Tas de sable en équilibre sur un réseau hétérogène

Lucilla Corrias

Collège de France, 28 avril 2017

We shall consider the system of PDE for (u, v)

$$
\begin{array}{ll}
-D(v(x) \eta(x) D u(x))=f(x) & \text { in } \mathcal{N} \backslash \partial \mathcal{N} \\
\eta(x)|D u(x)| \leq 1 & \text { in } \mathcal{N} \backslash \partial \mathcal{N} \\
\eta(x)|D u(x)|=1 & \text { in }\{x \in \mathcal{N} \backslash \partial \mathcal{N}: v(x) \neq 0\} \\
u, v \geq 0 & \text { in } \mathcal{N}
\end{array}
$$

on a finite connected network \mathcal{N}

This is a joint work with F. Camilli and S. Cacace ("La Sapienza" - Università di Roma)

Mass transfer problem

The Euler-Lagrange equation for the Monge-Kantorovich's dual problem

$$
\max _{u \in \operatorname{Lip}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}} u\left(f^{+}-f^{-}\right) d x
$$

is

$$
\begin{aligned}
& -\operatorname{div}(a \nabla u)=f^{+}-f^{-} \\
& \quad a \geq 0, \quad|\nabla u| \leq 1, \quad a(|\nabla u|-1)=0
\end{aligned}
$$

where a is the Lagrange multiplier

See Evans-Gangbo, Mem. Am. Math. Soc. (1999)
Villani, Topics in OT, GMS AMS (2003),
Santambrogio, Progress in Non. Diff Eq. Appl. (2015)

A variational problem

$$
\inf _{\bar{u}+W_{0}^{1, \infty}(\Omega)} \int_{\Omega}\left(\mathbf{1}_{D}(\nabla u)+g(u)\right)
$$

$D \subseteq \mathbb{R}^{n}$ convex and closed, $\quad \mathbf{1}_{D}$ characteristic function of D g strictly increasing

The Euler-Lagrange equation for the above variational problem is

$$
\begin{aligned}
& \operatorname{div}(\pi(x))=g^{\prime}(u(x)) \\
& \pi(x) \cdot \nabla u(x)=\max \{\pi(x) \cdot d ; d \in D\}
\end{aligned}
$$

See Bianchini, DCDS (2007), and the references therein

Equilibrium configurations of sand-piles

\rightsquigarrow Dry matter is poured vertically and continuously, by a constant in time source of density $f(x) \geq 0$, onto a "table" $\Omega \subset \mathbb{R}^{2}$
\rightsquigarrow The evolution of the heap of sand is described mathematically through the functions
$u \geq 0$: height of the standing layer (matter that stay at rest)
$v \geq 0$: thickness of the rolling layer (matter moving down) and assuming that :

- the slope of u can not exceed the critical "angle of repose"

$$
\Rightarrow|\nabla u| \leq 1 \text { in } \Omega
$$

- the flow of v follows the slope of $u \Rightarrow J_{v}=-v \nabla u$
- superfluous matter runs down at $\partial \Omega \Rightarrow u=0$ on $\partial \Omega$
\rightsquigarrow At the equilibrium :
- $-\operatorname{div}(v \nabla u)=f$
- the slope of u has to be maximal if $v>0 \Rightarrow|\nabla u|=1$ in $\{v>0\}$

Equilibrium configurations of sand-piles

- Configuration corresponding to a point source f at $y \in \Omega$

$$
u^{f}(x)=[\operatorname{dist}(y, \partial \Omega)-|x-y|]_{+}
$$

- Union of all "cones"

$$
u^{f}(x)=\max _{y \in \operatorname{supp}(f)}[\operatorname{dist}(y, \partial \Omega)-|x-y|]_{+}
$$

- " $v(x)$ is determined by adding up all the matter coming down (from the source) along the transport ray between the singular set of $\operatorname{dist}_{\partial \Omega}$ and x "

[^0]
The mathematical framework on the network \mathcal{N}

- The network \mathcal{N} is composed of $\mathcal{E}:=\left\{e_{1}, \ldots, e_{M}\right\}=M$ curves (edges) in \mathbb{R}^{N} $\mathcal{V}:=\left\{x_{1}, \ldots, x_{N}\right\}=N$ vertices (nodes) in \mathbb{R}^{N}
- The vertices are endpoints of the edges
- The closed edges \bar{e}_{j} are parametrized by

$$
\pi_{j}:\left[0, \ell_{j}\right] \mapsto \mathbb{R}^{n}
$$

The π_{j} induce an orientation on each e_{j} but the results do not depend on it

- The vertices are either transition vertices or boundary vertices. In particular, if x_{i} is the endpoint of only one edge, then it is a boundary vertex
- $\operatorname{Inc}_{i}:=\left\{j \in\{1, \ldots, M\}: x_{i} \in \bar{e}_{j}\right\}$

The mathematical framework on the network \mathcal{N}

- Two type of functions to be considered

$$
u: \mathcal{N} \rightarrow \mathbb{R} \quad \text { and } \quad u=\left(u_{\bar{e}_{j}}\right)_{j=1, \ldots, M}, \quad u_{\bar{e}_{j}}: \bar{e}_{j} \rightarrow \mathbb{R}
$$

- To each of them we associate the projections

$$
u_{j}(t):=u\left(\pi_{j}(t)\right) \quad \text { and } \quad u_{j}(t):=u_{\bar{e}_{j}}\left(\pi_{j}(t)\right), \quad t \in\left[0, \ell_{j}\right]
$$

- With $D u(x), x \in \mathcal{N}$, we denote $\left(D_{j} u(x)\right)_{j=1, \ldots, M}$, where

$$
\begin{aligned}
& D_{j} u(x)=u_{j}^{\prime}\left(\pi_{j}^{-1}(x)\right), \quad \text { if } x \in e_{j} \\
& D_{j} u\left(x_{i}\right)= \begin{cases}\lim _{h \rightarrow 0^{+}}\left(u_{j}(h)-u_{j}(0)\right) / h, & \text { if } x_{i}=\pi_{j}(0) \\
\lim _{h \rightarrow 0^{+}}\left(u_{j}\left(\ell_{j}-h\right)-u_{j}\left(\ell_{j}\right)\right) / h, & \text { if } x_{i}=\pi_{j}\left(\ell_{j}\right)\end{cases}
\end{aligned}
$$

The mathematical framework on the network \mathcal{N}

$$
\begin{aligned}
& \operatorname{Dist}(x, y):= \inf _{\mathcal{P}(x, y)}\left\{\left|\pi_{j_{1}}^{-1}(x)-\pi_{j_{1}}^{-1}\left(x_{1}\right)\right|+\sum_{i=2}^{n} \ell_{j i}+\left|\pi_{j_{n+1}}^{-1}(y)-\pi_{j_{n+1}}^{-1}\left(x_{n}\right)\right|\right\} \\
& \int_{\mathcal{N}} u(x) d x=\sum_{j=1}^{M} \int_{0}^{\ell_{j}} u_{j}(t) d t \\
& C(\mathcal{N}):=\left\{\left(u_{j}\right)_{j=1, \ldots . M}: u_{j} \in C\left(\left[0, \ell_{j}\right]\right) \text { and } u_{j}\left(x_{i}\right)=u_{k}\left(x_{i}\right) \text { if } j, k \in \operatorname{Inc}_{i}\right\} \\
& C^{1}(\mathcal{N}):=\left\{u \in C(\mathcal{N}): u_{j} \in C^{1}\left(\left[0, \ell_{j}\right]\right)\right\} \\
& L^{\infty}(\mathcal{N}):= \prod_{j=1}^{M} L^{\infty}\left(0, \ell_{j}\right) \text { and } \quad W^{1, \infty}(\mathcal{N}):=\prod_{j=1}^{M} W^{1, \infty}\left(0, \ell_{j}\right)
\end{aligned}
$$

A weighted distance function

We assume a non constant "angle of repose" η^{-1} s.t.

$$
\left(\eta_{j}\right)_{j} \in \prod_{j=1}^{M} C\left(\left[0, \ell_{j}\right]\right) \quad \text { and } \quad \min _{j=1, \ldots, M}\left\{\eta_{\bar{e}_{j}}(x) ; x \in \overline{\bar{e}}_{j}\right\}>0
$$

We define the weighted metric

$$
\begin{aligned}
\mathcal{D}(x, y):=\inf _{\mathcal{P}(x, y)}\left\{\left|\int_{\pi_{j_{1}}^{-1}(x)}^{t_{1}} \frac{1}{\eta_{j_{1}}(s)} d s\right|\right. & +\sum_{i=2}^{n}\left|\int_{t_{i-1}}^{t_{i}} \frac{1}{\eta_{j_{i}}(s)} d s\right| \\
& \left.+\left|\int_{t_{n}}^{\pi_{j_{n+1}}^{-1}(y)} \frac{1}{\eta_{j_{n+1}}(s)} d s\right|\right\}
\end{aligned}
$$

and the weighted distance function

$$
d_{\partial \mathcal{N}}(x):=\min _{y \in \partial \mathcal{N}} \mathcal{D}(x, y), \quad x \in \mathcal{N}
$$

We say that (u, v) is a weak solution of

$$
\begin{array}{ll}
-D(v(x) \eta(x) D u(x))=f(x) & \text { in } \mathcal{N} \backslash \partial \mathcal{N} \\
\eta(x)|D u(x)| \leq 1 & \text { in } \mathcal{N} \backslash \partial \mathcal{N} \\
\eta(x)|D u(x)|-1=0 & \text { in }\{x \in \mathcal{N} \backslash \partial \mathcal{N}: v(x) \neq 0\} \\
u, v \geq 0 & \text { in } \mathcal{N}
\end{array}
$$

if
(i) $v \geq 0$ and s.t. $v_{j} \in C\left(\left[0, \ell_{j}\right]\right)$ for $j=1, \ldots, M$
(ii) $u \in\left(W^{1, \infty} \cap C\right)(\mathcal{N}), u \geq 0, \eta(x)|D u(x)| \leq 1$ a.e. in $\mathcal{N} \backslash \partial \mathcal{N}$
(iii) u is a viscosity solution of the eikonal equation in $\{x \in \mathcal{N} \backslash \partial \mathcal{N}: v(x) \neq 0\}$
(iv) $\forall \psi \in\left(W^{1, \infty} \cap C\right)(\mathcal{N})$ s.t. $\psi_{\left.\right|_{\partial \mathcal{N}}}=0$:

$$
\int_{\mathcal{N}} v \eta D u D \psi d x=\int_{\mathcal{N}} f \psi d x
$$

(v) $u_{\partial \mathcal{N}}=0$
(vi) (u, v) satisfies transmission conditions at the transition vertex

The transmission conditions for (u, v)

\rightsquigarrow The transmission conditions has to be defined so that the conservation of the flux at each transition vertices x_{i} is satisfied

$$
\begin{equation*}
\sum_{j \in \operatorname{Inc}_{i}} v_{j}\left(x_{i}\right) \eta_{j}\left(x_{i}\right) D_{j} u\left(x_{i}\right)=0 \tag{CF}
\end{equation*}
$$

\rightsquigarrow The conservation of the flux itself is not sufficient to define $v_{j}\left(x_{i}\right)$ at x_{i} for all $j \in \operatorname{Inc}_{i}$ and to guarantee the uniqueness of the solution (u, v)
\rightsquigarrow The choice of the transmission conditions is not unique. Our choice amounts to impose that "the quantity of the rolling layer v entering in x_{i} along the incoming edges, is distributed to the outgoing edges, so that to satisfy (CF)"

The transmission conditions for (u, v)

- Given $u \in W^{1, \infty}(\mathcal{N})$, if x_{i} transition vertex and $j \in \operatorname{Inc}_{i}$ are s.t. $D_{j} u\left(x_{i}\right)$ exists and is not zero, we set

$$
\sigma_{i j}(u):=\operatorname{sgn}\left[D_{j} u\left(x_{i}\right)\right]
$$

Moreover, we set : $\operatorname{Inc}_{i}^{ \pm}(u):=\left\{j \in \operatorname{Inc}_{i}: \sigma_{i j}(u)= \pm 1\right\}$

- Given $C_{i j}>0$ s.t. $\sum_{j \in \operatorname{Inc}_{i}^{-}(u)} C_{i j}=1$, the transmission conditions at x_{i} are as following :
\rightsquigarrow if $\sigma_{i j}(u)$ is not defined and $j \in \mathrm{Inc}_{i}$ then

$$
v_{j}\left(\pi_{j}^{-1}\left(x_{i}\right)\right)=0
$$

\rightsquigarrow if $\sigma_{i j}(u)$ is defined and $j \in \operatorname{Inc}_{i}^{-}(u)$, then

$$
v_{j}\left(\pi_{j}^{-1}\left(x_{i}\right)\right)=C_{i j} \sum_{k \in \operatorname{Inc}_{i}^{+}(u)} v_{k}\left(\pi_{k}^{-1}\left(x_{i}\right)\right)
$$

The viscosity solution definition

(i) $u \in C(\mathcal{N})$ is a sub-solution if for any $\phi \in C^{1}(\mathcal{N})$ and any $x \in e_{j}, j=1, \ldots, M$, s.t. $(u-\phi)$ attains a local maximum at x, it holds :

$$
\left|D_{j} \phi(x)\right|-\frac{1}{\eta_{j}(x)} \leq 0
$$

(ii) $u \in C(\mathcal{N})$ is a super-solution if:

- for any $\phi \in C^{1}(\mathcal{N})$ and any $x \in e_{j}, j=1, \ldots, M$, s.t.
($u-\phi$) attains a local minimum at x, it holds :

$$
\left|D_{j} \phi(x)\right|-\frac{1}{\eta_{j}(x)} \geq 0
$$

- for any $\phi \in C^{1}(\mathcal{N})$ and any transition vertex x_{i} s.t. $(u-\phi)$ attains a local minimum at x_{i}, it holds :

$$
\max _{j \in \operatorname{Inc}_{i}}\left\{\left|D_{j} \phi\left(x_{i}\right)\right|-\frac{1}{\eta_{j}\left(x_{i}\right)}\right\} \geq 0
$$

(iii) $u \in C(\mathcal{N})$ is a solution if it is both a sub- and a super-solution

See Lions \& Souganidis, Rendiconti Lincei (2016), and the references therein

The u-component of the solution

The weighted distance function to $\partial \mathcal{N}$

$$
d_{\partial \mathcal{N}}(x):=\min _{y \in \partial \mathcal{N}} \mathcal{D}(x, y), \quad x \in \mathcal{N}
$$

is the good candidate to be the viscosity solution of the eikonal equation

$$
\begin{equation*}
|D u(x)|-\frac{1}{\eta(x)}=0 \tag{Ek}
\end{equation*}
$$

Proposition
For any fixed $x_{0} \in \mathcal{N}$, the function $\mathcal{D}\left(x_{0}, \cdot\right)$ is a viscosity solution of $(E k)$ in $\mathcal{N} \backslash\left(\partial \mathcal{N} \cup\left\{x_{0}\right\}\right)$ and $d_{\partial \mathcal{N}}$ is the unique viscosity solution of $(E k)$ in \mathcal{N} with $d_{\partial \mathcal{N}}=0$ on $\partial \mathcal{N}$.

What about the v-component of the solution?

(i) $v \geq 0$ and s.t. $v_{j} \in C\left(\left[0, \ell_{j}\right]\right)$ for $j=1, \ldots, M$
(ii) $u \in\left(W^{1, \infty} \cap C\right)(\mathcal{N}), u \geq 0, \eta(x)|D u(x)| \leq 1$ a.e. in $\mathcal{N} \backslash \partial \mathcal{N}$
(iii) u is a viscosity solution of the eikonal equation

$$
\text { in }\{x \in \mathcal{N} \backslash \partial \mathcal{N}: v(x) \neq 0\}
$$

(iv) $\forall \psi \in\left(W^{1, \infty} \cap C\right)(\mathcal{N})$ s.t. $\psi_{\mid \partial \mathcal{N}}=0$:

$$
\int_{\mathcal{N}} v \eta D u D \psi d x=\int_{\mathcal{N}} f \psi d x
$$

(v) $u_{\mid \partial \mathcal{N}}=0$
(vi) (u, v) satisfies transmission conditions at each transition vertex

What about the v-component of the solution?

\rightsquigarrow Hadeler \& Kuttler, Granular matter (1999) :
" $v(x)$ is determined by adding up all the matter coming down (from the source) along the transport ray between the singular set of $\operatorname{dist}(\cdot, \partial \Omega)$ and x "
\rightsquigarrow We need to define the singular set of the distance function $d_{\partial \mathcal{N}}$ \rightsquigarrow If $\Omega \subset \mathbb{R}^{n}$ is smooth, the singular set of the euclidian distance from $\partial \Omega$ is the set of points where this function is not differentiable. Its closure coincides with the set of points having multiple geodesics connecting them to $\partial \Omega$
\rightsquigarrow In the case of the network \mathcal{N}, the singular set of $d_{\partial \mathcal{N}}$ is the set of points where $d_{\partial \mathcal{N}}$ attains a local maximum

Singular set of $d_{\partial \mathcal{N}}$

Proposition
Let
$S_{j}\left(d_{\partial \mathcal{N}}\right):=\left\{t \in\left(0, \ell_{j}\right): d_{j}\right.$ is not differentiable at $\left.t\right\}, \quad j=1, \ldots, M$
It holds :
(i) $d_{\partial \mathcal{N}}$ does not attain a local minimum on $\mathcal{N} \backslash \partial \mathcal{N}$
(ii) $d_{\partial \mathcal{N}}$ attains a local maximum at $x \in e_{j}$ iff $\pi_{j}^{-1}(x) \in S_{j}\left(d_{\partial \mathcal{N}}\right)$
(iii) $\# S_{j}\left(d_{\partial \mathcal{N}}\right) \in\{0,1\}$

Definition
We define the singular set of $d_{\partial \mathcal{N}}$ as

$$
\begin{aligned}
S\left(d_{\partial \mathcal{N}}\right):= & \left\{\pi_{j}\left(S_{j}\left(d_{\partial \mathcal{N}}\right)\right) ; j=1, \ldots, M\right\} \\
& \cup\left\{x_{i} \in \mathcal{V}: d_{\partial \mathcal{N}} \text { has a local maximum at } x_{i}\right\}
\end{aligned}
$$

The v-component of the solution

For $d=d_{\partial \mathcal{N}}$ we set

$$
\begin{aligned}
T_{j}(d):= & \left\{\pi_{j}^{-1}\left(x_{i}\right) ; x_{i} \in \bar{e}_{j} \text { s.t. } j \in \operatorname{Inc}_{i}^{-}(d)\right\} \\
& \Sigma_{j}(d):=S_{j}(d) \cup T_{j}(d) \\
P_{j}(t):= & t+\tau_{j}(t) \eta_{j}(t) d_{j}^{\prime}(t), \quad t \in\left[0, \ell_{j}\right] \\
\tau_{j}(t):= & \min \left\{s \geq 0: t+s \eta_{j}(t) d_{j}^{\prime}(t) \in \Sigma_{j}(d)\right\}
\end{aligned}
$$

and we define v component-wise as

$$
\begin{aligned}
v_{j}^{f}(t)= & \int_{0}^{\tau_{j}(t)} f_{j}\left(t+r \eta_{j}(t) d_{j}^{\prime}(t)\right) d r \\
& +\left(C_{i j} \sum_{k \in \operatorname{Inc}_{i}^{+}(d)} v_{k}^{f}\left(\pi_{k}^{-1}\left(x_{i}\right)\right)\right) \chi_{T_{j}(d)}\left(P_{j}(t)\right)
\end{aligned}
$$

The existence result

Theorem (Cacace, Camilli, C.)

The pair $\left(d_{\partial \mathcal{N}}, v^{f}\right)$ is a weak solution of the differential system.
Moreover,
(i) $v^{f}=0$ over the singular set $S\left(d_{\partial \mathcal{N}}\right)$
(ii) $v^{f} \in W^{1, \infty}(\mathcal{N})$
(iii) $\left(d_{\partial \mathcal{N}}, v^{f}\right)$ satisfies

$$
-D(v \eta D u)=f
$$

pointwise on $\mathcal{E} \backslash\left\{\pi_{j}\left(S_{j}\left(d_{\partial \mathcal{N}}\right)\right) ; j=1, \ldots, M\right\}$
Proof.
Choose ad hoc test functions and use the fact that one set between $S_{j}\left(d_{\partial \mathcal{N}}\right)$ and $T_{j}\left(d_{\partial \mathcal{N}}\right)$ is a singleton and the other one is empty

What about uniqueness ?

$$
\begin{aligned}
& x:=\left\{u \in\left(W^{1, \infty} \cap C\right)(\mathcal{N}): \eta(x)|D u(x)| \leq 1 \text { a.e. } x \in \mathcal{N}\right\} \\
& x_{0}:=\{u \in X: u=0 \text { on } \partial \mathcal{N}\} \\
& u^{f}(x):=\max _{y \in \operatorname{supp}(f)}\left[d_{\partial \mathcal{N}}(y)-\mathcal{D}(x, y)\right]_{+}, \quad x \in \mathcal{N},
\end{aligned}
$$

$\leadsto d_{\partial \mathcal{N}}$ is the maximal nonnegative element in X_{0}
$\rightsquigarrow u^{f}$ is the minimal one in the following sense

Lemma

(i) $0 \leq u^{f} \leq d_{\partial \mathcal{N}}$ in \mathcal{N} and $u^{f}=d_{\partial \mathcal{N}}$ on $\operatorname{supp}(f)$
(ii) $u^{f} \in X_{0}$
(iii) u^{f} is the smallest nonnegative function among the nonnegative functions $u \in X$ such that $u=d_{\partial \mathcal{N}}$ on $\operatorname{supp}(f)$
(iv) $u^{f}=d_{\partial \mathcal{N}}$ in $\operatorname{supp}\left(v^{f}\right)=\Pi_{j=1}^{M} \pi_{j}\left(\operatorname{supp}\left(v_{j}^{f}\right)\right)$
(v) $u^{f}=d_{\partial \mathcal{N}}$ in \mathcal{N} iff $S\left(d_{\partial \mathcal{N}}\right) \subset \operatorname{supp}(f)$

Proof.
(iv) To prove that $u^{f}=d_{\partial \mathcal{N}}$ in $\operatorname{supp}\left(v^{f}\right)$ we prove that for all $x_{0} \in \operatorname{supp}\left(v^{f}\right)$ there exists $x_{1} \in \operatorname{supp}(f)$ s.t.

$$
d_{\partial \mathcal{N}}\left(x_{0}\right)=d_{\partial \mathcal{N}}\left(x_{1}\right)-\mathcal{D}\left(x_{0}, x_{1}\right)
$$

i.e. any geodesic path from $\operatorname{supp}\left(v^{f}\right)$ to $\partial \mathcal{N}$ is contained into at least one geodesic path from $\operatorname{supp}(f)$ to $\partial \mathcal{N}$
(v) To prove that $u^{f}=d_{\partial \mathcal{N}}$ in \mathcal{N} iff $S\left(d_{\partial \mathcal{N}}\right) \subset \operatorname{supp}(f)$ we use in particular the fact that any geodesic path from $x \in \mathcal{N} \backslash S\left(d_{\partial \mathcal{N}}\right)$ to $\partial \mathcal{N}$ does not cross $S\left(d_{\partial \mathcal{N}}\right)$

As a consequence of the previous Lemma, all nonnegative functions $u \in X_{0}$ s.t. $u=d_{\partial \mathcal{N}}$ on $\operatorname{supp}(f)$, satisfy also

$$
u=u^{f}=d_{\partial \mathcal{N}} \quad \text { on } \operatorname{supp}\left(v^{f}\right)
$$

Therefore, these functions u are all good candidates to be the first component of a weak solution, with v^{f} the second component Question: does $\left(u, v^{f}\right)$ satisfies the transmission conditions at the transition verteces ? only in the verteces x_{i} s.t. $v^{f}\left(x_{i}\right)>0$ since there

$$
\sigma_{i j}\left(u^{f}\right)=\sigma_{i j}\left(d_{\partial \mathcal{N}}\right) \quad \text { and } \quad \operatorname{Inc}_{i}^{ \pm}\left(u^{f}\right)=\operatorname{Inc}_{i}^{ \pm}\left(d_{\partial \mathcal{N}}\right)
$$

The uniqueness result

Theorem (Cacace, Camilli, C.)
If (u, v) is a weak solution, then
(i) $u=d_{\partial \mathcal{N}}=u^{f}$ on $\operatorname{supp}\left(v^{f}\right)$
(ii) $v=v^{f}$ on $\Pi_{i=1}^{M} \bar{e}_{j}$
(iii) if $S\left(d_{\partial \mathcal{N}}\right) \subset \operatorname{supp}(f)$, then $(u, v)=\left(d_{\partial \mathcal{N}}, v^{f}\right)$ on $\mathcal{N} \times \Pi_{i=1}^{M} \bar{e}_{j}$

Corollary
If (u, v) is a weak solution, then for all transition vertex x_{i} s.t. $v\left(x_{i}\right) \neq 0$, the sets $\operatorname{Inc}_{i}^{ \pm}(u)$ are not empty and satisfy
(i) $\left\{j \in \operatorname{Inc}_{i}^{+}\left(d_{\partial \mathcal{N}}\right): v_{j}\left(x_{i}\right)>0\right\} \subseteq \operatorname{Inc}_{i}^{+}(u) \subseteq \operatorname{Inc}_{i}^{+}\left(d_{\partial \mathcal{N}}\right)$
(ii) $\operatorname{Inc}_{i}^{-}(u)=\operatorname{Inc}_{i}^{-}\left(d_{\partial \mathcal{N}}\right)$

Two key tools for the proof of the uniqueness result :

- the following partition $\left(\mathcal{E}_{m}\right)_{m}$ of \mathcal{E}

$$
\begin{aligned}
& \mathcal{E}_{0}=\mathcal{E}_{0}^{\prime} \cup \mathcal{E}_{0}^{\prime \prime} \\
& \mathcal{E}_{0}^{\prime}:=\left\{e_{j} \in \mathcal{E}: S_{j}\left(d_{\partial \mathcal{N}}\right) \neq \emptyset\right\} \\
& \mathcal{E}_{0}^{\prime \prime}:=\left\{e_{j} \in \mathcal{E}: \text { one endpoint is a maximum point of } d_{\partial \mathcal{N}}\right\}
\end{aligned}
$$

and

$$
\mathcal{E}_{m}:=\left\{e_{j} \in \mathcal{E}: \exists i \in \mathcal{I}_{T} \text { and } e_{k} \in \mathcal{E}_{m-1} \text { s.t. } j, k \in \operatorname{Inc}_{i}\right\}
$$

- the transmission conditions

Numerical approximations of $\left(d_{\partial \mathcal{N}}, v^{f}\right)$ and tests

- To compute an approximation of $d_{\partial \mathcal{N}}$ we consider

$$
\begin{cases}\max _{y \in \mathcal{G}^{h}: y \sim x}\left(-\frac{u^{h}(y)-u^{h}(x)}{\operatorname{Dist}(x, y)}\right)-\frac{1}{\eta(x)}=0 & x \in \mathcal{G}^{h} \backslash \partial \mathcal{G}^{h} \\ u^{h}(x)=0 & x \in \partial \mathcal{G}^{h}\end{cases}
$$

whose solution is

$$
d^{h}(x)=\min \left(\sum_{m=0}^{n-1} \frac{1}{\eta\left(x_{m}\right)} \operatorname{Dist}\left(x_{m}, x_{m+1}\right)\right) \quad x \in \mathcal{G}^{h}
$$

- The formula for $\left(v_{j}^{f}\right)_{j=1, \ldots, M}$ is approximated by a quadrature rule methode

The software SPNET

The software SPINET (for Sand Piles on NETworks) for the numerical approximations is due to Simone Cacace and it can be downloaded at
http://www.dmmm.uniroma1.it/~fabio.camilli/spnet.html.

The associated variational problem

$$
\sup _{u \in x_{0}} \int_{\mathcal{N}} f(x) u(x) d x
$$

or

$$
\inf _{u \in X_{0}} \int_{\mathcal{N}}\left(\mathbf{1}_{[-1,1]}(\eta(x) D u(x))-f(x) u(x) d x\right)
$$

- $d_{\partial \mathcal{N}}$ is the maximal solution
- u^{f} is the minimal solution
- $u \in X_{0}$ is a solution iff $u^{f} \leq u \leq d_{\partial \mathcal{N}}$ in \mathcal{N}
- $u \in X_{0}$ is a solution iff there exists $\left(v_{j}\right)_{j} \in \Pi_{j=1}^{M} C\left(\left[0, \ell_{j}\right]\right)$ s.t.
$\int_{\mathcal{N}} v \eta D u D \psi d x=\int_{\mathcal{N}} f \psi d x \quad \forall \psi \in\left(W^{1, \infty} \cap C\right)(\mathcal{N}), \psi_{\mid \partial \mathcal{N}}=0$

Merci !

[^0]: Hadeler \& Kuttler, Granular matter (1999);
 Boutreux \& de Gennes, J. Phys. (1996);
 Cannarsa \& Cardaliaguet, JEMS (2004);
 Crasta \& Malusa, Calc. Var. (2012); and the references therein

