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I Navier–Stokes equation (Ω = [0, L]d , d = 2, 3)8>>>>><>>>>>:

∂v

∂t
+ (v ·∇)v + ∇p − ν∆v = 0, in Ω× (0, T ]

∇ · v = 0, in Ω× (0, T ]

v = v0 in Ω at t = 0

Boundary Condition on Γ× (0, T ]

I 2D Case
I Existence Theory Complete — smooth and unique solutions

exist for arbitrary times and arbitrarily large data

I 3D Case
I Weak solutions (possibly nonsmooth) exist for arbitrary times
I Classical (smooth) solutions (possibly nonsmooth) exist for

finite times only
I Possibility of “blow–up” (finite–time singularity formation)
I One of the Clay Institute “Millennium Problems” ($ 1M!)

http://www.claymath.org/millennium/Navier-Stokes Equations
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What is known? — Available Estimates

I A Key Quantity — Enstrophy

E(t) ,
∫

Ω
|∇× v|2 dΩ (= ‖∇v‖2

2)

I Smoothness of Solutions ⇐⇒ Bounded Enstrophy
(Foias & Temam, 1989)

max
t∈[0,T ]

E(t) <∞ ???

?

t

E(t)

E(0)

t

NaN

0

I Can estimate dE(t)
dt using the momentum equation, Sobolev’s

embeddings, Young and Cauchy–Schwartz inequalities, ...
I Remark: incompressibility not used in these estimates ....
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I 2D Case:
dE(t)

dt
≤ C 2

ν
E(t)2

I Gronwall’s lemma and energy equation yield ∀t E(t) <∞
I smooth solutions exist for all times

I 3D Case:
dE(t)

dt
≤ 27C 2

128ν3
E(t)3

I corresponding estimate not available ....
I upper bound on E(t) blows up in finite time

E(t) ≤ E(0)√
1− 4CE(0)2

ν3 t

I singularity in finite time cannot be ruled out!
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Problem of Lu & Doering (2008), I

I Can we actually find solutions which “saturate” a given
estimate?

I Estimate dE(t)
dt ≤ cE(t)3 at a fixed instant of time t

max
v∈H1(Ω), ∇·v=0

dE(t)

dt

subject to E(t) = E0

where
I

dE(t)

dt
= −ν‖∆v‖2

2 +

∫
Ω

v ·∇v ·∆v dΩ

I E0 is a parameter

I Solution using a gradient–based descent method
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Problem of Lu & Doering (2008), II

[
dE(t)

dt

]
max

= 8.97× 10−4 E2.997
0

vorticity field (top branch)
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I How about solutions which saturate dE(t)
dt ≤ cE(t)3 over a

finite time window [0,T ]?

max
v0∈H1(Ω), ∇·v=0

[
max

t∈[0,T ]
E(t)

]
subject to E(t) = E0

where
I

E(t) =

∫ t

0

dE(τ)

dτ
dτ + E0

I E0 is a parameter
I maxt∈[0,T ] E(t) nondifferentiable w.r.t initial condition

=⇒ non–smooth optimization problem

I In principle doable, but will try something simpler first ...
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PROBLEM I

Instantaneous and Finite–Time

Bounds for Growth of Enstrophy

in 1D Burgers Problem

joint work with Diego Ayala (McMaster)
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I Burgers equation (Ω = [0, 1], u : R+ × Ω → R )

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 in Ω

u(x) = φ(x) at t = 0

Periodic B.C.

Enstrophy : E(t) = 1
2

∫ 1
0 |ux(x , t)|2 dx

I Solutions smooth for all times
I Questions of sharpness of enstrophy estimates still relevant

dE(t)

dt
≤ 3

2

(
1

π2ν

)1/3

E(t)5/3

I Best available finite-time estimate

max
t∈[0,T ]

E(t) ≤

[
E1/3

0 +

(
L

4

)2 (
1

π2ν

)4/3

E0

]3

−→
E0→∞

C2E3
0
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“Small” Problem of Lu & Doering (2008), I

I Estimate dE(t)
dt ≤ cE(t)5/3 at a fixed instant of time t

max
u∈H1(Ω)

dE(t)

dt

subject to E(t) = E0

where
I

dE(t)

dt
= −ν

∥∥∥∂2u

∂x2

∥∥∥2

2
+

1

2

∫ 1

0

(
∂u

∂x

)3

dΩ

I E0 is a parameter

I Solution (maximizing field) found analytically!
(in terms of elliptic integrals and Jacobi elliptic functions)
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“Small” Problem of Lu & Doering (2008), II

[
dE(t)

dt

]
max

= 0.2476
E5/3

0

ν1/3

instantaneous estimate is sharp

10
1

10
2

10
3

10
1

10
2

10
3

10
4

E0
m

ax
t>

0 E
(t

)

 

 

—– maxt∈[0,T ] E(t) ∼ C E1.048
0

—– finite–time estimate
(far from saturated)
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Finite–Time Optimization Problem (I)

I Statement
max

φ∈H1(Ω)
E(T )

subject to E(t) = E0

T , E0 — parameters

I Optimality Condition

∀φ′∈H1 J ′
λ(φ; φ′) = −

Z 1

0

∂2u

∂x2

˛̨̨
t=T

u′
˛̨
t=T

dx − λ

Z 1

0

∂2φ

∂x2

˛̨̨
t=0

u′
˛̨
t=0

dx
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Finite–Time Optimization Problem (II)

I Gradient Descent

φ(n+1) = φ(n) − τ (n)∇J (φ(n)), n = 1, . . . ,

φ(0) = φ0,

where ∇J determined from adjoint system via H1 Sobolev preconditioning

−∂u∗

∂t
− u

∂u∗

∂x
− ν

∂2u∗

∂x2
= 0 in Ω

u∗(x) = −∂2u

∂x2
(x) at t = T

Periodic B.C.

I Step size τ (n) found via arc minimization n

d
n

n+1

= {|| x||2 = E0}
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I Two parameters: T , E0 (ν = 10−3)

I Optimal initial conditions corresponding to initial guess with
wavenumber m = 1 (local maximizers)
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I Sol’ns found with initial guesses φ(m)(x) = sin(2πmx), m = 1, 2, . . .
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I Change of variables leaving Burgers equation invariant (L ∈ Z+):

x = Lξ, (x ∈ [0, 1], ξ ∈ [0, 1/L]), τ = t/L2

v(τ, ξ) = Lu(x(ξ), t(τ)), Ev (τ) = L4Eu

( t

L2

)
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I Solutions for m = 1 and m = 2, after rescaling
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I Using initial guess: φ(0)(x) = sin(2πmx), m = 1, or m = 2
φ(0)(x) = ε sin(2πmx) + (1− ε) sin(2πnx), m 6= n, ε > 0

πsin(2   x)

πsin(4   x)

H
1

* *

πsin(2   x)

πsin(4   x)

H
1

* *

I All local maximizers with m = 2, 3, . . . are rescaled copies of
the m = 1 maximizer
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Location of Singularities in C from the Fourier spectrum

|ûk | ∼ C |k|−αe iz∗ as k →∞

Im{z}

Re{z}

Z_{k−1}

Z_{k}

Z_{k+1}

Analyticity strip for a meromorphic function
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I red — instantaneously optimal (Lu & Doering, 2008)

I bold blue — finite–time optimal (T = 0.1)

I dashed blue — finite–time optimal (T = 1)
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Summary & Conclusions (I)

I Some evidence that optimizers found are in fact global

I Exponents in maxt∈[0,T ] E(t) = CEα0 as E0 →∞

theoretical
estimate

optimal
(instantaneous)

[Lu & Doering, 2008]

optimal
(finite–time)

[present study]

α 3 1 3/2

I more rapid enstrophy build–up in finite–time optimizers than in
instantaneous optimizers

I theoretical estimate not sharp =⇒ finite–time optimizers offer
insights re: refinements required (work in progress)

I Finite–time maximizers (almost) saturate Poincaré’s inequality
(largest kinetic energy for a given enstrophy)
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PROBLEM II

Instantaneous Bounds for

Growth of Palinstrophy in 2D

Navier–Stokes Problem

joint work with Diego Ayala (McMaster)
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I 2D vorticity equation in a periodic box (ω = ez · ω)

∂ω

∂t
+ J(ω, ψ) = ν∆ω where J(f , g) = fxgy − fygx

−∆ψ = ω

I Enstrophy uninteresting in 2D flows (w/o boundaries)

1

2

d

dt

∫
Ω
ω2 dΩ = −ν

∫
Ω
(∇ω)2 dΩ < 0

I Evolution equation for the vorticity gradient ∇ω

∂∇ω

∂t
+ (u ·∇)∇ω = ν∆∇ω + ∇ω ·∇u︸ ︷︷ ︸

“stretching” term

I Palinstrophy

P(t) ,
∫

Ω
(∇ω(t, x))2 dΩ =

∫
Ω
(∇∆ψ(t, x))2 dΩ
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I Estimates for the Rate of Growth of Palinstrophy

dP(t)

dt
=

∫
Ω

J(∆ψ,ψ)∆2ψ dΩ− ν

∫
Ω
(∆2ψ)2 dΩ , Rν(ψ)

dP(t)

dt
≤ C1

ν
E P (Doering & Lunasin, 2011)

dP(t)

dt
≤ C2

ν
K1/2 P3/2 (Ayala, 2012)

I Using Poincaré’s inequality (may not be sharp)

dP(t)

dt
≤ C

ν
P2,

I Bound on growth in finite time

max
t>0

P(t) ≤ P(0)+
C1

2ν2

L4

16π4
P(0)2 (Doering & Lunasin, 2011)
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Are the Instantaneous Estimates for dP(t)
dt Sharp?

Solve the following problem: for ν, E0, P0 > 0

max
ψ∈H4(Ω)

Rν(ψ)

subject to:
∫

Ω
(∆ψ)2 dΩ = E0∫

Ω
(∇∆ψ)2 dΩ = P0
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Some Remarks

I in 2D flows nonlinearities identically vanish for

ψ0 , {eigenfunction of ∆} =⇒ J(∆φ0, ψ0) = 0, Rν(ψ0) < 0

I In the limit P0 = P(0) → 0 (equivalently, ν →∞)

max
ψ∈H4(Ω)

[
−

∫
Ω
(∆2ψ)2 dΩ

]
subject to:

∫
Ω
(∆ψ)2 dΩ = E0∫

Ω
(∇∆ψ)2 dΩ = P0

Quadratic problem =⇒ can be solved analytically
(Lagrange multipliers)
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Simplified Formulation

I Palinstrophy and Enstrophy constraints hard to satisfy exactly —
require projection on intersection of two manifolds in H4(Ω)

I P0 constraint + Poincaré’s inequality = Upper bound on E0∫
Ω
(∇∆ψ)2 dΩ = P0∫

Ω
φ2 dΩ ≤ C

∫
Ω
(∇φ)2 dΩ

 =⇒
∫

Ω
(∆ψ)2 dΩ ≤ C P0

I Simpler maximization problem (one constraint)

max
ψ∈H4(Ω)

Rν(ψ)

subject to:
∫

Ω
(∇∆ψ)2 dΩ = P0
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Numerical Solution of Maximization Problem

I Discretization of Gradient Flow

dψ

dτ
= −∇H4Rν(ψ), ψ(0) = ψ0

ψ(n+1) = ψ(n) −∆τ (n) ∇H4Rν(ψ
(n)), ψ(0) = ψ0

I Gradient in H4(Ω) (via variational techniques)[
Id−L8∆4

]
∇H4Rν = ∇L2Rν (Periodic BCs)

∇L2Rν(ψ) = ∆2J(∆ψ,ψ) + ∆J(ψ,∆2ψ) + J(∆2ψ,∆ψ)− 2ν∆4ψ

I Constraint satisfaction via arc minimization
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Results: small P0
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Results: large P0
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Results: Vortex Structure (P0 = 4.6 · 105)
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Open Questions

I The role of the second (enstrophy) constraint

I Presence of other nontrivial branches
(found in 3D, but not in 1D case)

I Analytic characterization of the maximizers in the limit
P0 →∞ (via asymptotic analysis)

∆3
[
∆2J(∆ψ,ψ) + ∆J(ψ,∆2ψ) + J(∆2ψ,∆ψ)

]
= 0 in Ω

where J(f , g) = fxgy − fygx

I Next: saturation of finite–time estimates for maxt≥0 P(t)

B. Protas Probing Fundamental Bounds in Hydrodynamics



Background: Known Estimates
Saturation of Estimates

Sharpening KLB Theory of 2D Turbulence

Instantaneous Bounds for 1D Burgers Problem
Finite–Time Bounds for 1D Burgers Problem
Instantaneous Bounds for 2D Navier–Stokes Problem

Summary & Conclusions (II)
Exponents: Analysis vs. Variational Optimization

Analysis Optimization

1D Burgers instantaneous
[Lu & Doering, 2008]

5/3 5/3

1D Burgers finite–time
[Ayala & Protas, 2011]

3 3/2

2D Navier–Stokes instantaneous
[Doering & Lunasin, 2011; present study]

2† 5/3

2D Navier–Stokes finite–time
[Doering & Lunasin, 2011; present study]

2 ?

3D Navier–Stokes instantaneous
[Lu & Doering, 2008]

3 3

3D Navier–Stokes finite–time N/A ???

†May not be sharp due to Poincaré’s inequality
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PROBLEM III

Sharpening

Kraichnan–Leith–Batchelor

(KLB) Theory of 2D Turbulence

Joint Work with:

I Mohammad Farazmand and Nicholas Kevlahan (McMaster)
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KLB — A Classical Theory for 2D Turbulence
Kraichnan(1967), Leith(1968) and Batchelor(1969)

I Forced Navier–Stokes equation

∂u

∂t
+ u · ∇u = −∇p + ν∆u + f

∇ · u = 0

I Homogeneous, Isotropic, Statistically
Stationary Flow

I Existence of two inertial ranges,
energy and enstrophy inertial ranges
ε = energy dissipation rate
η = enstrophy dissipation rate

E(k) ∝

8<: ε2/3k−5/3 ke
1 < k < ke

2

η2/3k−3 kz
1 < k < kz

2

Cascade

Forward Enstrophy

E
n
er

gy
In

je
ct

io
n

S
m

al
l-
S
ca

le
D

is
si

p
at

io
n

Inverse Energy

Cascade

ke
2

kz
1

kz
2

kmax

Log k

L
ar

ge
-S

ca
le

D
is

si
p
at

io
n

kmin

L
og

E
(k

)

ke
1

k−5/3

k−3

B. Protas Probing Fundamental Bounds in Hydrodynamics



Background: Known Estimates
Saturation of Estimates

Sharpening KLB Theory of 2D Turbulence

Introduction: Universality in Turbulence
Validating KLB via Optimization
Results: Full–band Forcing Forcing Consistent with KLB

Bounds on the Cascade Slopes

P. Constantin, C. Foias & O. Manley, Phys. Fluids 6, 427–429, (1994)

C. V. Tran & T. G. Shepherd, Physica D 165, 199-212, (2002)

E(k) ∝
(

k−α ke
1 < k < ke

2

k−β kz
1 < k < kz

2

I Band–limited forcing and
No large–scale dissipation

1 < α < 3 and β > 5

I Band–limited forcing and
Large–scale dissipation

1 < α < 3 and 3 ≤ β < 5
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Has this theory been confirmed by experimental data?

NO!
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An Optimization Approach

I Does forcing consistent with the KLB theory exist?

I Find it with a Variational Optimization Approach

min
f∈ L2(0,T ;L2(Ω))

J (f)

where

J (f) ,
1

2

∫ T

0

∫
I
|E (t, k; f)−E0(k)|2 dk dt+β2‖f‖L2(0,T ;L2(Ω))

E0(k) ∝

{
k−5/3 ke

1 < k < ke
2

k−3 kz
1 < k < kz

2

I Solution using adjoint–based methods of PDE–constrained
optimization
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Optimal Forcing
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Energy Spectra
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Vorticity Fields

Conventional Forcing Optimal Forcing
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Energy and Enstrophy “Injection”
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Summary & Conclusions (III)

I KLB scaling is feasible with
“appropriate” forcing

I Large–scale energy
dissipation (inherent in
phenomenological theories)
is a part of reconstructed
forcing

I The optimal forcing is not
robust (Navier–Stokes lacks
smooth dependence on the
data — inverse problem is
ill–posed)
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