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Introduction 2

Introduction

Let N ≥ 2 and (Z1, . . . , ZN) be N random variables (with

values in a metrizable, complete and separable space X), it is

said to be exchangeable if for every permutation σ ∈ SN , the

law of (Zσ(1), . . . , Zσ(N)) is the same as that of (Z1, . . . , ZN ).

Of course, i.i.d. samples are exchangeable but the converse is

false: Zi = Z, Zi = G(Yi, U) with the Yi i.i.d. and independent

from U (common noise), urns without replacement...
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A sequence of random variables (Zi)i≥1, is exchangeable

whenever permuting finitely many coordinates does not change

its law.

De Finetti in the 1930’s (in the case of binary variables) and

Hewitt and Savage in the 1950’s showed that laws of (infinite)

exhangeable sequences are mixtures (convex combinations) of

independent laws. Roughly speaking

L(Z) =

∫

P(X)

λ⊗∞dα(λ)

for some (actually unique) α ∈ P(P(X)). Interpretation: the

Zi’s are independent conditionally on some common noise.
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Such a result cannot be true for finitely exchangeable families,

e.g. N = 2, X = {0, 1}, if the law of (Z1, Z2) is

µ = 1
2 (δ(1,0) + δ(0,1)), if we had

µ =

∫ 1

0

((1− t)δ0 + tδ1)⊗ ((1− t)δ0 + tδ1)dα(t)

with µ({(0, 0)}) = µ({(1, 1)}) = 0, this would require

0 =

∫ 1

0

t2dα(t) =

∫ 1

0

(1− t)2dα(t)

which is clearly impossible.
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The Diaconis-Freedman bound: if µ is the law of a finite

exchangeable sequence (Z1, . . . , ZN ) there is an α ∈ P(P(X))

such that

‖µ−

∫

P(X)

λ⊗Ndα(λ)‖TV = O(
1

N
).

Very much studied, Diaconis, Aldous, Kallenberg, just to name

a few.

Exact representations for finite exchangeable laws are also

known:

• in terms of mixtures of laws of urn sequences, Kerns and

Székely, Kallenberg,

• in terms of "mixtures" of independent laws but with a

signed α, Jaynes, Kerns and Székely, Janson,

Konstantopoulos and Yuan
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Goal in the sequel: give a DeFinetti-Hewitt-Savage like

representation for exchangeable laws on XN (or their k-point

marginals, k ≤ N) in terms of mixtures of some explicit

polynomials of measures with correlated correction terms.

Equivalent to the approach with laws of urns, but more explicit

and emphasizes the structure of extreme points through a

certain polynomial bijective parametrization of these extreme

measures.
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Motivations from optimal transport (but there are other ones,

MFGs see Pierre-Louis Lions’ lectures at Collège de France in

2007). Optimal transport with several marginals and a

symmetric cost. Typical case: Coulomb cost, minimize
∫

R3N

∑

i 6=j

1

|xi − xj |
dγ(x1, . . . , xN )

among (symmetric without loss of generality) measures γ with

first marginal ρ (given).

Has received a lot of attention since the papers of Buttazzo-De

Pascale-Gori-Giorgi (2012) and Cotar-Friesecke-Klüppelberg

(2013).
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Motivated by the fact that the semiclassical limit (strictly

correlated regime) of the Hohenberg-Kohn functional in density

functional theory (DFT) is at least formally (for rigorous

justifications see Cotar, Friesecke, Klüppelberg, (2018), Lewin

(2018)). The value of the above problem (suitably rescaled i.e.

divided by
(

N
2

)

) reads

CN (ρ) := inf
µ

∫

R6

1

|x− y|
dµ(x, y)

constrained by the fact that µ is the 2-point marginal of a

probability on γ on (R3)N , symmetric and having ρ as first

marginal.
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When N = 2 (Buttazzo-De Pascale-Gori-Giorgi), if ρ ∈ L1, the

solution is given by a map (essentially involutive) as in Brenier’s

theorem, y = T (x) = x+ ∇ϕ(x)
|∇ϕ(x)|3/2

(where ϕ solves the dual

problem), the position of the second electron is a deterministic

function of the position of the first one.

When N = ∞ (Cotar-Friesecke-Pass), using Hewitt and Savage,

what remains from the symmetry condition is just that

µ =
∫

P(R3)
(λ⊗ λ)dα(λ) for some α so

C∞(ρ) = inf
α:

∫
λdα(λ)=ρ

{

∫

P(R3)

∫

R6

1

|x− y|
dλ(x) dλ(x)dα(λ)

}

but (the Coulomb kernel has a positive Fourier Transform)

λ 7→

∫

R6

1

|x− y|
dλ(x) dλ(y) is convex
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So

C∞(ρ) =

∫

R6

1

|x− y|
dρ(x) dρ(y)

and µ = ρ⊗ ρ is the optimal plan. It is optimal to draw x and y

independently according to ρ.

This is in (extremely) sharp contrast with the case N = 2 where

the optimal plan is supported by the graph of a transport map.

What happens for N = 100 or N = 500 (and more general costs

with k-body interactions, 2 ≤ k ≤ N ...)?
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Outline

➀ Some special measure-valued polynomials

➁ A representation à la Hewitt and Savage, extremal

symmetric laws

➂ Symmetric multi-marginal optimal transport
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Measure valued polynomials

X is a complete and separable metric space, P(X) the set of

Borel probability measures on X . We fix N ≥ 2 and

k ∈ {1, . . . , N}, probability measures on Xk will be called

k-plans. Given γ ∈ P(XN ) we denote by Mkγ the

k-point-marginal of γ, i.e.,

(Mkγ)(A) := γ(A×XN−k) for every Borel subset A of Xk (1)

(with the convention MNγ = γ).

A special family of measure-valued polynomials/1
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For γ ∈ P(XN) and σ ∈ SN , the measure γσ ∈ P(XN) is

defined by
∫

XN

ϕdγσ =

∫

XN

ϕ(xσ(1), . . . , xσ(N))dγ(x1, . . . , xN )

for every test-function ϕ ∈ Cb(X
N ). A measure γ ∈ P(XN) is

called symmetric if γ = γσ for every σ ∈ SN . If γ ∈ P(XN ) is

arbitrary, its symmetrization SNγ is given by

SNγ :=
1

N !

∑

σ∈SN

γσ. (2)

The set of symmetric N -plans is denoted by Psym(X
N ):

Psym(X
N) := SN (P(XN )) = {γ ∈ P(XN ) : γ = SNγ}. (3)

A special family of measure-valued polynomials/2
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N-representable k-plans:

For N ≥ 2 and k ∈ {1, ..., N}, a k-plan µk ∈ P(Xk) is said to be

N -representable if it is the k-point marginal of a symmetric

N -plan, that is to say if there exists γ ∈ Psym(X
N ) such that

µk = Mkγ. We denote by PN−rep(X
k) the set of

N -representable k-plans, i.e.:

PN−rep(X
k) = MkSN (P(XN )) = Mk(Psym(X

N )).

In other words, a symmetric N -plan γ ∈ Psym(X
N ) is the law of

a finite exchangeable random sequence (Z1, . . . , ZN ) with values

in XN , whereas µk = Mkγ ∈ PN−rep(X
k) is the law of its first

k-components (Z1, . . . , Zk).

A special family of measure-valued polynomials/3
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Computations from scratch: start with a Dirac mass. Let

x = (x1, . . . , xN ) ∈ XN , 2 ≤ k ≤ N and

µk := MkSNδx (4)

we claim that µk is a polynomial of degree k in

λ := M1SNδx = M1µk =
1

N

N
∑

i=1

δxi

Of course µ1 = λ, and for k = 2

µ2 =
1

N !

∑

σ∈SN

δ(xσ(1),xσ(2)) =
1

N(N − 1)

∑

i 6=j

δ(xi,xj)

=
N

N − 1
λ⊗2 −

1

N − 1
id⊗2

#λ

where λ⊗2 = λ⊗ λ (quadratic) and id⊗2
#λ = (id, id)#λ (linear).

A special family of measure-valued polynomials/4
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A similar computation gives by simple inclusion exclusion

µ3 =
1

N(N − 1)(N − 2)

∑

i1,i2,i3pairwise distinct

δ(xi1 ,xi2 ,xi3 )

=
N2

(N − 1)(N − 2)

[

λ⊗3 −
3

N
S3

(

(id⊗2
# λ)⊗ λ

)

+
2

N2
id⊗3

# λ

]

General polynomial ansatz: develop µk on a basis of terms

which are tensor products of measures of the form λ⊗p and

id⊗q
# λ, where

∫

Xq

ϕ d(id⊗q
# λ) =

∫

X

ϕ(x, . . . , x)dλ(x)

for every ϕ ∈ Cb(X
q).

A special family of measure-valued polynomials/5
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For 4 ≤ k ≤ N , combinatorics become trickier because there can

be many ways (even up to symmetrization) a term of degree

l ≤ k may arise: e.g. if k = 4 both terms (id⊗3
# λ)⊗ λ and

(id⊗2
# λ)⊗ (id⊗2

# λ) have degree 2. Quite different, for

ϕ ∈ Cb(X
4)

∫

X4

ϕ((id⊗3
# λ)⊗ λ) =

∫

X2

ϕ(x, x, x, y)dλ(x)dλ(y)

whereas
∫

X4

ϕ((id⊗2
# λ)⊗ (id⊗2

# λ)) =

∫

X2

ϕ(x, x, y, y)dλ(x)dλ(y).

A special family of measure-valued polynomials/6
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Easy to see that the ansatz is justified, recursive formula, for

1 ≤ k ≤ N − 1,

µk+1 =
N

N − k
µk ⊗ λ−

1

N − k

k
∑

j=1

Rj#µk (5)

where Rj : Xk → Xk+1 is given by

Rj(z1, . . . , zk) := (z1, . . . , zk, zj). Closed form formula for µk as

a polynomial of degree k function of λ requires some

considerations on partitions.

A special family of measure-valued polynomials/7
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Let j ≥ 1, a partition of j of length n is a vector

p = (p1, ..., pn) ∈ N∗n such that
∑n

i=1 pi = j, p1 ≥ . . . ≥ pn. For

any partition p we denote its length by n(p); e.g. partitions of 4

1 + 1 + 1 + 1

2 + 1 + 1

2 + 2

3 + 1

4.

It will be convenient to view a partition p as a map from the set

of its component indices to N∗; the range Ranp of this map is

the set of values taken by the components, and |p−1(q)| denotes

the number of components with value q. For example, for

p = (2, 1, 1) and q = 1, |p−1(q)| = 2.

A special family of measure-valued polynomials/8
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Theorem 1 Let N ≥ 2, and 2 ≤ k ≤ N , for x ∈ XN , then

µk := MkSNδx can be written in terms of λ = N−1
∑N

i=1 xi as

µk =
Nk−1

∏k−1
i=1 (N − i)



λ⊗k +
k−1
∑

j=1

(−1)j

N j
SkP

(k)
j (λ)



 =: FN,k(λ)

(6)

P
(k)
j (λ) =

∑

p=(p1,...pn(p))partition

of jwith j+n(p)≤k

d(k)p id
⊗(p1+1)
# λ ⊗. . .⊗id

⊗(pn(p)+1)

# λ ⊗λ⊗(k−j−n(p))

(7)

d(k)p =
k!

(k − j − n(p))!

n(p)
∏

i=1

1

pi + 1

∏

q∈Ranp

1

(|p−1(q)|)!
. (8)

A special family of measure-valued polynomials/9
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For instance

FN,5(λ) =
N5(N − 5)!

N !

[

λ⊗5 −
10

N
S5 id

⊗2
# λ ⊗ λ⊗3

+
20S5 id

⊗3
# λ⊗ λ⊗2 + 15S5 id

⊗2
# λ⊗ id⊗2

# λ⊗ λ

N2

−
30S5 id

⊗4
# λ⊗ λ+ 20S5 id

⊗3
# λ⊗ id⊗2

# λ

N3
+

24

N4
id⊗5

# λ

]

.

A special family of measure-valued polynomials/10
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The leading term is the independent one λ⊗k the next ones are

correlated correction terms with P
(k)
j (λ) of degree k − j, the

coefficients satisfy the sum rule (Stirling numbers)

∑

p partition of j
with j+n(p)≤k

d(k)p =
∑

1≤i1<...<ij≤k−1

i1 · · · ij =: c
(k)
j . (9)

Note also that FN,k(λ) can be defined for an arbitrary

λ ∈ P(X) (not only an empirical measure) and FN,k is narrowly

continuous.

A special family of measure-valued polynomials/11
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Retaining only the mean-field term gives in (6)

FN,k(λ) =
Nk−1

∏k−1
j=1 (N − j)

(

λ⊗k + εN,k(λ)
)

with ‖εN,k(λ)‖TV ≤
Ck

N

(10)

as in Diaconis and Freedman (but with a bad constant...).

A special family of measure-valued polynomials/12
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Keeping the first p correction terms (p ∈ {1, ..., k − 2}) we have

FN,k(λ) =
Nk−1

∏k−1
j=1 (N − j)



λ⊗k +

p
∑

j=1

(−1)j

N j
Sk P

(k)
j (λ) + εN,k,p(λ)





with ‖εN,k,p(λ)‖TV ≤
Ck

Np+1
, (11)

with constants Ck independent of N and p.

A special family of measure-valued polynomials/13
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Figure 1: Coefficients of the universal polynomial FN,4 for differ-

ent N . For N = 5 and 6, the second (correlated) term is bigger

respectively equal in absolute value to the first (independent)

term; for N = 20 its size is about 30% that of the first term. For

large N , FN,4 converges to the independent measure λ⊗4, but

even for N = 100 the deviation from the latter is still visible.

A special family of measure-valued polynomials/14
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Hewitt-Savage like representation

Let P 1
N
(X) be the set of 1

N
-quantized probability measures on

X i.e.

P 1
N
(X) = {

1

N

N
∑

i=1

δxi , (x1, . . . , xN ) ∈ XN} = Λ(XN)

where Λ is the (Lipschitz for W1) map: XN → P 1
N
(X) defined

by Λ(x) = 1
N

∑N

i=1 δxi .

A Hewitt-Savage representation for N -representable laws/1
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We have seen that if γ = δx then

µN = SNγ = FN,N (Λ(x)) =

∫

P 1
N

(X)

FN,N (λ)dα(λ)

for

α = δΛ(x) = Λ#γ = Λ#µN .

A Hewitt-Savage representation for N -representable laws/2
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By linearity, for every µN ∈ Psym(X
N ) i.e. µN = SNγ with

γ ∈ P(XN) discrete, the same formula holds

µN = SNγ =

∫

P 1
N

(X)

FN,N (λ)dα(λ), with α = Λ#µN

By density of discrete measures and continuity, the same holds

for any symmetric measure.

A Hewitt-Savage representation for N -representable laws/3
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We therefore have the Hewitt-Savage like representation:

presentation result for N -representable k-plans.

Theorem 2 Let N ≥ k ≥ 2. A measure µk ∈ P(Xk) is

N -representable if and only if there exists α ∈ P(P(X)) such

that α(P 1
N
(X)) = 1 and

µk =

∫

P 1
N

(X)

FN,k(λ) dα(λ) (12)

where FN,k is defined by (6)–(8). Moreover, if k = N , the

measure α in (12) is unique.

The case k ≤ N follows from the case k = N since µk = MkµN

and FN,k = Mk ◦ FN,N on P 1
N
(X). Uniqueness for k = N is by

showing directly α = Λ#µN .

A Hewitt-Savage representation for N -representable laws/4
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Remarks

• Letting N → ∞, we recover the classical form of Hewitt and

Savage, as well as the Diaconis-Freedman bound (because

FN,k(λ)− λ⊗k = OTV(
1
N
)).

• Main differences: domain of integration consists of empirical

measures only and the polynomials FN,k(λ) contain terms

of degree less than k so as to account for correlated

corrections.

• Natural sampling interpretation.

A Hewitt-Savage representation for N -representable laws/5
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Corollary 1 Let Z = (Z1, . . . , ZN) be a finitely exchangeable

sequence of random variables with values in X, let

µ ∈ Psym(X
N ) be the law of Z and let α ∈ P(P(X)) be such

that α(P 1
N
(X)) = 1 and

µ =

∫

P 1
N

(X)

FN,N (λ) dα(λ). (13)

Let (Z(ν))ν∈N be i.i.d drawn according to µ, and consider the

P(X)-valued sequence

Λ(Z(ν)) :=
1

N

N
∑

i=1

δ
Z

(ν)
i

.

Then, almost surely, the empirical measure 1
n

∑n

ν=1 δΛ(Z(ν))

converges narrowly to α as n → ∞.

A Hewitt-Savage representation for N -representable laws/6
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Extremal symmetric laws

Recall that an extreme point of a convex set C is a point of C

which cannot be written as ta+ (1− t)b with

(t, a, b) ∈ (0, 1)× C2 unless a = b. An easy consequence of the

Choquet representation in Theorem 2 is that the set of extreme

points of PN−rep(X
k) is included in

EN,k := {FN,k(λ) : λ ∈ P 1
N
(X)}

= {MkSNδx1,...,xN : (x1, . . . , xN ) ∈ XN}
(14)

A Hewitt-Savage representation for N -representable laws/7
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The converse (and slightly more) is true:

Theorem 3 Let N ≥ k ≥ 2.

a) The set of extreme points of PN−rep(X
k) is given by the set

EN,k = FN,k(P 1
N
(X)) defined in (14).

b) Every such extreme point is also exposed (that is for every

λ ∈ P 1
N
(X) one can find ϕ ∈ Cb(X

k) such that µ 7→
∫

Xk ϕdµ

achieves its maximum on PN−rep(X
k) at FN,k(λ) only).

In particular extremal N -representable k-plans form a narrowly

closed set. Moreover, λ ∈ P 1
N
(X) 7→ FN,k(λ) is a bijective

parametrization (M1FN,k(λ) = λ) of the extreme points of

PN−rep(X
k), note also that taking marginals (passing from

k + 1 to k) does not destroy extreme points.

A Hewitt-Savage representation for N -representable laws/8
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Symmetric multi-marginal optimal transport

Given integers 2 ≤ k ≤ N and Φ ∈ Cb(X
k) symmetric (i.e.,

Φ(xσ(1), . . . , xσ(k)) = Φ(x1, . . . , xk) for every (x1, . . . , xk) ∈ Xk

and every permutation σ ∈ Sk), we consider the (k-body

interaction) symmetric cost cΦ defined on XN by

cΦ(x1, · · · , xN ) :=
1

(

N
k

)

∑

1≤i1<i2...<ik≤N

Φ(xi1 , . . . , xik). (15)

Given ρ ∈ P(X) we are interested in the multi-marginal optimal

transport problem

CN,k(ρ) := inf
γ∈Psym(XN ), M1γ=ρ

{

∫

XN

cΦ(x1, . . . , xN )dγ(x1, . . . , xN )
}

.

(16)

Symmetric multi-marginal optimal transport/1
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This can be reformulated in terms of the k-marginal

µk = Mk(γ) ∈ PN−rep(X
k):

CN,k(ρ) := inf
{

∫

Xk

Φdµk : µk ∈ PN−rep(X
k), M1(µk) = ρ

}

.

(17)

The de Finetti style representation from Theorem 2, together

with the fact that M1(FN,k(λ)) = λ for every λ ∈ P 1
N
(X),

enables us to write CN,k(ρ) as the infimum
∫

P 1
N

(X)

(

∫

Xk

Φ dFN,k(λ)
)

dα(λ)

with respect to α ∈ P(P 1
N
(X)) subject to the marginal

constraint
∫

P 1
N

(X)

λ dα(λ) = ρ. (18)

Symmetric multi-marginal optimal transport/2
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One can observe that λ ∈ P 1
N (X) 7→

∫

Xk Φ dFN,k(λ) is a

polynomial of degree k expression in the weights of the discrete

measure λ, for instance if k = 2:
∫

X2

Φ dFN,2(λ) =
N

N − 1

∫

X2

Φ(x, y)dλ(x)dλ(y)

−
1

N − 1

∫

X

Φ(x, x)dλ(x)

and for k = 3:
∫

X3

Φ dFN,3(λ) =
N2

(N − 1)(N − 2)

∫

X3

Φ(x, y, z)dλ(x)dλ(y)dλ(z)

−
3N

(N − 1)(N − 2)

∫

X2

Φ(x, x, y)dλ(x)dλ(y)

+
2

(N − 1)(N − 2)

∫

X

Φ(x, x, x)dλ(x).

Symmetric multi-marginal optimal transport/3
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Defining the polynomial PN,k for every single marginal (not

necessarily 1
N

-quantized) λ ∈ P(X) by

PN,k(λ) :=

∫

Xk

Φ dFN,k(λ), for all λ ∈ P(X),

we see that the previous expression for CN,k(ρ) is a
1
N

-quantized constrained version of the convexification of the

polynomial PN,k:

P ∗∗
N,k(ρ) := inf

α∈P(P(X))

{

∫

P(X)

PN,k(λ)dα(λ) :

∫

P(X)

λdα(λ) = ρ
}

.

(19)

In particular note that

CN,k(ρ) ≥ P ∗∗
N,k(ρ), ∀ρ ∈ P(X). (20)

Symmetric multi-marginal optimal transport/4
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Of course

CN,k(ρ) ≤ Pk(ρ) :=

∫

Xk

Φdρ⊗k, ∀ρ ∈ P(X)

but since CN,k is convex this also gives

CN,k(ρ) ≤ P ∗∗
k (ρ), for all ρ ∈ P(X). (21)

Taking convex envelopes and using (20) we thus get, for every

ρ ∈ P(X):

(N − k)!Nk

N !

(

P ∗∗
k (ρ)−

Ck‖Φ‖∞
N

)

≤ CN,k(ρ) ≤ P ∗∗
k (ρ). (22)

Symmetric multi-marginal optimal transport/5



Symmetric multi-marginal optimal transport 39

In particular CN,k converges uniformly on P(X) to P ∗∗
k as

N → +∞ (but this already follows from the classical form of

Hewitt-Savage).

Alternative convexification of polynomials viewpoint. Does not

really break the curse of dimensionality (except if X = {0, 1}

where CN,k can be computed in linear in N time).

Symmetric multi-marginal optimal transport/6


