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FIGURE 3.1 Glycolysis (Embden—Meyerhof pathway ). Glucose phosphorylation is regulated by hexokinase, an enzyme
inhibited by glucose 6-phosphate. Glucose must be phosphorylated to glucose 6-phosphate to enter glycolysis or to be
stored as glveogen. Two other important steps in the regulation of glycolysis are catalvzed by phosphofructokinase and
pyruvate kinase. Their activity is controlled by the levels of high-energy phosphates as well as of citrate and acetyl-CoA.
Pyruvate, through lactate dehydrogenase, is in dynamic equilibrium with lactate. This reaction is essential to regenerate
NAD" residues necessary to sustain glycolysis downstream of glyceraldehyde 3-phosphate. PCr. phosphocreatine.
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FIGURE 3.5 Pentose phosphate pathway. In the oxidative branch of the pentose phosphate pathway. two NADPH are generated per glucose G-phosphate.
The first, rate-limiting resction of the pathway is catalyeed by glucose-6-phosphate dehydrogenase: the second NADPH is penerated through the oxidative
decarhoxvlation of &-phosphogluconate, a reaction catalyzed by glucose-G-phosphogluoconate dehvdrogenase, The nonoxidative branch of the penlose
phosphate pathway provides 3 reversible link with glycolysis, by regenerating the two glyeolytic intermediates glyceraldehyde 3-phosphate and fructose
f-phosphate. This regeneration is achieved through three sequential reactions. In the first. catalyzed by transketolase, xylulose 5-phosphate and ribose
J-phosphate, the end product of the oxidative branch) yvield plyceraldehyde 3-phosphate and sedohepiulose
T-phosphate. Under the action of ransaldolase, these two intermediates yield fruciose G-phosphate and erythrose 4-phosphate. The later intermediane
combines with glyceraldehyde 3-phosphate, in a reaction catalyieed by transketolase, o vield froctose 6-phosphate and glyceraldehyde 3-phosphate, Thus,
through the nonoxidative branch of the pentose phosphate pathway, two hexoses (fructose G-phosphate) and one triose (glveeraldehyde 3-phosphate) of the
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FIGURE 3.13 Metabolic intermediates are released by astrocytes to regenerate the glutamate neurotransmitter pool in neurons. Glutamineg, formed from
glutamate in a reaction catalyzed by glutamine synthase (GS), is released by astrocytes and taken up by neurons, which convert it into glutamate under

the action of glutaminase. GS is an enzyme selectively localized in astrocytes. This metabolic cycle is referred to as the glutamate—glutamine shuttle.

Other, quantitatively less important sources of neuronal glutamate are lactate, alanine, and «-ketoglutarate (a-KG). In astrocytes, glutamate is synthesized

de novo from o-KG in a reaction catalyzed by glutamate dehydrogenase (GDH). The carbon backbone of glutamate is exported by astrocytes after conversion
into glutamine under the action of GS; the conversion of leucine into o-ketoisocaproate (¢-KIC), catalyzed by leucine transaminase (LT), provides the amino
group for the synthesis of glutamine from glutamate. The carbons “lost” from the TCA cycle as «-KG is converted into glutamate are replenished by
oxaloacetate (OxA) formed from pyruvate in a reaction catalyzed by pyruvate carboxylase (PC), another astrocyte-specific enzyme,
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FIGURE 3.14 The astrocyte—neuron metabolic unit. Glutamatergic terminals and the astrocytic processes that surround them can be
viewed as a highly specialized metabolic unit in which the activation signal (glutamate) is furnished by the neuron to the astrocyte.
whereas the astrocyte provides the precursors needed to maintain the neurotransmitter pool (glutamine, lactate. alanine). as well as
the energy substrate (lactate). AP, astrocyte process.
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Deux compartiments de pyruvate neuronal
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TABLE I. Apparent Kinetic Constants of Glocose and Lactate Consumption in Primary Cultures of Cortical Nearons in the Absence
and Presence of the Corresponding Competitive Substrate

Frocess Incubation condition K., mhi)* Ve (nmol/mg hr)® KL (m®
Glucose consumption Clucose 01255 mM 22 *0.2 600 £ 65 na
Clucose consumption in the presence of hotate Clucose (1255 mM and 5 mM lactate 3o 201 074 = 54 A6
Lactate consmmypiion Lactate 1=15 mbd T8 *=0.1 44+ G 1
Lactate consumption in the presence of ghicose Lactate 1-15 mM and 1 mM glucose 8.5 0.1 451 £ 5 '

Ramirez et al, 2007

@ Neurons Q Astroglia (Means + SEM, n = 4)
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Couplage métabolique redox astrocyte-neurone
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Sources de radicaux libres et mécanisme de leur neutralisation
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Role du glutathion et du NAPDH dans la neutralisation des radicaux libres
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FIGURE 3.5 Pentose phosphate pathway. In the oxidative branch of the pentose phosphate pathway. two NADPH are generated per glucose G-phosphate.
The first, rate-limiting resction of the pathway is catalyeed by glucose-6-phosphate dehydrogenase: the second NADPH is penerated through the oxidative
decarhoxvlation of &-phosphogluconate, a reaction catalyzed by glucose-G-phosphogluoconate dehvdrogenase, The nonoxidative branch of the penlose
phosphate pathway provides 3 reversible link with glycolysis, by regenerating the two glyeolytic intermediates glyceraldehyde 3-phosphate and fructose
f-phosphate. This regeneration is achieved through three sequential reactions. In the first. catalyzed by transketolase, xylulose 5-phosphate and ribose
J-phosphate, the end product of the oxidative branch) yvield plyceraldehyde 3-phosphate and sedohepiulose
T-phosphate. Under the action of ransaldolase, these two intermediates yield fruciose G-phosphate and erythrose 4-phosphate. The later intermediane
combines with glyceraldehyde 3-phosphate, in a reaction catalyieed by transketolase, o vield froctose 6-phosphate and glyceraldehyde 3-phosphate, Thus,
through the nonoxidative branch of the pentose phosphate pathway, two hexoses (fructose G-phosphate) and one triose (glveeraldehyde 3-phosphate) of the
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Couplage metaboliqgue neurone-glie dans la synthese du glutathion
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