

Laboratoire de Mathématiques et Modélisation d'Évry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Tas de sable en équilibre sur un réseau hétérogène

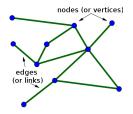
Lucilla Corrias

Collège de France, 28 avril 2017

We shall consider the system of PDE for (u, v)

$$\begin{aligned} &-D\left(v(x)\,\eta(x)\,Du(x)\right) = f(x) & \text{in } \mathcal{N} \setminus \partial \mathcal{N} \\ &\eta(x)\,|Du(x)| \leq 1 & \text{in } \mathcal{N} \setminus \partial \mathcal{N} \\ &\eta(x)\,|Du(x)| = 1 & \text{in } \{x \in \mathcal{N} \setminus \partial \mathcal{N} \,:\, v(x) \neq 0\} \\ &u, \, v \geq 0 & \text{in } \mathcal{N} \end{aligned}$$

on a finite connected network $\ensuremath{\mathcal{N}}$



This is a joint work with F. Camilli and S. Cacace ("La Sapienza" - Università di Roma)

Mass transfer problem

The Euler-Lagrange equation for the Monge-Kantorovich's dual problem

$$\max_{u\in \operatorname{Lip}^1(\mathbb{R}^n)}\int_{\mathbb{R}^n}u(f^+-f^-)dx$$

is

$$-\operatorname{div}(a \,
abla u) = f^+ - f^-$$

 $a \ge 0, \quad |
abla u| \le 1, \quad a(|
abla u| - 1) = 0$

where a is the Lagrange multiplier

See Evans-Gangbo, Mem. Am. Math. Soc. (1999) Villani, Topics in OT, GMS AMS (2003), Santambrogio, Progress in Non. Diff Eq. Appl. (2015)

A variational problem

$$\inf_{\bar{u}+W_0^{1,\infty}(\Omega)}\int_{\Omega}(\mathbf{1}_D(\nabla u)+g(u))$$

 $D \subseteq \mathbb{R}^n$ convex and closed, $\mathbf{1}_D$ characteristic function of D g strictly increasing

The Euler-Lagrange equation for the above variational problem is

$$div(\pi(x)) = g'(u(x))$$

$$\pi(x) \cdot \nabla u(x) = \max\{\pi(x) \cdot d; d \in D\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

See Bianchini, DCDS (2007), and the references therein

Equilibrium configurations of sand-piles

 \rightsquigarrow Dry matter is poured vertically and continuously, by a constant in time source of density $f(x) \ge 0$, onto a "table" $\Omega \subset \mathbb{R}^2$

 \leadsto The evolution of the heap of sand is described mathematically through the functions

 $u \ge 0$: height of the standing layer (matter that stay at rest)

 $\nu \geq 0$: thickness of the rolling layer (matter moving down) and assuming that :

- the slope of *u* can not exceed the critical "angle of repose" $\Rightarrow |\nabla u| \le 1$ in Ω
- the flow of v follows the slope of $u \Rightarrow J_v = -v \nabla u$
- superfluous matter runs down at $\partial \Omega \implies u = 0$ on $\partial \Omega$

 \rightsquigarrow At the equilibrium :

- $-\operatorname{div}(v\nabla u) = f$
- the slope of u has to be maximal if $v > 0 \Rightarrow |\nabla u| = 1$ in $\{v > 0\}$

Equilibrium configurations of sand-piles

• Configuration corresponding to a point source f at $y \in \Omega$

$$u^{f}(x) = [\operatorname{dist}(y, \partial \Omega) - |x - y|]_{+}$$

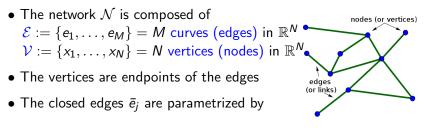
• Union of all "cones"

$$u^{f}(x) = \max_{y \in supp(f)} [\operatorname{dist}(y, \partial \Omega) - |x - y|]_{+}$$

• "v(x) is determined by adding up all the matter coming down (from the source) along the *transport ray* between the *singular set* of dist_{$\partial\Omega$} and x "

Hadeler & Kuttler, Granular matter (1999); Boutreux & de Gennes, J. Phys. (1996); Cannarsa & Cardaliaguet, JEMS (2004); Crasta & Malusa, Calc. Var. (2012); and the references therein

The mathematical framework on the network ${\cal N}$



$$\pi_j: [0, \ell_j] \mapsto \mathbb{R}^n$$

The π_j induce an orientation on each e_j but the results do not depend on it

• The vertices are either transition vertices or boundary vertices. In particular, if x_i is the endpoint of only one edge, then it is a boundary vertex

• Inc_i := {
$$j \in \{1, \ldots, M\}$$
 : $x_i \in \overline{e}_j$ }

The mathematical framework on the network ${\cal N}$

• Two type of functions to be considered

$$u: \mathcal{N} o \mathbb{R}$$
 and $u = (u_{ar{e}_j})_{j=1,...,M}$, $u_{ar{e}_j}: ar{e}_j o \mathbb{R}$

To each of them we associate the projections

$$u_j(t) := u(\pi_j(t))$$
 and $u_j(t) := u_{ar e_j}(\pi_j(t))$, $t \in [0, \ell_j]$

• With Du(x), $x \in \mathcal{N}$, we denote $(D_j u(x))_{j=1,...,M}$, where

$$D_{j}u(x) = u'_{j}(\pi_{j}^{-1}(x)), \quad \text{if } x \in e_{j}$$

$$D_{j}u(x_{i}) = \begin{cases} \lim_{h \to 0^{+}} (u_{j}(h) - u_{j}(0))/h, & \text{if } x_{i} = \pi_{j}(0) \\ \lim_{h \to 0^{+}} (u_{j}(\ell_{j} - h) - u_{j}(\ell_{j}))/h, & \text{if } x_{i} = \pi_{j}(\ell_{j}) \end{cases}$$

The mathematical framework on the network ${\cal N}$

$$\mathsf{Dist}(x,y) := \inf_{\mathcal{P}(x,y)} \{ |\pi_{j_1}^{-1}(x) - \pi_{j_1}^{-1}(x_1)| + \sum_{i=2}^{N} \ell_{j_i} + |\pi_{j_{n+1}}^{-1}(y) - \pi_{j_{n+1}}^{-1}(x_n)| \}$$
$$\int_{\mathcal{N}} u(x) dx = \sum_{j=1}^{M} \int_{0}^{\ell_j} u_j(t) dt$$

n

 $C(\mathcal{N}) := \{(u_j)_{j=1,...M} : u_j \in C([0, \ell_j]) \text{ and } u_j(x_i) = u_k(x_i) \text{ if } j, k \in \mathrm{Inc}_i\}$

$$C^1(\mathcal{N}) := \{ u \in C(\mathcal{N}) : u_j \in C^1([0, \ell_j]) \}$$

$$L^{\infty}(\mathcal{N}) := \prod_{j=1}^{M} L^{\infty}(0,\ell_j)$$
 and $W^{1,\infty}(\mathcal{N}) := \prod_{j=1}^{M} W^{1,\infty}(0,\ell_j)$

A weighted distance function

We assume a non constant "angle of repose" η^{-1} s.t.

$$(\eta_j)_j\in\prod_{j=1}^M C([0,\ell_j]) \quad ext{ and } \quad \min_{j=1,...,M}\{\eta_{ar e_j}(x);\, x\inar e_j\}>0$$

We define the weighted metric

$$egin{aligned} \mathcal{D}(x,y) &:= \inf_{\mathcal{P}(x,y)} \left\{ ig| \int_{\pi_{j_1}^{-1}(x)}^{t_1} rac{1}{\eta_{j_1}(s)} ds ig| \ + \sum_{i=2}^n ig| \int_{t_{i-1}}^{t_i} rac{1}{\eta_{j_i}(s)} ds ig| \ + ig| \int_{t_n}^{\pi_{j_{n+1}}^{-1}(y)} rac{1}{\eta_{j_{n+1}}(s)} ds ig|
ight\} \end{aligned}$$

and the weighted distance function

$$d_{\partial\mathcal{N}}(x) := \min_{y\in\partial\mathcal{N}} \mathcal{D}(x,y), \quad x\in\mathcal{N}$$

We say that (u, v) is a weak solution of

$$\begin{aligned} &-D\left(v(x)\,\eta(x)\,Du(x)\right) = f(x) & \text{in } \mathcal{N} \setminus \partial \mathcal{N} \\ &\eta(x)\,|Du(x)| \leq 1 & \text{in } \mathcal{N} \setminus \partial \mathcal{N} \\ &\eta(x)\,|Du(x)| - 1 = 0 & \text{in } \{x \in \mathcal{N} \setminus \partial \mathcal{N} \,:\, v(x) \neq 0\} \\ &u, \, v \geq 0 & \text{in } \mathcal{N} \end{aligned}$$

if

$$\begin{array}{ll} (i) \ v \geq 0 \ \text{and s.t.} \ v_j \in C([0,\ell_j]) \ \text{for } j=1,\ldots,M \\ (ii) \ u \in (W^{1,\infty} \cap C)(\mathcal{N}), \ u \geq 0, \ \eta(x) \ |Du(x)| \leq 1 \ \text{a.e. in } \mathcal{N} \setminus \partial \mathcal{N} \\ (iii) \ u \ \text{is a viscosity solution of the eikonal equation} \\ & \text{in } \{x \in \mathcal{N} \setminus \partial \mathcal{N} : \ v(x) \neq 0\} \\ (iv) \ \forall \ \psi \in (W^{1,\infty} \cap C)(\mathcal{N}) \ \text{s.t.} \ \psi_{|\partial \mathcal{N}} = 0 : \\ & \int_{\mathcal{N}} v \ \eta \ Du \ D\psi dx = \int_{\mathcal{N}} f \psi \ dx \\ (v) \ u_{|\partial \mathcal{N}} = 0 \end{array}$$

(vi) (u, v) satisfies transmission conditions at the transition vertex

The transmission conditions for (u, v)

 \rightsquigarrow The transmission conditions has to be defined so that the conservation of the flux at each transition vertices x_i is satisfied

$$\sum_{j\in \mathrm{Inc}_i} v_j(x_i) \,\eta_j(x_i) \, D_j u(x_i) = 0 \qquad (CF)$$

→ The conservation of the flux itself is not sufficient to define $v_j(x_i)$ at x_i for all $j \in \text{Inc}_i$ and to guarantee the uniqueness of the solution (u, v)

 \rightsquigarrow The choice of the transmission conditions is not unique. Our choice amounts to impose that "the quantity of the rolling layer v entering in x_i along the *incoming edges*, is distributed to the *outgoing edges*, so that to satisfy (CF)"

The transmission conditions for (u, v)

• Given $u \in W^{1,\infty}(\mathcal{N})$, if x_i transition vertex and $j \in \text{Inc}_i$ are s.t. $D_i u(x_i)$ exists and is not zero, we set

 $\sigma_{ij}(u) := \operatorname{sgn}[D_j u(x_i)]$

Moreover, we set : $\operatorname{Inc}_i^{\pm}(u) := \{j \in \operatorname{Inc}_i : \sigma_{ij}(u) = \pm 1\}$

• Given $C_{ij} > 0$ s.t. $\sum_{j \in \text{Inc}_i^-(u)} C_{ij} = 1$, the transmission conditions at x_i are as following :

 \rightsquigarrow if $\sigma_{ij}(u)$ is not defined and $j \in \text{Inc}_i$ then

$$v_j(\pi_j^{-1}(x_i))=0$$

 \rightsquigarrow if $\sigma_{ij}(u)$ is defined and $j \in \operatorname{Inc}_i^-(u)$, then

$$v_j(\pi_j^{-1}(x_i)) = C_{ij} \sum_{k \in \mathrm{Inc}_i^+(u)} v_k(\pi_k^{-1}(x_i))$$

The viscosity solution definition

(i) $u \in C(\mathcal{N})$ is a sub-solution if for any $\phi \in C^1(\mathcal{N})$ and any $x \in e_j, j = 1, \dots, M$, s.t. $(u - \phi)$ attains a local maximum at x, it holds : $|D_j\phi(x)| - \frac{1}{\eta_j(x)} \leq 0$

(ii) $u \in C(\mathcal{N})$ is a super-solution if : • for any $\phi \in C^1(\mathcal{N})$ and any $x \in e_j$, j = 1, ..., M, s.t. $(u - \phi)$ attains a local minimum at x, it holds : $|D_j\phi(x)| - \frac{1}{\eta_j(x)} \ge 0$ • for any $\phi \in C^1(\mathcal{N})$ and any transition vertex x s.t. (u

• for any $\phi \in C^1(\mathcal{N})$ and any transition vertex x_i s.t. $(u - \phi)$ attains a local minimum at x_i , it holds :

$$\max_{j\in\mathrm{Inc}_i}\left\{|D_j\phi(x_i)|-rac{1}{\eta_j(x_i)}
ight\}\geq 0$$

(iii) $u \in C(\mathcal{N})$ is a solution if it is both a sub- and a super-solution

See Lions & Souganidis, Rendiconti Lincei (2016), and the references therein

The u-component of the solution

The weighted distance function to $\partial \mathcal{N}$

$$d_{\partial \mathcal{N}}(x) := \min_{y \in \partial \mathcal{N}} \mathcal{D}(x, y), \quad x \in \mathcal{N}$$

is the good candidate to be the viscosity solution of the eikonal equation

$$|Du(x)| - \frac{1}{\eta(x)} = 0 \qquad (Ek)$$

Proposition

For any fixed $x_0 \in \mathcal{N}$, the function $\mathcal{D}(x_0, \cdot)$ is a viscosity solution of (Ek) in $\mathcal{N} \setminus (\partial \mathcal{N} \cup \{x_0\})$ and $d_{\partial \mathcal{N}}$ is the unique viscosity solution of (Ek) in \mathcal{N} with $d_{\partial \mathcal{N}} = 0$ on $\partial \mathcal{N}$.

What about the v-component of the solution ?

(i)
$$v \ge 0$$
 and s.t. $v_j \in C([0, \ell_j])$ for $j = 1, ..., M$
(ii) $u \in (W^{1,\infty} \cap C)(\mathcal{N}), u \ge 0, \eta(x) |Du(x)| \le 1$ a.e. in $\mathcal{N} \setminus \partial \mathcal{N}$
(iii) u is a viscosity solution of the eikonal equation
in $\{x \in \mathcal{N} \setminus \partial \mathcal{N} : v(x) \ne 0\}$
(iv) $\forall \psi \in (W^{1,\infty} \cap C)(\mathcal{N})$ s.t. $\psi_{|\partial \mathcal{N}} = 0$:
 $\int_{\mathcal{N}} v \eta Du D\psi dx = \int_{\mathcal{N}} f \psi dx$
(v) $u_{|\partial \mathcal{N}} = 0$
(v) (u, v) satisfies transmission conditions at each transition
vertex

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

What about the v-component of the solution ?

 \rightsquigarrow Hadeler & Kuttler, Granular matter (1999) :

"v(x) is determined by adding up all the matter coming down (from the source) along the *transport ray* between the *singular set* of dist $(\cdot, \partial \Omega)$ and x "

 \rightsquigarrow We need to define the singular set of the distance function $d_{\partial\mathcal{N}}$

 $\stackrel{\sim}{\rightarrow} \mbox{ If } \Omega \subset \mathbb{R}^n \mbox{ is smooth, the singular set of the euclidian distance from } \partial \Omega \mbox{ is the set of points where this function is not differentiable. Its closure coincides with the set of points having multiple geodesics connecting them to } \partial \Omega \mbox{}$

 \rightsquigarrow In the case of the network N, the singular set of $d_{\partial N}$ is the set of points where $d_{\partial N}$ attains a local maximum

Singular set of $d_{\partial \mathcal{N}}$

Proposition

Let

 $S_j(d_{\partial\mathcal{N}}):=\{t\in(0,\ell_j):\ d_j\ is\ not\ differentiable\ at\ t\}\,,\quad j=1,\ldots,M$ It holds :

(i) $d_{\partial N}$ does not attain a local minimum on $\mathcal{N} \setminus \partial \mathcal{N}$ (ii) $d_{\partial N}$ attains a local maximum at $x \in e_j$ iff $\pi_j^{-1}(x) \in S_j(d_{\partial N})$ (iii) $\#S_j(d_{\partial N}) \in \{0,1\}$

Definition

We define the singular set of $d_{\partial\mathcal{N}}$ as

$$\begin{split} S(d_{\partial\mathcal{N}}) &:= \{ \pi_j(S_j(d_{\partial\mathcal{N}})) \, ; \, j = 1, \dots, M \} \\ & \cup \{ x_i \in \mathcal{V} \, : \, d_{\partial\mathcal{N}} \text{ has a local maximum at } x_i \} \end{split}$$

The v-component of the solution

For $d = d_{\partial \mathcal{N}}$ we set

$$egin{aligned} T_j(d) &:= \{\pi_j^{-1}(x_i)\,;\, x_i \in \overline{e}_j ext{ s.t. } j \in \mathrm{Inc}_i^-(d)\}\ &\Sigma_j(d) &:= S_j(d) \cup T_j(d)\ &P_j(t) &:= t + au_j(t)\,\eta_j(t)\,d_j'(t)\,, \qquad t \in [0,\ell_j]\ & au_j(t) &:= \min\{s \geq 0: \ t + s\,\eta_j(t)\,d_j'(t) \in \Sigma_j(d)\} \end{aligned}$$

and we define v component-wise as

$$v_{j}^{f}(t) = \int_{0}^{\tau_{j}(t)} f_{j}\left(t + r \eta_{j}(t) d_{j}'(t)\right) dr \\ + \left(C_{ij} \sum_{k \in \mathrm{Inc}_{i}^{+}(d)} v_{k}^{f}(\pi_{k}^{-1}(x_{i}))\right) \chi_{\tau_{j}(d)}(P_{j}(t))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The existence result

Theorem (Cacace, Camilli, C.)

The pair $(d_{\partial \mathcal{N}}, v^f)$ is a weak solution of the differential system. Moreover,

(i)
$$v^{f} = 0$$
 over the singular set $S(d_{\partial \mathcal{N}})$
(ii) $v^{f} \in W^{1,\infty}(\mathcal{N})$
(iii) $(d_{\partial \mathcal{N}}, v^{f})$ satisfies
 $-D(v \eta Du) = f$
pointwise on $\mathcal{E} \setminus \{\pi_{j}(S_{j}(d_{\partial \mathcal{N}})); j = 1, ..., M\}$

Proof.

Choose ad hoc test functions and use the fact that one set between $S_j(d_{\partial N})$ and $T_j(d_{\partial N})$ is a singleton and the other one is empty \Box

What about uniqueness ?

$$\begin{aligned} X &:= \{ u \in (W^{1,\infty} \cap C)(\mathcal{N}) : \eta(x) | Du(x) | \leq 1 \text{ a.e. } x \in \mathcal{N} \} \\ X_0 &:= \{ u \in X : u = 0 \text{ on } \partial \mathcal{N} \} \\ u^f(x) &:= \max_{y \in \text{supp}(f)} [d_{\partial \mathcal{N}}(y) - \mathcal{D}(x, y)]_+ , \qquad x \in \mathcal{N} , \\ \Rightarrow d_{\partial \mathcal{N}} \text{ is the maximal nonnegative element in } X_0 \\ \Rightarrow u^f \text{ is the minimal one in the following sense} \end{aligned}$$

Lemma

(i)
$$0 \le u^f \le d_{\partial N}$$
 in N and $u^f = d_{\partial N}$ on $supp(f)$
(ii) $u^f \in X_0$

Proof.

(*iv*) To prove that $u^f = d_{\partial N}$ in supp (v^f) we prove that for all $x_0 \in \text{supp}(v^f)$ there exists $x_1 \in \text{supp}(f)$ s.t.

$$d_{\partial \mathcal{N}}(x_0) = d_{\partial \mathcal{N}}(x_1) - \mathcal{D}(x_0, x_1)$$

i.e. any geodesic path from supp (v^f) to $\partial \mathcal{N}$ is contained into at least one geodesic path from supp(f) to $\partial \mathcal{N}$

(v) To prove that $u^f = d_{\partial \mathcal{N}}$ in \mathcal{N} iff $S(d_{\partial \mathcal{N}}) \subset \operatorname{supp}(f)$ we use in particular the fact that any geodesic path from $x \in \mathcal{N} \setminus S(d_{\partial \mathcal{N}})$ to $\partial \mathcal{N}$ does not cross $S(d_{\partial \mathcal{N}})$

As a consequence of the previous Lemma, all nonnegative functions $u \in X_0$ s.t. $u = d_{\partial N}$ on supp(f), satisfy also

$$u = u^f = d_{\partial \mathcal{N}}$$
 on $\operatorname{supp}(v^f)$

Therefore, these functions u are all good candidates to be the first component of a weak solution, with v^f the second component *Question* : does (u, v^f) satisfies the transmission conditions at the transition verteces ? only in the verteces x_i s.t. $v^f(x_i) > 0$ since there

$$\sigma_{ij}(u^f) = \sigma_{ij}(d_{\partial\mathcal{N}})$$
 and $\mathrm{Inc}_i^{\pm}(u^f) = \mathrm{Inc}_i^{\pm}(d_{\partial\mathcal{N}})$

(日) (同) (三) (三) (三) (○) (○)

The uniqueness result

Theorem (Cacace, Camilli, C.)
If
$$(u, v)$$
 is a weak solution, then
(i) $u = d_{\partial N} = u^f$ on $supp(v^f)$
(ii) $v = v^f$ on $\prod_{i=1}^M \bar{e}_i$
(iii) if $S(d_{\partial N}) \subset supp(f)$, then $(u, v) = (d_{\partial N}, v^f)$ on $N \times \prod_{i=1}^M \bar{e}_i$

Corollary

If (u, v) is a weak solution, then for all transition vertex x_i s.t. $v(x_i) \neq 0$, the sets $\operatorname{Inc}_i^{\pm}(u)$ are not empty and satisfy (i) $\{j \in \operatorname{Inc}_i^{+}(d_{\partial \mathcal{N}}) : v_j(x_i) > 0\} \subseteq \operatorname{Inc}_i^{+}(u) \subseteq \operatorname{Inc}_i^{+}(d_{\partial \mathcal{N}})$ (ii) $\operatorname{Inc}_i^{-}(u) = \operatorname{Inc}_i^{-}(d_{\partial \mathcal{N}})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Two key tools for the proof of the uniqueness result :

• the following partition $(\mathcal{E}_m)_m$ of \mathcal{E}

$$\begin{split} \mathcal{E}_0 &= \mathcal{E}'_0 \cup \mathcal{E}''_0 \\ \mathcal{E}'_0 &:= \{ e_j \in \mathcal{E} \ : \ S_j(d_{\partial \mathcal{N}}) \neq \emptyset \} \\ \mathcal{E}''_0 &:= \{ e_j \in \mathcal{E} \ : \ \text{one endpoint is a maximum point of } d_{\partial \mathcal{N}} \} \end{split}$$

and

$$\mathcal{E}_m := \{e_j \in \mathcal{E} \, : \, \exists \, i \in \mathcal{I}_T \, \, ext{and} \, \, e_k \in \mathcal{E}_{m-1} \, \, ext{s.t.} \, \, j,k \in ext{Inc}_i \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• the transmission conditions

Numerical approximations of $(d_{\partial \mathcal{N}}, v^{t})$ and tests

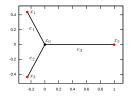
ullet To compute an approximation of $d_{\partial\mathcal{N}}$ we consider

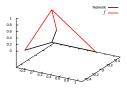
$$\begin{cases} \max_{y \in \mathcal{G}^h: y \sim x} \left(-\frac{u^h(y) - u^h(x)}{\mathsf{Dist}(x, y)} \right) - \frac{1}{\eta(x)} = 0 \qquad x \in \mathcal{G}^h \setminus \partial \mathcal{G}^h \\ u^h(x) = 0 \qquad x \in \partial \mathcal{G}^h \end{cases}$$

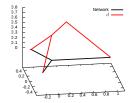
whose solution is

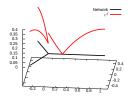
$$d^h(x) = \min\left(\sum_{m=0}^{n-1} rac{1}{\eta(x_m)} ext{Dist}(x_m, x_{m+1})
ight) \qquad x \in \mathcal{G}^h$$

• The formula for $(v_j^f)_{j=1,\dots,M}$ is approximated by a quadrature rule methode

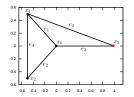


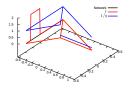


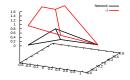


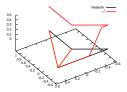


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

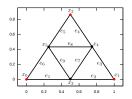


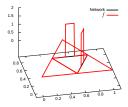


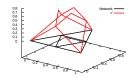


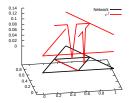


・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・









・ロト・西ト・西ト・日・ の々ぐ

The software SPNET

The software **SPINET** (for **S**and **P**iles on **NET**works) for the numerical approximations is due to Simone Cacace and it can be downloaded at

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

http://www.dmmm.uniroma1.it/~fabio.camilli/spnet.html.

The associated variational problem

$$\sup_{u\in X_0}\int_{\mathcal{N}}f(x)\,u(x)\,dx$$

or

$$\inf_{u\in X_0}\int_{\mathcal{N}}\left(\mathbf{1}_{[-1,1]}(\eta(x)Du(x))-f(x)\,u(x)\,dx\right)$$

- $d_{\partial \mathcal{N}}$ is the maximal solution
- u^f is the minimal solution
- $u \in X_0$ is a solution iff $u^f \leq u \leq d_{\partial \mathcal{N}}$ in \mathcal{N}
- $u \in X_0$ is a solution iff there exists $(v_j)_j \in \prod_{j=1}^M C([0, \ell_j])$ s.t.

$$\int_{\mathcal{N}} v \eta D u D \psi dx = \int_{\mathcal{N}} f \psi dx \qquad \forall \psi \in (W^{1,\infty} \cap C)(\mathcal{N}), \ \psi_{|_{\partial \mathcal{N}}} = 0$$

Merci !

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>