti

]
+ f(Xπ

ti
, Y π

ti
, Zπ

ti
)h

where

Zπ
ti

= h−1E
[
Y π

ti+1
(Wti+1 −Wti) | Fti

]
• Could alternatively set

Y π
ti

= E
[
Y π

ti+1
| Fti

]
+ E

[
f(Xπ

ti
, Y π

ti+1
, Zπ

ti
) | Fti

]
h



Numerical implementation



Quantization

• Bally, Pages and Printems for the case f independent of Z.

• Replace Xπ by a quantized version X̂π taking a finite number of possible

values.

• Estimate the transition probabilities of X̂π.

• Use the algorithm: Ŷ π
T = g(X̂π

T ) and for i = n− 1, . . . ,0

Ŷ π
ti

= E
[
Ŷ π

ti+1
| X̂π

ti

]
+ f(X̂π

ti
, Ŷ π

ti
)h



Pure Monte-Carlo approaches

• Simulate (Xπ,j, W j, , j ≤ N)

• Set Ŷ
π,j
T = g(Xπ,j

T )

• Given Ê an approximation of E based on the simulated data, use the

induction

Ŷ
π,j
ti

= Ê
[
Ŷ π

ti+1
| X

π,j
ti

]
+ f(Xπ,j

ti
, Ŷ

π,j
ti

, Ẑ
π,j
ti

)h

Ẑ
π,j
ti

= h−1Ê
[
Ŷ π

ti+1
(Wti+1 −Wti) | X

π,j
ti

]

• Two alternatives :

1. Chevance (97), Longstaff and Schwartz (01), Gobet, Lemor and Warin

(05): non-parametric regression.

2. Lions and Regnier (01), B., Ekeland and Touzi (04), B. and Touzi (04):

Malliavin calculus approach to rewrite conditional expectations in terms of

unconditional expectations.



Approximation error



Control of the approximation error

• Say f ≡ 0, then

Yti = g(XT ) +
∫ T

ti
f(Xs, Ys, Zs)ds−

∫ T

ti
ZsdWs

= Yti+1 −
∫ ti+1

ti
ZsdWs

implies

Yti = E
[
Yti+1 | Fti

]
.



Control of the approximation error

• Say f ≡ 0, then

Yti = g(XT ) +
∫ T

ti
f(Xs, Ys, Zs)ds−

∫ T

ti
ZsdWs

= Yti+1 −
∫ ti+1

ti
ZsdWs

implies

Yti = E
[
Yti+1 | Fti

]
.

Thus

max
i<n

E

 sup
t∈[ti,ti+1]

|Yt − Y π
ti
|2

 ≥ max
i<n

E
[
|Yti+1 − Y π

ti
|2

]
≥ max

i<n
E

[
|Yti+1 − Yti|

2
]

≥ c max
i<n

E

 sup
t∈[ti,ti+1]

|Yt − Yti|
2

 =: c R(Y )S2

for some c > 0.



Control of the approximation error (2)

• Set

Z̃ti := h−1E
[∫ ti+1

ti
Zsds | Fti

]
then

E

∑
i

∫ ti+1

ti
‖Zt − Zπ

ti
‖2dt

 ≥ E

∑
i

∫ ti+1

ti
‖Zt − Z̃ti‖

2dt

 =:R(Z)H2



Control of the approximation error (3)

• Conclusion: up to a constant c > 0, the error

Err(h)2 := max
i<n

E

 sup
t∈[ti,ti+1]

|Yt − Y π
ti
|2

 + E

∑
i

∫ ti+1

ti
‖Zt − Zπ

ti
‖2dt


is bounded from below by

R(Y )S2 +R(Z)H2 = max
i<n

E

 sup
t∈[ti,ti+1]

|Yt − Yti|
2

 + E

∑
i

∫ ti+1

ti
‖Zt − Z̃ti‖

2dt
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E
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ti
‖Zt − Z̃ti‖

2dt



• One can actually show that

Err(h)2 = O
(
R(Y )S2 +R(Z)H2 + h

)



Control of the approximation error (4)

• Thus

Err(h)2 = O
(
R(Y )S2 +R(Z)H2 + h

)
where (formally)

R(Y )S2 = max
i<n

E[ sup
t∈[ti,ti+1]

|u(t, Xt)︸ ︷︷ ︸
Yt

−u(ti, Xti)︸ ︷︷ ︸
Yti

|2]

and

R(Z)H2 = E[
∑
i

∫ ti+1

ti
‖Du′σ(t, Xt)︸ ︷︷ ︸

Zt

−h−1E
[∫ ti+1

ti
Du′σ(s, Xs) | Fti

]
︸ ︷︷ ︸

Z̃ti

‖2dt]

• The error depends on a very weak notion of regularity of (u, Du).



Regularity results



Semilinear PDEs

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the

coefficients are Lipschitz continuous. Then,

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2)



Semilinear PDEs

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the

coefficients are Lipschitz continuous. Then,

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2)

• Corollary: u is 1
2-Hölder in t and Lipschitz in x.
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• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the

coefficients are Lipschitz continuous. Then,

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2)

• Elements of proof for R(Z)H2: (case f = 0, d = 1, smooth coefficients)

Yt = u(t, Xt) = E [g(XT ) | Ft]

Zt = Du(t, Xt)σ(Xt) =
∂

∂X0
u(t, Xt)(

∂

∂X0
Xt)

−1σ(Xt)



Semilinear PDEs

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the

coefficients are Lipschitz continuous. Then,

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2)

• Elements of proof for R(Z)H2: (case f = 0, d = 1, smooth coefficients)

Yt = u(t, Xt) = E [g(XT ) | Ft]

Zt = Du(t, Xt)σ(Xt) =
∂

∂X0
u(t, Xt)(

∂

∂X0
Xt)

−1σ(Xt)

= E
[
Dg(XT )

∂

∂X0
XT | Ft

]
(

∂

∂X0
Xt)

−1σ(Xt)︸ ︷︷ ︸
say=1for simplicity
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Then,

Zt = E
[
Dg(XT )

∂

∂X0
XT | Ft

]
is a Martingale (E [Zt | Fs] = Zs for s ≤ t)
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R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
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Semilinear PDEs

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the

coefficients are Lipschitz continuous. Then,

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2)

• Elements of proof for R(Z)H2: (case f = 0, d = 1, smooth coefficients)

Then,

Zt = E
[
Dg(XT )

∂

∂X0
XT | Ft

]
is a Martingale (E [Zt | Fs] = Zs for s ≤ t) which implies

E
[
|Zt − Zti|

2
]
≤ E

[
Z2

ti+1
− Z2

ti

]
, t ∈ [ti, ti+1]

and ∫ ti+1

ti
E

[
|Zt − Z̃ti|

2
]
dt ≤

∫ ti+1

ti
E

[
|Zt − Zti|

2
]
dt ≤ hE

[
Z2

ti+1
− Z2

ti

]
.



Semilinear PDEs

• Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the

coefficients are Lipschitz continuous. Then,

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2)

We thus obtain a O(h) behavior for

R(Y )S2 = max
i<n

E[ sup
t∈[ti,ti+1]

|u(t, Xt)︸ ︷︷ ︸
Yt

−u(ti, Xti)︸ ︷︷ ︸
Yti

|2]

and

R(Z)H2 = E[
∑
i

∫ ti+1

ti
‖Du′σ(t, Xt)︸ ︷︷ ︸

Zt

−h−1E
[∫ ti+1

ti
Du′σ(s, Xs) | Fti

]
︸ ︷︷ ︸

Z̃ti

‖2dt]

with the only assumption that the coefficients are Lipschitz continuous.

No ellipticity condition.



Extension 1:

Semilinear parabolic IPDEs

and systems

B. and Elie (05)



PDEs with integral term

The solution u of

−Lu− f(·, u, Du′σ, I[u](t, x)) = 0 on [0, T )× Rd , u(T, ·)=g on Rd

with the non local term

I[u](t, x) :=

∫
E

{u(t, x + β(x, e))− u(t, x)} ρ(e)λ(de)

and L the non local Dynkin operator

Lu =
∂

∂t
u+ b(x)′Du+

1

2
Tr

[
σσ′(x)D2u

]
+

∫
E

{u(t, x+β(x, e))−u(t, x)−Du(t, x)β(x, e)}λ(de)

is associated to the solution (Y, Z, U) of

Yt=g(XT) +

∫ T

t

f(Xs, Ys, Zs,

∫
E

ρ(e)Us(e)λ(de))ds−
∫ T

t

ZsdWs−
∫ T

t

∫
E

Us(e)µ̄(de, ds)

where

Xt = X0 +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs +

∫ t

0

∫
E

β(Xs−, e)µ̄(de, ds)

through

Yt = u(t, Xt) , Zt = Du′σ(t, Xt) , Ut(e) = u(t, Xt− + β(Xt−, e))− u(t, Xt−)



Systems of PDEs

Pardoux, Pradeilles and Rao (97), Sow and Pardoux (04).

• System of κ PDE’s (m = 0, . . . , κ− 1)

0 = um
t + b′mDum +

1

2
Tr[σmσ′mD2um] + fm(·, u, (Dum)′σm)

gm = um(T, ·) .

• Define for i = 0, . . . , κ− 1

f̃(m, x, y, γ, z) = fm

x, (. . . , y + γκ−2, y + γκ−1, y︸︷︷︸
i

, y + γ1, y + γ2, . . .), z



• Set E = {1, . . . , κ− 1}, λ(de) = λ
∑κ−1

k=1 δk(e) and

Mt =
∫ t

0

∫
E

eµ(de, ds) [κ]



Systems of PDEs

Pardoux, Pradeilles and Rao (97), Sow and Pardoux (04).

• System of κ PDE’s (m = 0, . . . , κ− 1)

0 = um
t + b′mDum +

1

2
Tr[σmσ′mD2um] + fm(·, u, (Dum)′σm)

gm = um(T, ·) .

⇒ uMt(t, Xt) = Yt where

dXt = bMt
(Xt)dt + σMt

(Xt)dWt

−dYt = f̃(Mt, Xt, Yt, Ut, Zt)dt− λ
κ−1∑
k=1

U(k)tdt− ZtdWt −
∫
E

Ut(e)µ̄(de, dt)

YT = gMT
(XT )



Regularity result

• Theorem (B. and Elie 05): Assume all the coefficients are Lipschitz

continuous and that H : For each e ∈ E, the map x ∈ Rd 7→ β(x, e) admits

a Jacobian matrix ∇β(x, e) such that the function

(x, ξ) ∈ Rd × Rd 7→ a(x, ξ; e) := ξ′(∇β(x, e) + Id)ξ

satisfies one of the following condition uniformly in (x, ξ) ∈ Rd × Rd

a(x, ξ; e) ≥ |ξ|2K−1 or a(x, ξ; e) ≤ −|ξ|2K−1 .

Then,

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2)

Remark: Same result without H if the coefficients are C1
b with Lipschitz

first derivatives.



Extension 2:

Free boundary problems

B. and J.-F. Chassagneux (06)



Representation

The solution u of

min
{
−Lu− f(·, u, Du′σ) , u− g

}
= 0 on [0, T )× Rd , u(T, ·)=g on Rd

is associated to the solution (Y, Z, K) of

Yt = g(XT ) +
∫ T

t
f(Xs, Ys, Zs)ds−

∫ T

t
ZsdWs + KT −Kt

Yt ≥ g(Xt) , t ≤ T ,
∫ T

0
(Ys − g(Xs) )dKs = 0 and K ↑ ,

through

Yt = u(t, Xt) , Zt = Du′σ(t, Xt)



Approximation scheme

• Backward “American” scheme:

Zπ
ti

= h−1 E
[
Y π

ti+1
(Wti+1 −Wti) | Fti

]
Ỹ π

ti
= E

[
Y π

ti+1
| Fti

]
+ h f(Xπ

ti
, Y π

ti
, Zπ

ti
)

Y π
ti

= max
{
g(Xπ

ti
) , Ỹ π

ti

}
, i ≤ n− 1 .

with the terminal condition

Y π
T = g(Xπ

T ) .



Formulation for Z ?

• Previous approach (d = 1, f = 0)

Yt = u(t, Xt) = E
[
g(Xτ t) | Ft

]
with τ t := inf{s ≥ t : Ys = g(Xs)}

Zt = Du(t, Xt)σ(Xt) =
∂

∂X0
u(t, Xt)(

∂

∂X0
Xt)

−1σ(Xt)

= E
[
Dg(Xτ t)

∂

∂X0
Xτ t | Ft

]
(

∂

∂X0
Xt)

−1σ(Xt)

⇒ Problem...



Discretely reflected BSDE

• (Y, Z, K) solution of

Yt = g(XT ) +
∫ T

t
f(Xs, Ys, Zs)ds−

∫ T

t
ZsdWs + KT −Kt

Yt ≥ g(Xt) , t ∈ π ,

with Kti+1 = Kti + [Yti+1− − g(Xti+1)]
− .

• Then (for f = 0)

Zt = E

Dg(XT )∇XT +
∑

ti+1>t

∂

∂X0
[Yti+1− − g(Xti+1)]

− | Ft

 (∇Xt)
−1σ(Xt)

• IPP in the Malliavin sens

Zt = E

g(XT )N t
T +

∑
ti+1>t

[Yti+1− − g(Xti+1)]
−N t

ti+1
| Ft

 (∇Xt)
−1σ(Xt)

with

N t
s := (s− t)−1

∫ s

t
σ(Xr)

−1∇XrdWr



Regularity result and convergence rate (1)

Take the limit

Zt = E
[
g(XT )N t

T +
∫ T

t
f(Θs)N

t
sds +

∫ T

t
N t

sdKs | Ft

]
(∇Xt)

−1σ(Xt)

with

N t
s := (s− t)−1

∫ s

t
σ(Xr)

−1∇XrdWr

Theorem (Ma and Zhang 05): Assume that all the coefficients are Lip-

schitz, b and σ ∈ C1
b , g ∈ C

1,2
b and σ is uniformly elliptic. Then,

R(Y )S2 = O(h) , R(Z)H2 = O(h
1
2) and Err(h) = O(h

1
4)



Regularity result and convergence rate (2)

Alternative representation (written formally in the case f = 0, u smooth

and Du = Dg on {u = g}): Use the martingale property of Du(t, Xt)∇Xt

to get

Zt = E
[
Dg(Xτ t)∇Xτ t | Ft

]
(∇Xt)

−1σ(Xt)

Theorem (B. and Chassagneux 06): Assume that all the coefficients are

Lipschitz, g ∈ C1
b with Lipschitz derivatives. Then,

R(Y )S2 = O(h) , R(Z)H2 = O(h
1
2) and Err(h) = O(h

1
4)

If moreover, σ ∈ C1
b with Lipschitz derivatives and g ∈ C2

b with Lipschitz

first and second derivatives, then

max
i<n

E

 sup
t∈[ti,ti+1]

|Yt − Y π
ti
|2

 = O(h
1
2) .

If in addition to the previous condition X = Xπ on π, then

R(Y )S2 +R(Z)H2 = O(h) and Err(h) = O(h
1
2) .



Extension 3:

Cauchy-Dirichlet problems

B. and S. Menozzi (07)



Representation

The solution u of

−Lu− f(·, u, Du′σ) = 0 on D := [0, T )×O
u = g on ∂PD := ([0, T )× ∂O) ∪ ({T} × Ō)

is associated to the solution (Y, Z) of

Yt = g(Xτ) +
∫ τ

t
f(Xs, Ys, Zs)ds−

∫ τ

t
ZsdWs

where

τ = inf {t ≥ 0 : (t, Xt) /∈ [0, T )×O},

through

Yt = u(t ∧ τ, Xt∧τ) , Zt = Du′σ(t, Xt)1t≤τ



Approximation scheme

We approximate the first exit time τ by

τπ := inf{t ∈ π : (t, Xπ
t ) /∈ D} .

The Euler scheme is defined as previously with Y π
τπ = g(Xπ

τπ) and

Zπ
ti

= h−1 E
[
Y π

ti+1
(Wti+1 −Wti) | Fti

]
Y π

ti
= E

[
Y π

ti+1
| Fti

]
+ h f(Xπ

ti
, Y π

ti
, Zπ

ti
)



Representation in the smooth case

For ease of notations (d = 1 and f = 0): martingale property of Du(t, Xt)∇Xt

gives

Zt = Du′σ(t, Xt)1t≤τ

= E [Du(τ, Xτ)∇Xτ/∇Xt | Ft]σ(Xt)1t≤τ

If Du bounded, we can use the same technique as in the first case to bound

R(Z)π
H2 !



Gradient bound on the boundary

HL: All coefficients are Lipschitz.

D1: O :=
⋂m

`=1O
` where O` is a C2 domain of Rd with a compact boundary.

D2. For all x ∈ ∂O, there is y(x) ∈ Oc, r(x) ∈ [L−1, L] and δ(x) ∈ B(0,1)

such that B̄(y(x), r(x)) ∩ Ō = {x} and

{x′ ∈ B(x, L−1) : 〈x′ − x, δ(x)〉 ≥ (1− L−1)‖x′ − x‖} ⊂ Ō .

C. The boundary satisfies a non characteristic condition outside a neighbor-

hood of C :=
⋂m

` 6=k=1 ∂O`∩∂Ok and σ is uniformly elliptic on a neighborhood

of C.
Hg: g ∈ C1,2(D̄) and ‖∂tg‖+ ‖Dg‖+ ‖D2g‖ ≤ L on D̄ .

Theorem: Assume that the above conditions hold. Then, u is uniformly

Lipschitz continuous and |Z| ≤ ξ a.e. for some ξ ∈ Lp for all p ≥ 2.



Regularity under general conditions

Recall that (formally) for d = 1 and f = 0:

Zt = Du′σ(t, Xt)1t≤τ

= E [Du(τ, Xτ)∇Xτ/∇Xt | Ft]σ(t, Xt)1t≤τ

Corollary: Assume that the above conditions hold. Then,

R(Y )S2 +R(Z)H2 = O(h) .



Abstract error and exit time approximation

Proposition: Assume that HL and Hg hold. Then,

Err(h)2T ≤ C
(
h +R(Y )S2 +R(Z)H2 + E [ξ|τ − τπ|]

)
and

Err(h)2τ∧τπ ≤ C

(
h +R(Y )S2 +R(Z)H2 + E

[
E

[
ξ|τ − τπ| | Fτ+∧τπ

]2])
where τ+ is the next time after τ in the grid π:

τ+ := inf{t ∈ π : τ ≤ t} .



Abstract error and exit time approximation

Proposition: Assume that HL and Hg hold. Then,

Err(h)2T ≤ C
(
h +R(Y )S2 +R(Z)H2 + E [ξ|τ − τπ|]

)
and

Err(h)2τ∧τπ ≤ C

(
h +R(Y )S2 +R(Z)H2 + E

[
E

[
ξ|τ − τπ| | Fτ+∧τπ

]2])
where τ+ is the next time after τ in the grid π:

τ+ := inf{t ∈ π : τ ≤ t} .

Theorem: Assume that HL, D1 and C hold. Then, for ε ∈ (0,1) and each

positive random variable ξ ∈ ∩pLp there is Cε > 0 such that

E
[
ξ E

[
ξ |τ − τπ| | Fτ+∧τπ

]2]
≤ Cεh1−ε .

In particular, for each ε ∈ (0,1/2),

E [|τ − τπ|] ≤ Cεh1/2−ε .



Global approximation error

Theorem: Assume that HL and Hg hold. Then,

Err(h)2T ≤ C(h +R(Y )S2 +R(Z)H2︸ ︷︷ ︸
O(h)

+E [ξ|τ − τπ|]︸ ︷︷ ︸
O(h

1
2−ε)

)

and

Err(h)2τ∧τπ ≤ C(h +R(Y )S2 +R(Z)H2︸ ︷︷ ︸
O(h)

+E
[
E

[
ξ|τ − τπ| | Fτ+∧τπ

]2]
︸ ︷︷ ︸

O(h1−ε)

)

In particular: u(0, X0)− Y π
0 = O(h

1
2−ε) (weak error).



Remaining questions

Semilinear PDEs with quadratic driver ?

Elliptic semilinear PDEs ?

FBSDEs and quasilinear PDEs ?


