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Scattering by an Inhomogeneous Media
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∆u + k2n(x)u = 0 in Rd , d = 2,3
u = us + ui

lim
r→∞

r
d−1

2

(
∂us

∂r
− ikus

)
= 0

We assume that n − 1 has compact support D and n ∈ L∞(D) is such
that <(n) ≥ γ > 0 and =(n) ≥ 0 in D. Here k > 0 is the wave number
proportional to the frequency ω.

Question: Is there an incident wave ui that does not scatter?

The answer to this question leads to the transmission eigenvalue
problem.
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Transmission Eigenvalues

If there exists a nontrivial solution to the homogeneous interior
transmission problem

∆w + k2n(x)w = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
∂w
∂ν

=
∂v
∂ν

on ∂D

such that v can be extended outside D as a solution to the Helmholtz
equation ṽ , then the scattered field due to ṽ as incident wave is
identically zero.

Values of k for which this problem has non trivial solution are referred
to as transmission eigenvalues and the corresponding nontrivial
solution w , v as eigen-pairs.
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Transmission Eigenvalues

In general such an extension of v does not exits!

Since Herglotz wave functions

vg(x) :=

∫
Ω

eikx·dg(d)ds(d), Ω := {x : |x | = 1} ,

are dense in the space{
v ∈ L2(D) : ∆v + k2v = 0 in D

}
at a transmission eigenvalue there is an incident field that produces
arbitrarily small scattered field.
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Motivation

Two important issues:

Real transmission eigenvalues can be determined from the
scattered data.

Transmission eigenvalues carry information about material
properties.

Therefore, transmission eigenvalues can be used

to quantify the presence of abnormalities inside homogeneous
media and use this information to test the integrity of materials.

How are real transmission eigenvalues seen in the scattering data?
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Measurements

We assume that ui (x) = eikx·d and the far field pattern u∞(x̂ ,d , k) of
the scattered field us(x ,d , k) is available for x̂ ,d ∈ Ω, and k ∈ [k0, k1]

where us(x ,d , k) =
eikr

r
d−1

2

u∞(x̂ ,d , k) + O
(

1
r3/2

)
as r →∞, x̂ = x/|x |, r = |x |.

Define the far field operator F : L2(Ω)→ L2(Ω) by

(Fg)(x̂) :=

∫
Ω

u∞(x̂ ,d , k)g(d)ds(d),

(
S = I +

ik√
2πk

e−iπ/4F
)



TE and Scattering Theory Spherically Stratified Media Transmission Eigenvalues Anisotropic Media Open Problem

The Far Field Operator

Theorem

The far field operator F : L2(Ω)→ L2(Ω) is injective and has dense
range if and only if k is not a transmission eigenvalue such that for a
corresponding eigensolution (w , v), v takes the form of a Herglotz
wave function.

For z ∈ D the far field equation is

(Fg)(x̂) = Φ∞(x̂ , z, k), g ∈ L2(Ω)

where Φ∞(x̂ , z, k) is the far field pattern of the fundamental solution
Φ(x , z, k) of the Helmholtz equation ∆v + k2v = 0.
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Computation of Real TE

Theorem (Cakoni-Colton-Haddar, Comp. Rend. Math. 2010)

Assume that either n > 1 or n < 1 and z ∈ D.

If k2 is not a transmission eigenvalue then for every ε > 0 there
exists gz,ε,k ∈ L2(Ω) satisfying ‖Fgz,ε,k − Φ∞‖L2(Ω) < ε and

lim
ε→0
‖vgz,ε,k ‖L2(D) exists.

If k2 is a transmission eigenvalue for any gz,ε,k ∈ L2(Ω) satisfying
‖Fgz,ε,k − Φ∞‖L2(Ω) < ε and for almost every z ∈ D

lim
ε→0
‖vgz,ε,k ‖L2(D) =∞.

If g is the computed Tikhonov regularized solution, the second part
still holds, whereas the first part is proven only for the scalar case
Arens, Inverse Problems (2004).
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Computation of Real TE
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Computation of the transmission eigenvalues from the far field
equation for the unit square D.
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Transmission Eigenvalue Problem

Recall the transmission eigenvalue problem

∆w + k2n(x)w = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
∂w
∂ν

=
∂v
∂ν

on ∂D

It is a nonstandard eigenvalue problem

∫
D

(
∇w · ∇ψ − k2n(x)wψ

)
dx =

∫
D

(
∇v · ∇φ− k2v φ

)
dx

If n = 1 the interior transmission problem is degenerate

If =(n) > 0 in D, there are no real transmission eigenvalues.
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Historical Overview

The transmission eigenvalue problem in scattering theory was
introduced by Kirsch (1986) and Colton-Monk (1988)

Research was focused on the discreteness of transmission
eigenvalues for variety of scattering problems:
Colton-Kirsch-Päivärinta (1989), Rynne-Sleeman (1991),
Cakoni-Haddar (2007), Colton-Päivärinta-Sylvester (2007),
Kirsch (2009), Cakoni-Haddar (2009), Hickmann (to appear).

In the above work, it is always assumed that either n − 1 > 0 or
1− n > 0.
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Historical Overview, cont.

The first proof of existence of at least one transmission
eigenvalues for large enough contrast is due to
Päivärinta-Sylvester (2009).

The existence of an infinite set of transmission eigenvalues is
proven by Cakoni-Gintides-Haddar (2010) under only
assumption that either n − 1 > 0 or 1− n > 0. The existence
has been extended to other scattering problems by Kirsch
(2009), Cakoni-Haddar (2010) Cakoni-Kirsch (2010),
Bellis-Cakoni-Guzina (2011), Cossonniere (Ph.D. thesis) etc.

Hitrik-Krupchyk-Ola-Päivärinta (2010), in a series of papers have
extended the transmission eigenvalue problem to a more
general class of differential operators with constant coefficients.
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Historical Overview, cont.

Finch has connected the discreteness of the transmission
spectrum to a uniqueness question in thermo-acoustic imaging
for which n − 1 can change sign.

Cakoni-Colton-Haddar (2010) and then Cossonniere-Haddar
(2011) have investigated the case when n = 1 in D0 ⊂ D and
n − 1 > α > 0 in D \ D0.

Recently Sylvester (to appear) has shown that the set of
transmission eigenvalues is at most discrete if n − 1 is positive
(or negative) only in a neighborhood of ∂D but otherwise could
changes sign inside D. A similar result is obtained by Bonnet
Ben Dhia - Chesnel - Haddar (2011) using T-coercivity and
Lakshtanov-Vainberg (to appear), for the case when there is
contrast in both the main differential operator and lower term.
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Scattering by a Spherically Stratified Medium

We consider the interior eigenvalue problem for a ball of radius a with
index of refraction n(r) being a function of r := |x |

∆w + k2n(r)w = 0 in B
∆v + k2v = 0 in B

w = v on ∂B
∂w
∂r

=
∂v
∂r

on ∂B

where B :=
{

x ∈ R3 : |x | < a
}

.



TE and Scattering Theory Spherically Stratified Media Transmission Eigenvalues Anisotropic Media Open Problem

Scattering by a Spherically Stratified Medium

Look for solutions in polar coordinates (r , θ, ϕ)

v(r , θ) = a`j`(kr)P`(cos θ) and w(r , θ) = a`Y`(kr)P`(cos θ)

where j` is a spherical Bessel function and Y` is the solution of

Y ′′` +
2
r

Y ′` +

(
k2n(r)− `(`+ 1)

r2

)
Y` = 0

such that lim
r→0

(Y`(r)− j`(kr)) = 0. There exists a nontrivial solution of

the interior transmission problem provided that

d`(k) := det

 Y`(a) −j`(ka)

Y ′`(a) −kj ′`(ka)

 = 0.

Values of k such that d`(k) = 0 are the transmission eigenvalues.
d`(k) are entire function of k of finite type and bounded for k > 0.
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Transmission Eigenvalues

Assume that =(n) = 0 and n ∈ C2[0,a].

If either n(a) 6= 1 or n(a) = 1 and
∫ a

0

√
n(ρ)dρ 6= a.

The set of all transmission eigenvalue is discrete.
There exists an infinite number of real transmission
eigenvalues accumulating only at +∞.

For a subclass of n(r) there exist infinitely many complex
transmission eigenvalues, Leung-Colton, (to appear).

Inverse spectral problem

All transmission eigenvalues uniquely determine n(r) provide
n(0) is given and either n(r) > 1 or n(r) < 1.
Cakoni-Colton-Gintides, SIAM Journal Math Analysis, (2010).

If n(r) < 1 then transmission eigenvalues corresponding to
spherically symmetric eigenfunctions uniquely determine n(r)
Aktosun-Gintides-Papanicolaou, Inverse Problems, (2011).
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Transmission Eigenvalue Problem

Recall the transmission eigenvalue problem

∆w + k2n(x)w = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
∂w
∂ν

=
∂v
∂ν

on ∂D

Let u = w − v , we have that

∆u + k2nu = k2(n − 1)v .

Then eliminate v to get an equation only in terms of u by applying
(∆ + k2)
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Transmission Eigenvalues

Let n ∈ L∞(D), and denote n∗ = sup
x∈D

n(x) and 0 < n∗ = inf
x∈D

n(x).

To fix our ideas assume n∗ > 1 (similar analysis if n∗ < 1).

Let u := w − v ∈ H2
0 (D). The transmission eigenvalue problem can be

written for u as an eigenvalue problem for the fourth order equation:

(∆ + k2)
1

n − 1
(∆ + k2n)u = 0

i.e. in the variational form

∫
D

1
n − 1

(∆u + k2nu)(∆ϕ+ k2ϕ) dx = 0 for all ϕ ∈ H2
0 (D)

Definition: k ∈ C is a transmission eigenvalue if there exists a
nontrivial solution v ∈ L2(D), w ∈ L2(D), w − v ∈ H2

0 (D) of the
homogeneous interior transmission problem.
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Transmission Eigenvalues

Obviously we have

0 =

∫
D

1
n − 1

∣∣(∆u + k2nu)
∣∣2 dx + k2

∫
D

(
|∇u|2 − k2n|u|2

)
dx .

Poincare inequality yields the Faber-Krahn type inequality for the first
transmission eigenvalue (not isoperimetric)

k2
1,D,n >

λ1(D)

n∗
.

where λ1(D) is the first Dirichlet eigenvalue of −∆ in D.

In particular there are no real transmission eigenvalues in the interval
(0, λ1(D)/n∗).
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Transmission Eigenvalues

Letting k2 := τ , the transmission eigenvalue problem can be written
as a quadratic pencil operator

u − τK1u + τ2K2u = 0, u ∈ H2
0 (D)

with selfadjoint compact operators K1 = T−1/2T1T−1/2 and
K2 = T−1/2T2T−1/2 where

(Tu, ϕ)H2(D) =

∫
D

1
n − 1

∆u ∆ϕ dx coercive

(T1u, ϕ)H2(D) = −
∫

D

1
n − 1

(∆u ϕ+ nu ∆ϕ) dx

(T2u, ϕ)H2(D) =

∫
D

n
n − 1

u ϕ dx non-negative.
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Transmission Eigenvalues

The transmission eigenvalue problem can be transformed to the
eigenvalue problem

(K− ξI)U = 0, U =

(
u

τK 1/2
2 u

)
, ξ :=

1
τ

for the non-selfadjoint compact operator
K : H2

0 (D)× H2
0 (D)→ H2

0 (D)× H2
0 (D) given by

K :=

(
K1 −K 1/2

2

K 1/2
2 0

)
.

However from here one can see that the transmission eigenvalues
form a discrete set with +∞ as the only possible accumulation point.
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Transmission Eigenvalues

To obtain existence of transmission eigenvalues and isoperimetric
Faber-Krahn type inequalities we rewrite the transmission eigenvalue
problem in the form

(Aτ − τB)u = 0 in H2
0 (D)

(Aτu, ϕ)H2(D) =

∫
D

1
n − 1

(∆u + τu)(∆ϕ+ τϕ) dx + τ2
∫

D
u · ϕdx

(Bu, ϕ)H2(D) =

∫
D
∇u · ∇ϕdx

Observe that

The mapping τ → Aτ is continuous from (0, +∞) to the set of
self-adjoint coercive operators from H2

0 (D)→ H2
0 (D).

B : H2
0 (D)→ H2

0 (D) is self-adjoint, compact and non-negative.
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Transmission Eigenvalues

Now we consider the generalized eigenvalue problem

(Aτ − λ(τ)B)u = 0 in H2
0 (D)

Note that k2 = τ is a transmission eigenvalue if and only if satisfies
λ(τ) = τ

For a fixed τ > 0 there exists an increasing sequence of eigenvalues
λj (τ)j≥1 such that λj (τ)→ +∞ as j →∞.

These eigenvalues satisfy

λj (τ) = min
W⊂Uj

(
max

u∈W\{0}

(Aτu,u)

(Bu,u)

)
.
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Transmission Eigenvalues

Hence, if there exists two positive constants τ0 > 0 and τ1 > 0 such
that

Aτ0 − τ0B is positive on H2
0 (D),

Aτ1 − τ1B is non positive on a m dimensional subspace of H2
0 (D)

then each of the equations λj (τ) = τ for j = 1, . . . ,m, has at least one
solution in [τ0, τ1] meaning that there exists m transmission
eigenvalues (counting multiplicity) within the interval [τ0, τ1].

It is now obvious that determining such constants τ0 and τ1 provides
the existence of transmission eigenvalues as well as the desired
isoperimetric inequalities.
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Transmission Eigenvalues

(Aτu − τBu,u)U0(D) ≥ α‖u‖U0(D) for all 0 < τ <
λ1(D)

n∗
.

Take τ1 := k2(Br ) the first eigenvalue a ball Br ⊂ D and
n(x) = n∗ constant, ur the corresponding eigenfunction and
denote ũr ∈ H2

0 (D) its extension by zero to the whole of D. Then

(Aτ1 ũr − τ1Bũr , ũr )U0(D) ≤ 0.

If the radius of the ball is such that m(r) disjoint balls can be
included in D, the above condition is satisfied in a
m(r)-dimensional subspace of H2

0 (D)

Thus there exists m(r) transmission eigenvalues (counting
multiplicity). As r → 0, m(r)→∞ and since the multiplicity of an
eigenvalue is finite we prove the existence of an infinite set of real
transmission eigenvalues.



TE and Scattering Theory Spherically Stratified Media Transmission Eigenvalues Anisotropic Media Open Problem

Faber-Krahn Inequalities

Theorem (Cakoni-Gintides-Haddar, SIMA (2010))

Assume that 1 < n∗. Then, there exists an infinite discrete set of real
transmission eigenvalues accumulating at infinity +∞. Furthermore

k1,n∗,B1 ≤ k1,n∗,D ≤ k1,n(x),D ≤ k1,n∗,D ≤ k1,n∗,B2 .

where B2 ⊂ D ⊂ B1.

One can prove that, for n constant, the first transmission eigenvalue
k1,n is continuous and strictly monotonically decreasing with respect
to n. In particular, this shows that the first transmission eigenvalue
determine uniquely the constant index of refraction, provided that it is
known a priori that either n > 1.

Similar results can be obtained for the case when 0 < n∗ < 1.
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Detection of Anomalies in an Isotropic Medium

What does the first transmission eigenvalue say about the
inhomogeneous media n(x)?

We find the constant n0 such that the first transmission eigenvalue of

∆w + k2n0w = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
∂w
∂ν

=
∂v
∂ν

on ∂D

is k1,n(x) (which can be determined from the measured data).

Then from the previous discussion we have that n∗ ≤ n0 ≤ n∗.

Open Question: Find an exact formula that connect n0 to n(x) and D.
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The Case with Cavities

Can the assumption n > 1 or 0 < n < 1 in D be relaxed?

D

D

D

o

o

n = 1 in D0

n − 1 ≥ δ > 0 in D \ D0

The case when there are regions D0
in D where n = 1 (i.e. cavities) is
more delicate. The same type of anal-
ysis can be carried through by looking
for solutions of the transmission eigen-
value problem

v ∈ L2(D) and w ∈ L2(D) such that w − v is in

V0(D,D0, k) := {u ∈ H2
0 (D) such that ∆u + k2u = 0 in D0}.

Cakoni-Colton-Haddar, SIMA (2010)
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The Case with Cavities

In particular if n > 1 and k(D0,n(x)) is the first eigenvalue for a fixed
D, one has the following properties:

The Faber Krahn inequality

0 <
λ1(D)

n∗
≤ k(D0,n(x)).

Monotonicity with respect to the index of refraction

k(D0,n(x)) ≤ k(D0, ñ(x)), ñ(x) ≤ n(x).

Monotonicity with respect to voids

k(D0,n(x)) ≤ k(D̃0,n(x)), D0 ⊂ D̃0.

where λ1(D) is the first Dirichlet eigenvalue of −∆ in D.
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The Case of n − 1 Changing Sign

Recently, progress has been made in the case of the contrast n − 1
changing sign inside D with state of the art result by Sylvester (to
appear). Roughly speaking he shows that transmission eigenvalues
form a discrete (possibly empty) set provided n − 1 has fixed sign
only in a neighborhood of ∂D. There are two aspects in the proof:

Fredholm property. Sylvester consideres the problem in the form

∆u+k2nu = k2(n − 1)v , ∆v +k2v = 0, u ∈ H2
0 (D), v ∈ H1(D)

and uses the concept of upper-triangular compact operators.
This property can also be obtained via variational formulation
(Kirsch) or integral equation formulation (Cossonniere-Haddar).

Find a k that is not a transmission eigenvalues. This requires
careful estimates for the solution inside D in terms of its values
in a neighborhood of ∂D.

The existence of transmission eigenvalues under such weaker
assumptions is still open.
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Complex Eigenvalues

Current results on complex transmission eigenvalues for media of
general shape are limited to identifying eigenvalue free zones in the
complex plane.

The first result for homogeneous media is given in
Cakoni-Colton-Gintides SIMA ( 2010).

The best result to date is due Hitrik-Krupchyk-Ola-Päivärinta,
Math. Research Letters (2011), where they show that almost all
transmission eigenvalues are confined to a parabolic
neighborhood of the positive real axis. More specifically they
show

Theorem (Hitrik-Krupchyk-Ola-Päivärinta)

For n ∈ C∞(D,R) and 1 < α ≤ n ≤ β, there exists a 0 < δ < 1 and
C > 1 both independent of α, β such that all transmission eigenvalues
τ := k2 ∈ C with |τ | > C satisfies <(τ) > 0 and =(τ) ≤ C|τ |1−δ.
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Absorbing-Dispersive Media

∆w + k2
(
ε1 + i

γ1

k

)
w = 0 in D

∆v + k2
(
ε0 + i

γ0

k

)
v = 0 in D

where ε0 ≥ α0 > 0, ε1 ≥ α1 > 0, γ0 ≥ 0, γ1 ≥ 0 are bounded
functions.

For the corresponding spherically stratifies case we have:

Theorem
If

γ0a
√
ε0

=

∫ a

0

γ1(r)√
ε1(r)

dr and
√
ε0a 6=

∫ a

0

√
ε1(r)dr

there exist an infinite number of real transmission eigenvalues. If the
first condition is not met then there exist an infinite number of
complex eigenvalues.
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Absorbing-Dispersive Media

In the general case we have proven Cakoni-Colton-Haddar (to
appear):

The set of transmission eigenvalues k ∈ C in the right half plane
is discrete, provided ε1(x)− ε0(x) > 0.

Using the stability of a finite set of eigenvalues for closed
operators we have shown that if supD(γ0 + γ1) is small enough
there exists at least ` > 0 transmission eigenvalues each in a
small neighborhood of the first ` real transmission eigenvalues
corresponding to γ0 = γ1 = 0.

For the case of ε0, ε1, γ0, γ1 constant, we have identified
eigenvalue free zones in the complex plane

The existence of transmission eigenvalues for general media if
absorption is present is still open.
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Anisotropic Media

The corresponding transmission eigenvalue problem is to find
v ,w ∈ H1(D) such that

∇ · A∇w + k2nw = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
ν · A∇w = ν · ∇v on ∂D.

This transmission eigenvalue problem has a more complicated
nonlinear structure than quadratic.

The existence has been shown in Cakoni-Gintides-Haddar, SIAM J.
Math. Anal. (2010) and Cakoni-Kirsch, IJCSM (2010).
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Existence of Transmission Eigenvalues

Set u = w − v ∈ H1
0 (D). Find v = vu by solving a Neuman type

problem: For every ψ ∈ H1(D)∫
D

(A− I)∇v · ∇ψ − k2(n − 1)vψ dx =

∫
D

A∇u · ∇ψ − k2nuψ dx .

Having u → vu, we require that v := vu satisfies ∆v + k2v = 0.

Thus we define Lk : H1
0 (D)→ H1

0 (D)

(Lk u, φ)H1
0 (D) =

∫
D
∇vu · ∇φ− k2vu · φdx , φ ∈ H1

0 (D).

Then the transmission eigenvalue problem is equivalent to

Lk u = 0 in H1
0 (D) which can be written

(I + L−1/2
0 CkL−1/2

0 )u = 0 in H1
0 (D)

L0 self-adjoint positive definite and Ck self-adjoint compact.
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Existence of Transmission Eigenvalues

If n(x) ≡ 1 and the contrast A− I is either positive or negative in
D then there exists an infinite discrete set of real transmission
eigenvalues accumulating at +∞.

If the contrasts A− I and n − 1 have the same fixed sign, then
there exists an infinite discrete set of real transmission
eigenvalues accumulating at +∞.

If the contrasts A− I and n − 1 have the opposite fixed sign,
then there exits at least one real transmission eigenvalue
providing that n is small enough.
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Discreteness of Transmission Eigenvalues

The strongest result on the discreteness of transmission eigenvalues
for this problem is due to Bonnet Ben Dhia - Chesnel - Haddar,
Comptes Rendus Math. (2011) (using the concept of >- coercivity ).

In particular, the discreteness of transmission eigenvalues is proven
under either one of the following assumptions (weaker than for the
existence):

Either A− I > 0 or A− I < 0 in D, and
∫

D
(n − 1) dx 6= 0 or

n ≡ 1.

The contrasts A− I and n − 1 have the same fixed sign only in a
neighborhood of the boundary ∂D.
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Numerical Example: Homogeneous Anisotropic Media

We consider D to be the unit square [−1/2, 1/2]× [−1/2, 1/2],
n ≡ 1 and

A1 =

(
2 0
0 8

)
A2 =

(
6 0
0 8

)
A2r =

(
7.4136 −0.9069
−0.9069 6.5834

)
Matrix Eigenvalues a∗, a∗ Predicted a0

Aiso 4, 4 4.032
A1 2, 8 5.319
A2 6, 8 7.407
A2r 6, 8 6.896

Cakoni-Colton-Monk-Sun, Inverse Problems, (2010)
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Open Problem

Can the existence of real transmission eigenvalues for
non-absorbing media be established if the assumptions on the
sign of the contrast are weakened?

Do complex transmission eigenvalues exists for general
non-absorbing media?

Do real transmission eigenvalues exist for absorbing media?

What would the necessary conditions be on the contrasts that
guaranty the discreteness of transmission eigenvalues?

Can Faber-Krahn type inequalities be established for the higher
eigenvalues?

Can an inverse spectral problem be developed for the general
transmission eigenvalue problem? (Completeness of
eigen-solutions?)

Cakoni - Haddar, Transmission Eigenvalues in Inverse Scattering
Theory, in Inside Out 2, Uhlmann edt. MSRI Publication (to appear).
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